Anisotropic Metal Chalcogenide Nanomaterials : Synthesis, Assembly, and Applications / / by Geon Dae Moon
| Anisotropic Metal Chalcogenide Nanomaterials : Synthesis, Assembly, and Applications / / by Geon Dae Moon |
| Autore | Moon Geon Dae |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (xiii, 89 pages) |
| Disciplina |
620.115
621.3124 |
| Collana | SpringerBriefs in Materials |
| Soggetto topico |
Nanotechnology
Nanochemistry Energy storage Engineering—Materials Optical materials Electronics - Materials Nanotechnology and Microengineering Energy Storage Materials Engineering Optical and Electronic Materials |
| ISBN | 3-030-03943-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction and Backgrounds -- Synthesis and Assembly of Anisotropic Metal Chalcogenides -- Applications. |
| Record Nr. | UNINA-9910337468003321 |
Moon Geon Dae
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Batteries, hydrogen storage and fuel cells [[electronic resource] /] / edited by Steven L. Suib
| Batteries, hydrogen storage and fuel cells [[electronic resource] /] / edited by Steven L. Suib |
| Pubbl/distr/stampa | Amsterdam, : Elsevier, 2013 |
| Descrizione fisica | 1 online resource (551 p.) |
| Disciplina | 621.3124 |
| Altri autori (Persone) | SuibSteven L |
| Collana | New and future developments in catalysis |
| Soggetto topico |
Fuel cells
Hydrogen - Storage Catalysis |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-444-53881-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Half Title; Title Page; Copyright; Contents; Introduction; Contributors; 1 Catalytic Batteries; 1.1 Introduction; 1.2 Metal-Air Batteries; 1.2.1 Catalytic Materials in Metal-Air Cells; 1.2.2 Aluminum-Air Batteries; 1.2.3 Lithium-Air Batteries; 1.2.4 Magnesium-Air Batteries; 1.2.5 Zinc-Air Batteries; 1.3 Environmental Conditions for Catalysts; 1.4 Safety Concerns for Metal-Air Battery Experimentation; 1.5 Future of Catalysts in Metal-Air Batteries; References; 2 A Novel Enzymatic Technology for Removal of Hydrogen Sulfide from Biogas; 2.1 Introduction; 2.2 Experimental
2.3 Results and Discussion 2.3.1 Effect of Enzyme Concentration; 2.3.2 Effect of Gas Flow Rate; 2.3.3 Effect of Enzyme Replenishment; 2.3.3.1 Replenishment at Saturation Point; 2.3.3.2 Replenishment at H2S Breakthrough; 2.3.4 Effect of Packing Material; 2.3.5 Sulfur Components Recovery; 2.4 Conclusions; Acknowledgments; References; 3 Electrocatalysts for the Electrooxidation of Ethanol; 3.1 Introduction; 3.2 Electrooxidation of Ethanol on Polycrystalline Pt, Pt (hkl) Electrodes and Pt/C Electrodes. Identification and Oxidation of Ethanol Adsorbate(s) 3.2.1 Electrochemical Studies of the Electrooxidation of Ethanol in Acid Medium 3.2.2 Identification of Ethanol Adsorbate and Oxidation Products by EC-FTIR and DEMS on Polycrystalline Pt and Pt/C Electrodes; 3.2.3 Adsorption and Electrooxidation of Acetic Acid; 3.2.4 Adsorption and Electrooxidation of Acetaldehyde; 3.3 Reaction Pathways and Mechanism of the Electrooxidation of Ethanol; 3.4 Designing of Supported Electrocatalysts for the Electrooxidation of Ethanol; 3.5 Fuel Cell Studies; 3.6 Summary; Acronyms and Symbols; References 4 Catalytic Processes Using Fuel Cells, Catalytic Batteries, and Hydrogen Storage Materials 4.1 Introduction; 4.2 Catalytic Processes in Fuel Cells; 4.2.1 Low-Temperature PEMFCs; 4.2.1.1 Hydrogen/Air(Oxygen) Fuel Cells; 4.2.1.1.1 Precious Metal-Based Catalysts; 4.2.1.1.2 Non-Precious Metal Catalysts; 4.2.1.2 Catalytic Processes in DMFCs; 4.2.1.2.1 Mechanism of Methanol Electrooxidation; 4.2.1.2.2 Precious Metal-Based Catalysts; 4.2.1.2.3 Non-Precious Metal Catalysts for Methanol Electrooxidation; 