top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., c2011
Descrizione fisica 1 online resource (131 p.)
Disciplina 621.31/5
Altri autori (Persone) SchulzAlexander L
Collana Electrical engineering developments
Soggetto topico Capacitors
Soggetto genere / forma Electronic books.
ISBN 1-61728-049-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910461757603321
New York, : Nova Science Publishers, Inc., c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., c2011
Descrizione fisica 1 online resource (131 p.)
Disciplina 621.31/5
Altri autori (Persone) SchulzAlexander L
Collana Electrical engineering developments
Soggetto topico Capacitors
ISBN 1-61728-049-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910790457303321
New York, : Nova Science Publishers, Inc., c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Capacitors [[electronic resource] ] : theory, types and applications / / Alexander L. Schulz, editor
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., c2011
Descrizione fisica 1 online resource (131 p.)
Disciplina 621.31/5
Altri autori (Persone) SchulzAlexander L
Collana Electrical engineering developments
Soggetto topico Capacitors
ISBN 1-61728-049-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- CAPACITORS: THEORY, TYPES AND APPLICATIONS -- CAPACITORS: THEORY, TYPES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 THE ROLE OF CAPACITORS AND CAPACITANCE WITHIN PLASMA PROCESSING -- Abstract -- 1. Filter Construction Design Rules -- 2. The BatLaw Diplexer -- 3. Instrumentation Chebyshev Filters -- 3.1. Chebyshev Filter Responses -- 3.2. Chebyshev Filter Design -- 4. Capacitive Plasma-Tool Impedance -- 5. Matching Networks -- 5.1. L-Type Matching Network (Worked Example) -- 5.2. Pi-Type Matching Network (Descriptive) -- 5.3. T-Type Matching Networks (Descriptive) -- 5.4. Summary -- 6. Suppression of Noise within an external RF Power Circuits -- 7. Frequency Pulling -- Conclusions -- Acknowledgments -- References -- Chapter 2 VOLTAGE STABILIZATION USING A STORAGE CAPACITOR -- Abstract -- Introduction -- 1. Grounds -- 2. Analysis of the Functional Circuit -- 3. Experiment -- Conclusion -- References -- Chapter 3 IDEAL AND REAL CAPACITORS: HOW THEIR BEHAVIOUR AFFECT ENERGY EFFICIENCIES -- Abstract -- Introduction -- DC Circuits -- AC Circuits -- Conclusion -- Appendix A -- References -- Chapter4ACBRIDGECIRCUITRYFORTHECAPACITIVEPOSITIONSENSORINSIDETHESUPERCONDUCTINGLINEARMOTORSYSTEM -- Abstract -- 1.Introduction -- 2.CapacitivePositionSensor -- 3.TrialCircuitsfortheCapacitivePositionSensor -- 3.1.CapacitanceBridgeandLock-inAmplifierforMonitoringtheMotionoftheArmature -- 3.2.555OscillatorforMonitoringtheMotionoftheArmature -- 3.3.Q-meterforMonitoringtheMotionoftheArmature -- 4.TheACBridgeCircuitsforMonitoringtheMotionoftheArmature -- 4.1.TheACBridgeCircuitrySetup -- 4.2.CalibrationCurveat4.2KandPerformanceofthePositionSensor -- 4.3.TestingtheCapacitivePositionSensorintheExperimentalCellatLiquidHeliumTemperature -- 5.Conclusion -- Acknowledgments -- References.
Chapter 5 PHYSICAL AND ELECTROCHEMICAL PROPERTIES OF QUATERNARY AMMONIUM SALTS BASED ON HALOGEN-FREE CHELATOBORATE ANIONS AND THEIR APPLICATION TO ELECTRIC DOUBLE-LAYER CAPACITORS -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Reagents -- 2.2. Apparatus and Measurements -- 3. Results and Discussion -- 3.1. Thermal Analysis -- 3.2. Electrolytic Properties -- 3.2.1. Temperature Dependence -- 3.2.2. Concentration Dependence -- 3.3. Electrochemical Stability -- 3.4. Cyclic Voltammetry -- 3.5. Charge and Discharge Characteristics of Three-Electrode Measurement Cells -- 3.6. Performance of 2025-Type Coin Cells -- 3.6.1. Charge-Discharge Characteristics -- 3.6.2. Rate Capability -- 3.7. Comparison of Gravimetric Capacitances -- 3.8. Theoretical Treatment of Cell Voltage-Time Behavior Resulting from a Current Step -- Conclusion -- References -- INDEX.
Record Nr. UNINA-9910824266003321
New York, : Nova Science Publishers, Inc., c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (206 p.)
Disciplina 621.31/5
Soggetto topico Supercapacitors - Materials
Oxide ceramics
Nanostructured materials
ISBN 0-429-07206-6
1-4665-7691-X
Classificazione TEC021000SCI013000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Back Cover
Record Nr. UNINA-9910791329103321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (206 p.)
Disciplina 621.31/5
Soggetto topico Supercapacitors - Materials
Oxide ceramics
Nanostructured materials
ISBN 0-429-07206-6
1-4665-7691-X
Classificazione TEC021000SCI013000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Back Cover
Record Nr. UNINA-9910799998603321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Nanostructured ceramic oxides for supercapacitor applications / / edited by Avinash Balakrishnan and K.R.V. Subramanian
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (206 p.)
Disciplina 621.31/5
Soggetto topico Supercapacitors - Materials
Oxide ceramics
Nanostructured materials
ISBN 0-429-07206-6
1-4665-7691-X
Classificazione TEC021000SCI013000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Back Cover
Record Nr. UNINA-9910824655303321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Materials for Electrochemcial Capacitors
Sustainable Materials for Electrochemcial Capacitors
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.31/5
Altri autori (Persone) AltalhiTariq
AdnanSayed Mohammed
Soggetto topico Capacitors - Materials
ISBN 1-394-16710-5
1-394-16709-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF.
4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor.
6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes.
9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction.
12.2 Different Types of Ceramic Materials.
Record Nr. UNINA-9910829869003321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Materials for Electrochemcial Capacitors
Sustainable Materials for Electrochemcial Capacitors
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.31/5
Altri autori (Persone) AltalhiTariq
AdnanSayed Mohammed
Soggetto topico Capacitors - Materials
ISBN 1-394-16710-5
1-394-16709-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF.
4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor.
6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes.
9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction.
12.2 Different Types of Ceramic Materials.
Record Nr. UNINA-9910876588803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ultra-capacitors in power conversion systems : applications, analysis, and design from theory to practice / / Petar J. Grbovic
Ultra-capacitors in power conversion systems : applications, analysis, and design from theory to practice / / Petar J. Grbovic
Autore Grbovic Petar J
Pubbl/distr/stampa [Hoboken, New Jersey] : , : John Wiley & Sons Inc., , [2013]
Descrizione fisica 1 online resource (338 p.)
Disciplina 621.31/5
Collana Wiley - IEEE
Soggetto topico Electric current converters - Equipment and supplies
Supercapacitors
Electric machinery - Equipment and supplies
ISBN 1-118-69425-2
1-118-69363-9
1-118-69424-4
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1 Energy Storage Technologies and Devices 1 -- 1.1 Introduction 1 -- 1.1.1 Energy 1 -- 1.1.2 Electrical Energy and its Role in Everyday Life 1 -- 1.1.3 Energy Storage 2 -- 1.2 Direct Electrical Energy Storage Devices 3 -- 1.2.1 An Electric Capacitor as Energy Storage 3 -- 1.2.2 An Inductor as Energy Storage 8 -- 1.3 Indirect Electrical Energy Storage Technologies and Devices 11 -- 1.3.1 Mechanical Energy Storage 11 -- 1.3.2 Chemical Energy Storage 15 -- 1.4 Applications and Comparison 19 -- 2 Ultra-Capacitor Energy Storage Devices 22 -- 2.1 Background of Ultra-Capacitors 22 -- 2.1.1 Overview of Ultra-Capacitor Technologies 22 -- 2.2 Electric Double-Layer Capacitors-EDLC 24 -- 2.2.1 A Short History of the EDLC 24 -- 2.2.2 The Ultra-Capacitor's Structure 24 -- 2.2.3 The Ultra-Capacitor's Physical Model 24 -- 2.3 The Ultra-Capacitor Macro (Electric Circuit) Model 27 -- 2.3.1 Full Theoretical Model 27 -- 2.3.2 A Simplified Model 36 -- 2.3.3 A Simulation/Control Model 39 -- 2.3.4 Exercises 41 -- 2.4 The Ultra-Capacitor's Energy and Power 42 -- 2.4.1 The Ultra-Capacitor's Energy and Specific Energy 42 -- 2.4.2 The Ultra-Capacitor's Energy Efficiency 43 -- 2.4.3 The Ultra-Capacitor's Specific Power 44 -- 2.4.4 The Electrode Carbon Loading Limitation 45 -- 2.4.5 Exercises 45 -- 2.5 The Ultra-Capacitor's Charge/Discharge Methods 47 -- 2.5.1 Constant Resistive Loading 47 -- 2.5.2 Constant Current Charging and Loading 47 -- 2.5.3 Constant Power Charging and Loading 51 -- 2.5.4 Exercises 57 -- 2.6 Frequency Related Losses 59 -- 2.6.1 The Current as a Periodic Function 60 -- 2.6.2 The Current as a Nonperiodic Function 64 -- 2.7 The Ultra-Capacitor's Thermal Aspects 65 -- 2.7.1 Heat Generation 65 -- 2.7.2 Thermal Model 66 -- 2.7.3 Temperature Rise 66 -- 2.7.4 Exercises 69 -- 2.8 Ultra-Capacitor High Power Modules 72 -- 2.9 Ultra-Capacitor Trends and Future Development 74 -- 2.9.1 The Requirements for Future Ultra-Capacitors 74 -- 2.9.2 The Technology Directions 75.