4.2.2 Solid Oxide Fuel Cells; 4.2.2.1 Methane Steam Reforming 4.3 Catalytic Processes in Batteries 4.3.1 Metal/Air Batteries; 4.3.1.1 Aqueous Electrolyte Metal/Air Batteries; 4.3.1.2 Non-Aqueous Electrolyte Li-Air Batteries; 4.3.2 Li-Water Batteries; 4.4 Catalytic Processes in Hydrogen Storage Materials; 4.4.1 Catalysis in Metal Hydrides; 4.4.2 Catalysts in Metal Organic Frameworks; 4.5 Summary; Acknowledgments; References; 5 Hydrogen Storage Materials; 5.1 Introduction; 5.2 Essential Properties of Hydrogen in Metals; 5.2.1 Thermodynamics; 5.2.2 Kinetics of Hydrogen Absorption and Desorption; 5.3 Hydride; 5.3.1 Ionic Hydride; 5.3.2 Covalent Hydride 5.3.3 Metallic Hydride (Interstitial Hydride) |
| Record Nr. | UNINA-9910459158203321 |
| Amsterdam, : Elsevier, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Conversione fotovoltaica della energia solare per impiego terrestre : seminario scientifico-tecnico di Lecce, 1. corso : Castro Marina-Lecce, 11-15 settembre 1978
| Conversione fotovoltaica della energia solare per impiego terrestre : seminario scientifico-tecnico di Lecce, 1. corso : Castro Marina-Lecce, 11-15 settembre 1978 |
| Autore | Seminario scientifico-tecnico di Lecce <1. ; 1978 ; Castro Marina, Lecce> |
| Pubbl/distr/stampa | [S.l.] : [s.n.], [1979?] (Bologna : Tecnoprint) |
| Descrizione fisica | 438 p. : ill. ; 24 cm |
| Disciplina | 621.3124 |
| Soggetto topico | Energia solare - Conversione fotovoltaica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991002250769707536 |
Seminario scientifico-tecnico di Lecce <1. ; 1978 ; Castro Marina, Lecce>
|
||
| [S.l.] : [s.n.], [1979?] (Bologna : Tecnoprint) | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Design of miniaturized variable-capacitance electrostatic energy harvesters / / Seyed Hossein Daneshvar, Mehmet Rasit Yuce and Jean-Michel Redouté
| Design of miniaturized variable-capacitance electrostatic energy harvesters / / Seyed Hossein Daneshvar, Mehmet Rasit Yuce and Jean-Michel Redouté |
| Autore | Daneshvar Seyed Hossein |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (213 pages) |
| Disciplina | 621.3124 |
| Soggetto topico | Microharvesters (Electronics) |
| ISBN | 3-030-90252-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910522966503321 |
Daneshvar Seyed Hossein
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electrochemical technologies for energy storage and conversion . Volume 1 [[electronic resource] /] / edited by Ru-Shi Liu ... [et al.]
| Electrochemical technologies for energy storage and conversion . Volume 1 [[electronic resource] /] / edited by Ru-Shi Liu ... [et al.] |
| Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH, 2012 |
| Descrizione fisica | 1 online resource (825 p.) |
| Disciplina |
621.3124
621.31242 |
| Altri autori (Persone) | LiuRu-Shi |
| Collana | Electrochemical technologies for energy storage and conversion |
| Soggetto topico |
Energy storage
Energy conversion Electrochemistry |
| ISBN |
3-527-64007-X
3-527-63949-7 3-527-64008-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Electrochemical Technologies for Energy Storage and Conversion; Contents to Volume 1; Contents to Volume 2; Preface; About the Editors; List of Contributors; 1 Electrochemical Technologies for Energy Storage and Conversion; 1.1 Introduction; 1.2 Global Energy Status: Demands, Challenges, and Future Perspectives; 1.3 Driving Forces behind Clean and Sustainable Energy Sources; 1.3.1 Local Governmental Policies as a Potential Thrust; 1.3.2 Greenhouse Gases Emission and the Associated Climate Changes; 1.3.3 Public Awareness about Environmental Protection Rose around the World