2.10 Summary 76 -- 3 Power Conversion and Energy Storage Applications 78 -- 3.1 Fundamentals of Static Power Converters 78 -- 3.1.1 Switching-Mode Converters 78 -- 3.1.2 Power Converter Classification 80 -- 3.1.3 Some Examples of Voltage-Source Converters 80 -- 3.1.4 Indirect Static AC-AC Power Converters 81 -- 3.2 Interest in Power Conversion with Energy Storage 84 -- 3.2.1 Definition of the Problem 84 -- 3.2.2 The Solution 85 -- 3.2.3 Which Energy Storage is the Right Choice? 86 -- 3.2.4 Electrochemical Batteries versus Ultra-Capacitors 87 -- 3.3 Controlled Electric Drive Applications 90 -- 3.3.1 Controlled Electric Drives from Yesterday to Today 90 -- 3.3.2 Application of Controlled Electric Drives 93 -- 3.3.3 Definition of the Application Problems 93 -- 3.3.4 The Solution 97 -- 3.4 Renewable Energy Source Applications 102 -- 3.4.1 Renewable Energy Sources 102 -- 3.4.2 Definition of the Problem 107 -- 3.4.3 Virtual Inertia and Renewable Energy 'Generators' 111 -- 3.4.4 The Solution 113 -- 3.5 Autonomous Power Generators and Applications 113 -- 3.5.1 Applications 113 -- 3.5.2 Definition of the Problem 118 -- 3.5.3 The Solution 120 -- 3.6 Energy Transmission and Distribution Applications 121 -- 3.6.1 STATCOM Applications 121 -- 3.6.2 Definition of the Problems 122 -- 3.6.3 The Solution 126 -- 3.7 Uninterruptible Power Supply (UPS) Applications 128 -- 3.7.1 UPS System Applications 128 -- 3.7.2 UPS with Ultra-Capacitor Energy Storage 130 -- 3.8 Electric Traction Applications 131 -- 3.8.1 Rail Vehicles 132 -- 3.8.2 Road Vehicles 134 -- 3.8.3 A Generalized Traction System 141 -- 3.9 Summary 145 -- 4 Ultra-Capacitor Module Selection and Design 149 -- 4.1 Introduction 149 -- 4.1.1 The Analysis and Design Objectives 149 -- 4.1.2 Main Design Steps 150 -- 4.1.3 The Ultra-Capacitor Model 151 -- 4.2 The Module Voltage Rating and Voltage Level Selection 152 -- 4.2.1 Relation between the Inner and Terminal Voltages 153 -- 4.2.2 Maximum Operating Voltage 154 -- 4.2.3 Minimum Operating Voltage 155.
4.2.4 The Ultra-Capacitor Intermediate Voltage 156 -- 4.2.5 The Ultra-Capacitor Rated Voltage 160 -- 4.2.6 Exercises 162 -- 4.3 The Capacitance Determination 164 -- 4.3.1 Energy Storage/Recovery Capability 164 -- 4.3.2 Conversion Efficiency 164 -- 4.3.3 End-of-Life Effect on the Capacitance Selection 171 -- 4.3.4 Exercises 172 -- 4.4 Ultra-Capacitor Module Design 173 -- 4.4.1 Series/Parallel Connection 173 -- 4.4.2 Current Stress and Losses 176 -- 4.4.3 String Voltage Balancing 178 -- 4.4.4 Exercises 186 -- 4.5 The Module's Thermal Management 189 -- 4.5.1 The Mode''s Definition 190 -- 4.5.2 Determination of the Model's Parameters 192 -- 4.5.3 The Model's Parameters-Experimental Identification 193 -- 4.5.4 The Cooling System Design 194 -- 4.5.5 Exercises 197 -- 4.6 Ultra-Capacitor Module Testing 207 -- 4.6.1 Capacitance and Internal Resistance 208 -- 4.6.2 Leakage Current and Self-Discharge 212 -- 4.7 Summary 214 -- 5 Interface DC-DC Converters 216 -- 5.1 Introduction 216 -- 5.2 Background and Classification of Interface DC-DC Converters 216 -- 5.2.1 Voltage and Current Source DC-DC Converters 218 -- 5.2.2 Full Power and Fractional Power Rated Interface -- DC-DC Converters 220 -- 5.2.3 Isolated and Non-Isolated Interface DC-DC Converters 220 -- 5.2.4 Two-Level and Multi-Level Interface DC-DC Converters 222 -- 5.2.5 Single-Cell and Multi-Cell Interleaved Interface -- DC-DC Converters 222 -- 5.3 State-of-the-Art Interface DC-DC Converters 223 -- 5.3.1 Two-Level DC-DC Converters 223 -- 5.3.2 Three-Level DC-DC Converters 225 -- 5.3.3 Boost-Buck and Buck-Boost DC-DC Converters 226 -- 5.3.4 Isolated DC-DC Converters 226 -- 5.3.5 Application Summary 227 -- 5.4 The Ultra-Capacitor's Current and Voltage Definition 229 -- 5.5 Multi-Cell Interleaved DC-DC Converters 231 -- 5.5.1 Background of Interleaved DC-DC Converters 231 -- 5.5.2 Analysis of a Two-Cell Interleaved Converter 233 -- 5.5.3 N-Cell General Case Analysis 239 -- 5.6 Design of a Two-Level N-Cell Interleaved DC-DC Converter 254.
5.6.1 ICT Design: A Two-Cell Example 254 -- 5.6.2 The Filter Inductor Design 261 -- 5.6.3 DC Bus Capacitor Selection 268 -- 5.6.4 Output Filter Capacitor Selection 274 -- 5.6.5 Power Semiconductor Selection 277 -- 5.6.6 Exercises 286 -- 5.7 Conversion Power Losses: A General Case Analysis 295 -- 5.7.1 The Origin of the Losses 295 -- 5.7.2 Conduction Losses 297 -- 5.7.3 Switching Losses 297 -- 5.7.4 Blocking Losses 299 -- 5.7.5 Definition of the Moving Average and RMS Value 299 -- 5.8 Power Converter Thermal Management: A General Case Analysis 299 -- 5.8.1 Why is Thermal Management Important? 299 -- 5.8.2 Thermal Model of Power Semiconductors 300 -- 5.8.3 Thermal Model of Magnetic Devices 306 -- 5.8.4 Thermal Model of Power Electrolytic Capacitors 309 -- 5.9 Summary 313 -- References 314 -- Index 317.
Record Nr. UNINA-9910142024503321
Grbovic Petar J  
[Hoboken, New Jersey] : , : John Wiley & Sons Inc., , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ultra-capacitors in power conversion systems : applications, analysis, and design from theory to practice / / Petar J. Grbovic
Ultra-capacitors in power conversion systems : applications, analysis, and design from theory to practice / / Petar J. Grbovic
Autore Grbovic Petar J
Pubbl/distr/stampa [Hoboken, New Jersey] : , : John Wiley & Sons Inc., , [2013]
Descrizione fisica 1 online resource (338 p.)