1.3.4 Population Growth and Industrialization1.3.5 Security and Safety Concerns Arising from Scarcity of Resources; 1.3.6 Platforms Advocating in Favor of Sustainable and Renewable Resources; 1.3.7 Economic Risk Generated from Price Pressure of Natural Resources; 1.3.8 Regulatory Risk from Governmental Action and Legislation; 1.3.9 Fear of Reputational Risk to Strengthen Corporate Social Responsibility; 1.3.10 Operational and Supply Chain Risks from Inefficiencies and Environmental Changes 1.4 Green and Sustainable Energy Sources and Their Conversion: Hydro, Biomass, Wind, Solar, Geothermal, and Biofuel1.4.1 Solar PV Plants; 1.4.2 Wind Power; 1.4.3 Geothermal Power; 1.4.4 Concentrating Solar Thermal Power (CSP) Plants; 1.4.5 Biomass; 1.4.6 Biofuel; 1.5 Electrochemistry: a Technological Overview; 1.6 Electrochemical Rechargeable Batteries and Supercapacitors (Li Ion Batteries, Lead-Acid Batteries, NiMH Batteries, Zinc-Air Batteries, Liquid Redox Batteries); 1.6.1 Lead-Acid Batteries; 1.6.2 NiMH Batteries; 1.6.3 Li-Ion Batteries; 1.6.4 Zinc-Air Batteries 1.6.5 Liquid Redox Batteries1.7 Light Fuel Generation and Storage: Water Electrolysis, Chloro-Alkaline Electrolysis, Photoelectrochemical and Photocatalytic H2 Generation, and Electroreduction of CO2; 1.7.1 Water Electrolysis; 1.7.2 Electrochemistry of Water Splitting; 1.7.3 Chlor-Alkaline Electrolysis; 1.7.4 Photoelectrochemical and Photocatalytic H2 Generation; 1.7.5 Carbon Dioxide Reduction; 1.8 Fuel Cells: Fundamentals to Systems (Phosphoric Acid Fuel Cells, PEM Fuel Cells, Direct Methanol Fuel Cells, Molten Carbon Fuel Cells, and Solid Oxide Fuel Cells); 1.8.1 Alkaline Fuel Cells 1.8.2 Direct Methanol Fuel Cells1.8.3 Phosphoric Acid Fuel Cells (PAFCs); 1.8.4 Proton Exchange Membrane Fuel Cells; 1.8.5 High-Temperature Molten Carbonate Fuel Cells; 1.8.6 Solid Oxide Fuel Cells; 1.9 Summary; Acknowledgments; References; Further Reading; 2 Electrochemical Engineering Fundamentals; 2.1 Electrical Current/Voltage, Faraday's Laws, Electric Efficiency, and Mass Balance; 2.1.1 Current Efficiency; 2.1.2 Mass Balance; 2.2 Electrode Potentials and Electrode-Electrolyte Interfaces; 2.2.1 Potential Difference; 2.2.2 Electrode-Electrolyte Interfaces 2.3 Electrode Kinetics (Charger Transfer (Butler-Volmer Equation) and Mass Transfer (Diffusion Laws)) |
| Record Nr. | UNINA-9910141175103321 |
| Weinheim, Germany, : Wiley-VCH, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electrochemical technologies for energy storage and conversion . Volume 1 / / edited by Ru-Shi Liu ... [et al.]
| Electrochemical technologies for energy storage and conversion . Volume 1 / / edited by Ru-Shi Liu ... [et al.] |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH, 2012 |
| Descrizione fisica | 1 online resource (825 p.) |
| Disciplina |
621.3124
621.31242 |
| Altri autori (Persone) | LiuRu-Shi |
| Collana | Electrochemical technologies for energy storage and conversion |
| Soggetto topico |
Energy storage
Energy conversion Electrochemistry |
| ISBN |
9783527640072
352764007X 9783527639496 3527639497 9783527640089 3527640088 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Electrochemical Technologies for Energy Storage and Conversion; Contents to Volume 1; Contents to Volume 2; Preface; About the Editors; List of Contributors; 1 Electrochemical Technologies for Energy Storage and Conversion; 1.1 Introduction; 1.2 Global Energy Status: Demands, Challenges, and Future Perspectives; 1.3 Driving Forces behind Clean and Sustainable Energy Sources; 1.3.1 Local Governmental Policies as a Potential Thrust; 1.3.2 Greenhouse Gases Emission and the Associated Climate Changes; 1.3.3 Public Awareness about Environmental Protection Rose around the World
1.3.4 Population Growth and Industrialization1.3.5 Security and Safety Concerns Arising from Scarcity of Resources; 1.3.6 Platforms Advocating in Favor of Sustainable and Renewable Resources; 1.3.7 Economic Risk Generated from Price Pressure of Natural Resources; 1.3.8 Regulatory Risk from Governmental Action and Legislation; 1.3.9 Fear of Reputational Risk to Strengthen Corporate Social Responsibility; 1.3.10 Operational and Supply Chain Risks from Inefficiencies and Environmental Changes 1.4 Green and Sustainable Energy Sources and Their Conversion: Hydro, Biomass, Wind, Solar, Geothermal, and Biofuel1.4.1 Solar PV Plants; 1.4.2 Wind Power; 1.4.3 Geothermal Power; 1.4.4 Concentrating Solar Thermal Power (CSP) Plants; 1.4.5 Biomass; 1.4.6 Biofuel; 1.5 Electrochemistry: a Technological Overview; 1.6 Electrochemical Rechargeable Batteries and Supercapacitors (Li Ion Batteries, Lead-Acid Batteries, NiMH Batteries, Zinc-Air Batteries, Liquid Redox Batteries); 1.6.1 Lead-Acid Batteries; 1.6.2 NiMH Batteries; 1.6.3 Li-Ion Batteries; 1.6.4 Zinc-Air Batteries 1.6.5 Liquid Redox Batteries1.7 Light Fuel Generation and Storage: Water Electrolysis, Chloro-Alkaline Electrolysis, Photoelectrochemical and Photocatalytic H2 Generation, and Electroreduction of CO2; 1.7.1 Water Electrolysis; 1.7.2 Electrochemistry of Water Splitting; 1.7.3 Chlor-Alkaline Electrolysis; 1.7.4 Photoelectrochemical and Photocatalytic H2 Generation; 1.7.5 Carbon Dioxide Reduction; 1.8 Fuel Cells: Fundamentals to Systems (Phosphoric Acid Fuel Cells, PEM Fuel Cells, Direct Methanol Fuel Cells, Molten Carbon Fuel Cells, and Solid Oxide Fuel Cells); 1.8.1 Alkaline Fuel Cells 1.8.2 Direct Methanol Fuel Cells1.8.3 Phosphoric Acid Fuel Cells (PAFCs); 1.8.4 Proton Exchange Membrane Fuel Cells; 1.8.5 High-Temperature Molten Carbonate Fuel Cells; 1.8.6 Solid Oxide Fuel Cells; 1.9 Summary; Acknowledgments; References; Further Reading; 2 Electrochemical Engineering Fundamentals; 2.1 Electrical Current/Voltage, Faraday's Laws, Electric Efficiency, and Mass Balance; 2.1.1 Current Efficiency; 2.1.2 Mass Balance; 2.2 Electrode Potentials and Electrode-Electrolyte Interfaces; 2.2.1 Potential Difference; 2.2.2 Electrode-Electrolyte Interfaces 2.3 Electrode Kinetics (Charger Transfer (Butler-Volmer Equation) and Mass Transfer (Diffusion Laws)) |
| Record Nr. | UNINA-9910815190203321 |
| Weinheim, Germany, : Wiley-VCH, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy conversion and economics
| Energy conversion and economics |
| Pubbl/distr/stampa | [Hoboken, New Jersey] : , : John Wiley & Sons, , 2020- |
| Descrizione fisica | 1 online resource |
| Disciplina | 621.3124 |
| Soggetto topico | Energy conversion |
| Soggetto genere / forma | Periodicals. |
| ISSN | 2634-1581 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996420048003316 |
| [Hoboken, New Jersey] : , : John Wiley & Sons, , 2020- | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Energy conversion and economics
| Energy conversion and economics |
| Pubbl/distr/stampa | [Hoboken, New Jersey] : , : John Wiley & Sons, , 2020- |
| Descrizione fisica | 1 online resource |
| Disciplina | 621.3124 |
| Soggetto topico | Energy conversion |
| Soggetto genere / forma | Periodicals. |
| ISSN | 2634-1581 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910474353303321 |
| [Hoboken, New Jersey] : , : John Wiley & Sons, , 2020- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Metal chalcogenide semiconductor nanostructures and their applications in renewable energy / / edited by Ahsanulhaq Qurashi
| Metal chalcogenide semiconductor nanostructures and their applications in renewable energy / / edited by Ahsanulhaq Qurashi |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley and Sons, Inc., , [2015] |
| Descrizione fisica | 1 online resource (322 p.) |
| Disciplina |
621.31
621.3124 |
| Soggetto topico |
Microharvesters (Electronics)
Direct energy conversion - Materials Semiconductors - Materials Chalcogenides - Electric properties Chalcogenides - Thermal properties Nanostructured materials |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-00893-X
1-119-00892-1 1-119-00899-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Contents; Preface; Part 1: RENEWABLE ENERGY CONVERSION SYSTEMS; 1 Introduction: An Overview of Metal Chalcogenide Nanostructures for Renewable Energy Applications; 1.1 Introduction; 1.2 Metal Chalcogenide Nanostructures; 1.3 Growth of Metal Chalcogenide Nanostructures; 1.4 Applications of Metal Chalcogenide Nanostructures; 1.5 Summary and Future Perspective; References; 2 Renewable Energy and Materials; 2.1 Global Energy Scenario; 2.2 Role of Renewable Energy in Sustainable Energy Future; 2.3 Importance of Materials Role in Renewable Energy; References
3 Sustainable Feed Stock and Energy Futures3.1 Introduction; 3.2 Discussion; 3.2.1 Nuclear Technology; 3.2.2 Solar Energy; 3.2.3 Hydrogen by Water Splitting; References; Part 2: SYNTHESIS OF METAL CHALCOGENIDE NANOSTRUCTURES; 4 Metal-Selenide Nanostructures: Growth and Properties; 4.1 Introduction; 4.2 Growth and Properties of Different Groups of Metal-Selenide Nanostructures; 4.2.1 Metal Selenides from II-VI Semiconductors; 4.2.2 ZnSe; 4.2.3 CdSe; 4.2.4 HgSe; 4.3 Metal Selenides from III-VI Semiconductors; 4.3.1 In2Se3; 4.4 Metal Selenides from IV-VI Semiconductors; 4.4.1 SnSe; 4.4.1 PbSe 4.5 Metal Selenides from V-VI Semiconductors4.5.1 Sb2Se3; 4.5.2 Bi2Se3; 4.6 Metal Selenides from Transition Metal (TM); 4.6.1 Copper Selenide (CuSe, Cu3Se2); 4.6.2 Iron Selenide (FeSe2, FeSe); 4.6.3 MoSe2; 4.6.3 WSe2; 4.7 Ternary Metal-Selenide Compounds; 4.7.1 CuInSe2 (Copper Indium Diselenide); 4.7.2 CdSSe; 4.7.3 CdZnSe; 4.8 Summary and Future Outlook; Acknowledgment; References; 5 Growth Mechanism and Surface Functionalization of Metal Chalcogenides Nanostructures; 5.1 Introduction; 5.1.2 Structure of Layered Transition Metal Chalcogenides (LTMCs) 5.2 Synthetic Methods for Layered Metal Chalcogenides5.2.1 Laser Ablation; 5.2.2 Arc Discharge; 5.2.3 Microwave-Induced Plasma; 5.2.4 Electron Beam Irradiation; 5.2.5 Spray Pyrolysis; 5.2.6 Sulfidization with H2S; 5.2.7 Hydrothermal; 5.2.8 Metal Organic Chemical Vapor Deposition (MOCVD) Technique; 5.2.9 Vapor-Liquid-Solid (VLS) Growth; 5.2.10 Oxide-to-Sulfide Conversion; 5.2.11 Hot-Injection Solution Synthesis; 5.2.12 Liquid Exfoliation; 5.3 Surface Functionalization of Layered Metal Dichalcogenide Nanostructures; 5.3.1 Surface Functionalization Based on Polymeric Ligands 5.3.2 Surface Functionalization Based on Pearson Hardness5.3.3 Surface Functionalization of Metal Chalcogenides by Silane; 5.4 Applications of Inorganic Nanotubes and Fullerenes; 5.4.1 Energy; References; 6 Optical and Structural Properties of Metal Chalcogenide Semiconductor Nanostructures; 6.1 Optical Properties of Metal Chalcogenides Semiconductor Nanostructures; 6.1.2 Metal Chalcogenide Nanocrystals; 6.2 Structural Properties and Defects of Metal Chalcogenide Semiconductor Nanostructures; References; 7 Structural and Optical Properties of CdS Nanostructures; 7.1 Introduction 7.2 Nanomaterials |
| Record Nr. | UNINA-9910140494403321 |
| Hoboken, New Jersey : , : John Wiley and Sons, Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Metal chalcogenide semiconductor nanostructures and their applications in renewable energy / / edited by Ahsanulhaq Qurashi
| Metal chalcogenide semiconductor nanostructures and their applications in renewable energy / / edited by Ahsanulhaq Qurashi |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley and Sons, Inc., , [2015] |
| Descrizione fisica | 1 online resource (322 p.) |
| Disciplina |
621.31
621.3124 |
| Soggetto topico |
Microharvesters (Electronics)
Direct energy conversion - Materials Semiconductors - Materials Chalcogenides - Electric properties Chalcogenides - Thermal properties Nanostructured materials |
| ISBN |
1-119-00893-X
1-119-00892-1 1-119-00899-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Contents; Preface; Part 1: RENEWABLE ENERGY CONVERSION SYSTEMS; 1 Introduction: An Overview of Metal Chalcogenide Nanostructures for Renewable Energy Applications; 1.1 Introduction; 1.2 Metal Chalcogenide Nanostructures; 1.3 Growth of Metal Chalcogenide Nanostructures; 1.4 Applications of Metal Chalcogenide Nanostructures; 1.5 Summary and Future Perspective; References; 2 Renewable Energy and Materials; 2.1 Global Energy Scenario; 2.2 Role of Renewable Energy in Sustainable Energy Future; 2.3 Importance of Materials Role in Renewable Energy; References
3 Sustainable Feed Stock and Energy Futures3.1 Introduction; 3.2 Discussion; 3.2.1 Nuclear Technology; 3.2.2 Solar Energy; 3.2.3 Hydrogen by Water Splitting; References; Part 2: SYNTHESIS OF METAL CHALCOGENIDE NANOSTRUCTURES; 4 Metal-Selenide Nanostructures: Growth and Properties; 4.1 Introduction; 4.2 Growth and Properties of Different Groups of Metal-Selenide Nanostructures; 4.2.1 Metal Selenides from II-VI Semiconductors; 4.2.2 ZnSe; 4.2.3 CdSe; 4.2.4 HgSe; 4.3 Metal Selenides from III-VI Semiconductors; 4.3.1 In2Se3; 4.4 Metal Selenides from IV-VI Semiconductors; 4.4.1 SnSe; 4.4.1 PbSe 4.5 Metal Selenides from V-VI Semiconductors4.5.1 Sb2Se3; 4.5.2 Bi2Se3; 4.6 Metal Selenides from Transition Metal (TM); 4.6.1 Copper Selenide (CuSe, Cu3Se2); 4.6.2 Iron Selenide (FeSe2, FeSe); 4.6.3 MoSe2; 4.6.3 WSe2; 4.7 Ternary Metal-Selenide Compounds; 4.7.1 CuInSe2 (Copper Indium Diselenide); 4.7.2 CdSSe; 4.7.3 CdZnSe; 4.8 Summary and Future Outlook; Acknowledgment; References; 5 Growth Mechanism and Surface Functionalization of Metal Chalcogenides Nanostructures; 5.1 Introduction; 5.1.2 Structure of Layered Transition Metal Chalcogenides (LTMCs) 5.2 Synthetic Methods for Layered Metal Chalcogenides5.2.1 Laser Ablation; 5.2.2 Arc Discharge; 5.2.3 Microwave-Induced Plasma; 5.2.4 Electron Beam Irradiation; 5.2.5 Spray Pyrolysis; 5.2.6 Sulfidization with H2S; 5.2.7 Hydrothermal; 5.2.8 Metal Organic Chemical Vapor Deposition (MOCVD) Technique; 5.2.9 Vapor-Liquid-Solid (VLS) Growth; 5.2.10 Oxide-to-Sulfide Conversion; 5.2.11 Hot-Injection Solution Synthesis; 5.2.12 Liquid Exfoliation; 5.3 Surface Functionalization of Layered Metal Dichalcogenide Nanostructures; 5.3.1 Surface Functionalization Based on Polymeric Ligands 5.3.2 Surface Functionalization Based on Pearson Hardness5.3.3 Surface Functionalization of Metal Chalcogenides by Silane; 5.4 Applications of Inorganic Nanotubes and Fullerenes; 5.4.1 Energy; References; 6 Optical and Structural Properties of Metal Chalcogenide Semiconductor Nanostructures; 6.1 Optical Properties of Metal Chalcogenides Semiconductor Nanostructures; 6.1.2 Metal Chalcogenide Nanocrystals; 6.2 Structural Properties and Defects of Metal Chalcogenide Semiconductor Nanostructures; References; 7 Structural and Optical Properties of CdS Nanostructures; 7.1 Introduction 7.2 Nanomaterials |
| Record Nr. | UNINA-9910830313003321 |
| Hoboken, New Jersey : , : John Wiley and Sons, Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||