Disciplina 621.31/5
Collana Wiley - IEEE
Soggetto topico Electric current converters - Equipment and supplies
Supercapacitors
Electric machinery - Equipment and supplies
ISBN 1-118-69425-2
1-118-69363-9
1-118-69424-4
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1 Energy Storage Technologies and Devices 1 -- 1.1 Introduction 1 -- 1.1.1 Energy 1 -- 1.1.2 Electrical Energy and its Role in Everyday Life 1 -- 1.1.3 Energy Storage 2 -- 1.2 Direct Electrical Energy Storage Devices 3 -- 1.2.1 An Electric Capacitor as Energy Storage 3 -- 1.2.2 An Inductor as Energy Storage 8 -- 1.3 Indirect Electrical Energy Storage Technologies and Devices 11 -- 1.3.1 Mechanical Energy Storage 11 -- 1.3.2 Chemical Energy Storage 15 -- 1.4 Applications and Comparison 19 -- 2 Ultra-Capacitor Energy Storage Devices 22 -- 2.1 Background of Ultra-Capacitors 22 -- 2.1.1 Overview of Ultra-Capacitor Technologies 22 -- 2.2 Electric Double-Layer Capacitors-EDLC 24 -- 2.2.1 A Short History of the EDLC 24 -- 2.2.2 The Ultra-Capacitor's Structure 24 -- 2.2.3 The Ultra-Capacitor's Physical Model 24 -- 2.3 The Ultra-Capacitor Macro (Electric Circuit) Model 27 -- 2.3.1 Full Theoretical Model 27 -- 2.3.2 A Simplified Model 36 -- 2.3.3 A Simulation/Control Model 39 -- 2.3.4 Exercises 41 -- 2.4 The Ultra-Capacitor's Energy and Power 42 -- 2.4.1 The Ultra-Capacitor's Energy and Specific Energy 42 -- 2.4.2 The Ultra-Capacitor's Energy Efficiency 43 -- 2.4.3 The Ultra-Capacitor's Specific Power 44 -- 2.4.4 The Electrode Carbon Loading Limitation 45 -- 2.4.5 Exercises 45 -- 2.5 The Ultra-Capacitor's Charge/Discharge Methods 47 -- 2.5.1 Constant Resistive Loading 47 -- 2.5.2 Constant Current Charging and Loading 47 -- 2.5.3 Constant Power Charging and Loading 51 -- 2.5.4 Exercises 57 -- 2.6 Frequency Related Losses 59 -- 2.6.1 The Current as a Periodic Function 60 -- 2.6.2 The Current as a Nonperiodic Function 64 -- 2.7 The Ultra-Capacitor's Thermal Aspects 65 -- 2.7.1 Heat Generation 65 -- 2.7.2 Thermal Model 66 -- 2.7.3 Temperature Rise 66 -- 2.7.4 Exercises 69 -- 2.8 Ultra-Capacitor High Power Modules 72 -- 2.9 Ultra-Capacitor Trends and Future Development 74 -- 2.9.1 The Requirements for Future Ultra-Capacitors 74 -- 2.9.2 The Technology Directions 75.
2.10 Summary 76 -- 3 Power Conversion and Energy Storage Applications 78 -- 3.1 Fundamentals of Static Power Converters 78 -- 3.1.1 Switching-Mode Converters 78 -- 3.1.2 Power Converter Classification 80 -- 3.1.3 Some Examples of Voltage-Source Converters 80 -- 3.1.4 Indirect Static AC-AC Power Converters 81 -- 3.2 Interest in Power Conversion with Energy Storage 84 -- 3.2.1 Definition of the Problem 84 -- 3.2.2 The Solution 85 -- 3.2.3 Which Energy Storage is the Right Choice? 86 -- 3.2.4 Electrochemical Batteries versus Ultra-Capacitors 87 -- 3.3 Controlled Electric Drive Applications 90 -- 3.3.1 Controlled Electric Drives from Yesterday to Today 90 -- 3.3.2 Application of Controlled Electric Drives 93 -- 3.3.3 Definition of the Application Problems 93 -- 3.3.4 The Solution 97 -- 3.4 Renewable Energy Source Applications 102 -- 3.4.1 Renewable Energy Sources 102 -- 3.4.2 Definition of the Problem 107 -- 3.4.3 Virtual Inertia and Renewable Energy 'Generators' 111 -- 3.4.4 The Solution 113 -- 3.5 Autonomous Power Generators and Applications 113 -- 3.5.1 Applications 113 -- 3.5.2 Definition of the Problem 118 -- 3.5.3 The Solution 120 -- 3.6 Energy Transmission and Distribution Applications 121 -- 3.6.1 STATCOM Applications 121 -- 3.6.2 Definition of the Problems 122 -- 3.6.3 The Solution 126 -- 3.7 Uninterruptible Power Supply (UPS) Applications 128 -- 3.7.1 UPS System Applications 128 -- 3.7.2 UPS with Ultra-Capacitor Energy Storage 130 -- 3.8 Electric Traction Applications 131 -- 3.8.1 Rail Vehicles 132 -- 3.8.2 Road Vehicles 134 -- 3.8.3 A Generalized Traction System 141 -- 3.9 Summary 145 -- 4 Ultra-Capacitor Module Selection and Design 149 -- 4.1 Introduction 149 -- 4.1.1 The Analysis and Design Objectives 149 -- 4.1.2 Main Design Steps 150 -- 4.1.3 The Ultra-Capacitor Model 151 -- 4.2 The Module Voltage Rating and Voltage Level Selection 152 -- 4.2.1 Relation between the Inner and Terminal Voltages 153 -- 4.2.2 Maximum Operating Voltage 154 -- 4.2.3 Minimum Operating Voltage 155.
4.2.4 The Ultra-Capacitor Intermediate Voltage 156 -- 4.2.5 The Ultra-Capacitor Rated Voltage 160 -- 4.2.6 Exercises 162 -- 4.3 The Capacitance Determination 164 -- 4.3.1 Energy Storage/Recovery Capability 164 -- 4.3.2 Conversion Efficiency 164 -- 4.3.3 End-of-Life Effect on the Capacitance Selection 171 -- 4.3.4 Exercises 172 -- 4.4 Ultra-Capacitor Module Design 173 -- 4.4.1 Series/Parallel Connection 173 -- 4.4.2 Current Stress and Losses 176 -- 4.4.3 String Voltage Balancing 178 -- 4.4.4 Exercises 186 -- 4.5 The Module's Thermal Management 189 -- 4.5.1 The Mode''s Definition 190 -- 4.5.2 Determination of the Model's Parameters 192 -- 4.5.3 The Model's Parameters-Experimental Identification 193 -- 4.5.4 The Cooling System Design 194 -- 4.5.5 Exercises 197 -- 4.6 Ultra-Capacitor Module Testing 207 -- 4.6.1 Capacitance and Internal Resistance 208 -- 4.6.2 Leakage Current and Self-Discharge 212 -- 4.7 Summary 214 -- 5 Interface DC-DC Converters 216 -- 5.1 Introduction 216 -- 5.2 Background and Classification of Interface DC-DC Converters 216 -- 5.2.1 Voltage and Current Source DC-DC Converters 218 -- 5.2.2 Full Power and Fractional Power Rated Interface -- DC-DC Converters 220 -- 5.2.3 Isolated and Non-Isolated Interface DC-DC Converters 220 -- 5.2.4 Two-Level and Multi-Level Interface DC-DC Converters 222 -- 5.2.5 Single-Cell and Multi-Cell Interleaved Interface -- DC-DC Converters 222 -- 5.3 State-of-the-Art Interface DC-DC Converters 223 -- 5.3.1 Two-Level DC-DC Converters 223 -- 5.3.2 Three-Level DC-DC Converters 225 -- 5.3.3 Boost-Buck and Buck-Boost DC-DC Converters 226 -- 5.3.4 Isolated DC-DC Converters 226 -- 5.3.5 Application Summary 227 -- 5.4 The Ultra-Capacitor's Current and Voltage Definition 229 -- 5.5 Multi-Cell Interleaved DC-DC Converters 231 -- 5.5.1 Background of Interleaved DC-DC Converters 231 -- 5.5.2 Analysis of a Two-Cell Interleaved Converter 233 -- 5.5.3 N-Cell General Case Analysis 239 -- 5.6 Design of a Two-Level N-Cell Interleaved DC-DC Converter 254.
5.6.1 ICT Design: A Two-Cell Example 254 -- 5.6.2 The Filter Inductor Design 261 -- 5.6.3 DC Bus Capacitor Selection 268 -- 5.6.4 Output Filter Capacitor Selection 274 -- 5.6.5 Power Semiconductor Selection 277 -- 5.6.6 Exercises 286 -- 5.7 Conversion Power Losses: A General Case Analysis 295 -- 5.7.1 The Origin of the Losses 295 -- 5.7.2 Conduction Losses 297 -- 5.7.3 Switching Losses 297 -- 5.7.4 Blocking Losses 299 -- 5.7.5 Definition of the Moving Average and RMS Value 299 -- 5.8 Power Converter Thermal Management: A General Case Analysis 299 -- 5.8.1 Why is Thermal Management Important? 299 -- 5.8.2 Thermal Model of Power Semiconductors 300 -- 5.8.3 Thermal Model of Magnetic Devices 306 -- 5.8.4 Thermal Model of Power Electrolytic Capacitors 309 -- 5.9 Summary 313 -- References 314 -- Index 317.
Record Nr. UNINA-9910813714803321
Grbovic Petar J  
[Hoboken, New Jersey] : , : John Wiley & Sons Inc., , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui