top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electric power transformer engineering / / edited by James H. Harlow
Electric power transformer engineering / / edited by James H. Harlow
Edizione [3rd ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2012]
Descrizione fisica 1 online resource (677 p.)
Disciplina 621.31/4
Collana The electrical engineering handbook
Soggetto topico Electric transformers
Soggetto genere / forma Electronic books.
ISBN 1-315-21721-X
1-4398-5636-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Editor; Contributors; Chapter 1 - Theory and Principles; Chapter 2 - Power Transformers; Chapter 3 - Distribution Transformers; Chapter 4 - Phase-Shifting Transformers; Chapter 5 - Rectifier Transformers; Chapter 6 - Dry-Type Transformers; Chapter 7 - Instrument Transformers; Chapter 8 - Step-Voltage Regulators; Chapter 9 - Constant-Voltage Transformers; Chapter 10 - Transformers for Wind Turbine Generators and Photovoltaic Applications; Chapter 11 - Reactors; Chapter 12 - Insulating Media; Chapter 13 - Electrical Bushings
Chapter 14 - Tap Changers and Smart Intelligent ControlsChapter 15 - Loading and Thermal Performance; Chapter 16 - Transformer Connections; Chapter 17 - Transformer Testing; Chapter 18 - Load-Tap-Change Control and Transformer Paralleling; Chapter 19 - Power Transformer Protection; Chapter 20 - Causes and Effects of Transformer Sound Levels; Chapter 21 - Transient-Voltage Response of Coils and Windings; Chapter 22 - Transformer Installation and Maintenance; Chapter 23 - Problem and Failure Investigation; Chapter 24 - On-Line Monitoring of Liquid-Immersed Transformers
Chapter 25 - U.S. Power Transformer Equipment Standards and ProcessesBack Cover
Record Nr. UNINA-9910452012103321
Boca Raton : , : CRC Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electric power transformer engineering / / edited by James H. Harlow
Electric power transformer engineering / / edited by James H. Harlow
Edizione [3rd ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2012]
Descrizione fisica 1 online resource (677 p.)
Disciplina 621.31/4
Collana The electrical engineering handbook
Soggetto topico Electric transformers
ISBN 1-351-83310-3
1-315-21721-X
1-4398-5636-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Editor; Contributors; Chapter 1 - Theory and Principles; Chapter 2 - Power Transformers; Chapter 3 - Distribution Transformers; Chapter 4 - Phase-Shifting Transformers; Chapter 5 - Rectifier Transformers; Chapter 6 - Dry-Type Transformers; Chapter 7 - Instrument Transformers; Chapter 8 - Step-Voltage Regulators; Chapter 9 - Constant-Voltage Transformers; Chapter 10 - Transformers for Wind Turbine Generators and Photovoltaic Applications; Chapter 11 - Reactors; Chapter 12 - Insulating Media; Chapter 13 - Electrical Bushings
Chapter 14 - Tap Changers and Smart Intelligent ControlsChapter 15 - Loading and Thermal Performance; Chapter 16 - Transformer Connections; Chapter 17 - Transformer Testing; Chapter 18 - Load-Tap-Change Control and Transformer Paralleling; Chapter 19 - Power Transformer Protection; Chapter 20 - Causes and Effects of Transformer Sound Levels; Chapter 21 - Transient-Voltage Response of Coils and Windings; Chapter 22 - Transformer Installation and Maintenance; Chapter 23 - Problem and Failure Investigation; Chapter 24 - On-Line Monitoring of Liquid-Immersed Transformers
Chapter 25 - U.S. Power Transformer Equipment Standards and ProcessesBack Cover
Record Nr. UNINA-9910779177603321
Boca Raton : , : CRC Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electric power transformer engineering / / edited by James H. Harlow
Electric power transformer engineering / / edited by James H. Harlow
Edizione [3rd ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2012]
Descrizione fisica 1 online resource (677 p.)
Disciplina 621.31/4
Collana The electrical engineering handbook
Soggetto topico Electric transformers
ISBN 1-351-83310-3
1-315-21721-X
1-4398-5636-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Editor; Contributors; Chapter 1 - Theory and Principles; Chapter 2 - Power Transformers; Chapter 3 - Distribution Transformers; Chapter 4 - Phase-Shifting Transformers; Chapter 5 - Rectifier Transformers; Chapter 6 - Dry-Type Transformers; Chapter 7 - Instrument Transformers; Chapter 8 - Step-Voltage Regulators; Chapter 9 - Constant-Voltage Transformers; Chapter 10 - Transformers for Wind Turbine Generators and Photovoltaic Applications; Chapter 11 - Reactors; Chapter 12 - Insulating Media; Chapter 13 - Electrical Bushings
Chapter 14 - Tap Changers and Smart Intelligent ControlsChapter 15 - Loading and Thermal Performance; Chapter 16 - Transformer Connections; Chapter 17 - Transformer Testing; Chapter 18 - Load-Tap-Change Control and Transformer Paralleling; Chapter 19 - Power Transformer Protection; Chapter 20 - Causes and Effects of Transformer Sound Levels; Chapter 21 - Transient-Voltage Response of Coils and Windings; Chapter 22 - Transformer Installation and Maintenance; Chapter 23 - Problem and Failure Investigation; Chapter 24 - On-Line Monitoring of Liquid-Immersed Transformers
Chapter 25 - U.S. Power Transformer Equipment Standards and ProcessesBack Cover
Record Nr. UNINA-9910808085503321
Boca Raton : , : CRC Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic transient analysis and novel protective relaying techniques for power transformer / / Xiangning Lin, Jing Ma, Qing Tian, Hanli Weng
Electromagnetic transient analysis and novel protective relaying techniques for power transformer / / Xiangning Lin, Jing Ma, Qing Tian, Hanli Weng
Autore Lin Xiangning
Pubbl/distr/stampa Singapore : , : John Wiley & Sons, Inc., , 2014
Descrizione fisica 1 online resource (341 p.)
Disciplina 621.31/4
Soggetto topico Electric relays
Electric transformers - Protection
Transients (Electricity)
ISBN 1-118-65385-8
1-118-65383-1
1-118-65384-X
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors ix -- Preface xi -- 1 Principles of Transformer Differential Protection and Existing Problem Analysis 1 -- 1.1 Introduction 1 -- 1.2 Fundamentals of Transformer Differential Protection 2 -- 1.2.1 Transformer Faults 2 -- 1.2.2 Differential Protection of Transformers 3 -- 1.2.3 The Unbalanced Current and Measures to Eliminate Its Effect 5 -- 1.3 Some Problems with Power Transformer Main Protection 7 -- 1.3.1 Other Types of Power Transformer Differential Protections 7 -- 1.3.2 Research on Novel Protection Principles 9 -- 1.4 Analysis of Electromagnetic Transients and Adaptability of Second Harmonic Restraint Based Differential Protection of a UHV Power Transformer 17 -- 1.4.1 Modelling of the UHV Power Transformer 18 -- 1.4.2 Simulation and Analysis 20 -- 1.5 Study on Comparisons among Some Waveform Symmetry Principle Based Transformer Differential Protection 27 -- 1.5.1 The Comparison and Analysis of Several Kinds of Symmetrical Waveform Theories 27 -- 1.5.2 The Theory of Waveform Symmetry of Derivatives of Current and Its Analysis 28 -- 1.5.3 Principle and Analysis of the Waveform Correlation Method 32 -- 1.5.4 Analysis of Reliability and Sensitivity of Several Criteria 33 -- 1.6 Summary 36 -- References 36 -- 2 Malfunction Mechanism Analysis due to Nonlinearity of Transformer Core 39 -- 2.1 Introduction 39 -- 2.2 The Ultra-Saturation Phenomenon of Loaded Transformer Energizing and its Impacts on Differential Protection 43 -- 2.2.1 Loaded Transformer Energizing Model Based on Second Order Equivalent Circuit 43 -- 2.2.2 Preliminary Simulation Studies 48 -- 2.3 Studies on the Unusual Mal-Operation of Transformer Differential Protection during the Nonlinear Load Switch-In 57 -- 2.3.1 Simulation Model of the Nonlinear Load Switch-In 57 -- 2.3.2 Simulation Results and Analysis of Mal-Operation Mechanism of Differential Protection 62 -- 2.4 Analysis of a Sort of Unusual Mal-operation of Transformer Differential Protection due to Removal of External Fault 70.
2.4.1 Modelling of the External Fault Inception and Removal and Current Transformer 70 -- 2.4.2 Analysis of Low Current Mal-operation of Differential Protection 72 -- 2.5 Analysis and Countermeasure of Abnormal Operation Behaviours of the Differential Protection of the Converter Transformer 80 -- 2.5.1 Recurrence and Analysis of the Reported Abnormal Operation of the Differential Protection of the Converter Transformer 80 -- 2.5.2 Time-Difference Criterion to Discriminate between Faults and Magnetizing Inrushes of the Converter Transformer 86 -- 2.6 Summary 95 -- References 95 -- 3 Novel Analysis Tools on Operating Characteristics of Transformer Differential Protection 97 -- 3.1 Introduction 97 -- 3.2 Studies on the Operation Behaviour of Differential Protection during a Loaded Transformer Energizing 99 -- 3.2.1 Simulation Models of Loaded Transformer Switch-On and CT 99 -- 3.2.2 Analysis of the Mal-operation Mechanism of Differential Protection 102 -- 3.3 Comparative Investigation on Current Differential Criteria between One Using Phase Current and One Using Phase-Phase Current Difference for the Transformer using Y-Delta Connection 109 -- 3.3.1 Analyses of Applying the Phase Current Differential to the Power Transformer with Y/Δ Connection and its Existing Bases 109 -- 3.3.2 Rationality Analyses of Applying the Phase Current Differential Criterion to the Power Transformer with Y/Δ Connection 113 -- 3.4 Comparative Analysis on Current Percentage Differential Protections Using a Novel Reliability Evaluation Criterion 117 -- 3.4.1 Introduction to CPD and NPD 117 -- 3.4.2 Performance Comparison between CPD and NPD in the Case of CT Saturation 118 -- 3.4.3 Performance Comparison between CPD and NPD in the Case of Internal Fault 121 -- 3.5 Comparative Studies on Percentage Differential Criteria Using Phase Current and Superimposed Phase Current 123 -- 3.5.1 The Dynamic Locus of p - 1p +1 in the Case of CT Saturation 123 -- 3.5.2 Sensitivity Comparison between the Phase Current Based and the Superimposed Current Based Differential Criteria 126.
3.5.3 Security Comparison between the Phase Current Based and the Superimposed Current Based Differential Criteria 128 -- 3.5.4 Simulation Analyses 130 -- 3.6 A Novel Analysis Methodology of Differential Protection Operation Behaviour 132 -- 3.6.1 The Relationship between Transforming Rate and the Angular Change Rate under CT Saturation 132 -- 3.6.2 Principles of Novel Percentage Restraint Criteria 133 -- 3.6.3 Analysis of Novel Percentage Differential Criteria 142 -- 3.7 Summary 151 -- References 151 -- 4 Novel Magnetizing Inrush Identification Schemes 153 -- 4.1 Introduction 153 -- 4.2 Studies for Identification of the Inrush Based on Improved Correlation Algorithm 155 -- 4.2.1 Basic Principle of Waveform Correlation Scheme 155 -- 4.2.2 Design and Test of the Improved Waveform Correlation Principle 159 -- 4.3 A Novel Method for Discrimination of Internal Faults and Inrush Currents by Using Waveform Singularity Factor 163 -- 4.3.1 Waveform Singularity Factor Based Algorithm 163 -- 4.3.2 Testing Results and Analysis 164 -- 4.4 A New Principle of Discrimination between Inrush Current and Internal Fault Current of Transformer Based on Self-Correlation Function 169 -- 4.4.1 Basic Principle of Correlation Function Applied to Random Single Analysis 169 -- 4.4.2 Theory and Analysis of Waveform Similarity Based on Self-Correlation Function 170 -- 4.4.3 EPDL Testing Results and Analysis 173 -- 4.5 Identifying Inrush Current Using Sinusoidal Proximity Factor 174 -- 4.5.1 Sinusoidal Proximity Factor Based Algorithm 174 -- 4.5.2 Testing Results and Analysis 176 -- 4.6 A Wavelet Transform Based Scheme for Power Transformer Inrush Identification 181 -- 4.6.1 Principle of Wavelet Transform 181 -- 4.6.2 Inrush Identification with WPT 185 -- 4.6.3 Results and Analysis 185 -- 4.7 A Novel Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 190 -- 4.7.1 Mathematical Morphology 190 -- 4.7.2 Principle and Scheme Design 193.
4.7.3 Testing Results and Analysis 194 -- 4.8 Identifying Transformer Inrush Current Based on Normalized Grille Curve 202 -- 4.8.1 Normalized Grille Curve 202 -- 4.8.2 Experimental System 205 -- 4.8.3 Testing Results and Analysis 207 -- 4.9 A Novel Algorithm for Discrimination between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 211 -- 4.9.1 Basic Principle 211 -- 4.9.2 EILI-Based Criterion 217 -- 4.9.3 Experimental Results and Analysis 218 -- 4.10 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 222 -- 4.10.1 Basic Principle 222 -- 4.10.2 Experimental System 230 -- 4.10.3 Testing Results and Analysis 230 -- 4.11 Summary 234 -- References 234 -- 5 Comprehensive Countermeasures for Improving the Performance of Transformer Differential Protection 237 -- 5.1 Introduction 237 -- 5.2 A Method to Eliminate the Magnetizing Inrush Current of Energized Transformers 242 -- 5.2.1 Principles and Modelling of the Inrush Suppressor and Parameter Design 242 -- 5.2.2 Simulation Validation and Results Analysis 249 -- 5.3 Identification of the Cross-Country Fault of a Power Transformer for Fast Unblocking of Differential Protection 255 -- 5.3.1 Criterion for Identifying Cross-Country Faults Using the Variation of the Saturated Secondary Current with Respect to the Differential Current 255 -- 5.3.2 Simulation Analyses and Test Verification 257 -- 5.4 Adaptive Scheme in the Transformer Main Protection 268 -- 5.4.1 The Fundamental of the Time Difference Based Method to Discriminate between the Fault Current and the Inrush of the Transformer 268 -- 5.4.2 Preset Filter 269 -- 5.4.3 Comprehensive Protection Scheme 271 -- 5.4.4 Simulation Tests and Analysis 274 -- 5.5 A Series Multiresolution Morphological Gradient Based Criterion to Identify CT Saturation 294 -- 5.5.1 Time Difference Extraction Criterion Using Mathematical Morphology 294 -- 5.5.2 Simulation Study and Results Analysis 297 -- 5.5.3 Performance Verification with On-site Data 302.
5.6 A New Adaptive Method to Identify CT Saturation Using a Grille Fractal 304 -- 5.6.1 Analysis of the Behaviour of CT Transient Saturation 304 -- 5.6.2 The Basic Principle and Algorithm of Grille Fractal 308 -- 5.6.3 Self-Adaptive Generalized Morphological Filter 312 -- 5.6.4 The Design of Protection Program and the Verification of Results 313 -- 5.7 Summary 317 -- References 317 -- Index 319.
Record Nr. UNINA-9910140498103321
Lin Xiangning  
Singapore : , : John Wiley & Sons, Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic transient analysis and novel protective relaying techniques for power transformer / / Xiangning Lin, Jing Ma, Qing Tian, Hanli Weng
Electromagnetic transient analysis and novel protective relaying techniques for power transformer / / Xiangning Lin, Jing Ma, Qing Tian, Hanli Weng
Autore Lin Xiangning
Pubbl/distr/stampa Singapore : , : John Wiley & Sons, Inc., , 2014
Descrizione fisica 1 online resource (341 p.)
Disciplina 621.31/4
Soggetto topico Electric relays
Electric transformers - Protection
Transients (Electricity)
ISBN 1-118-65385-8
1-118-65383-1
1-118-65384-X
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors ix -- Preface xi -- 1 Principles of Transformer Differential Protection and Existing Problem Analysis 1 -- 1.1 Introduction 1 -- 1.2 Fundamentals of Transformer Differential Protection 2 -- 1.2.1 Transformer Faults 2 -- 1.2.2 Differential Protection of Transformers 3 -- 1.2.3 The Unbalanced Current and Measures to Eliminate Its Effect 5 -- 1.3 Some Problems with Power Transformer Main Protection 7 -- 1.3.1 Other Types of Power Transformer Differential Protections 7 -- 1.3.2 Research on Novel Protection Principles 9 -- 1.4 Analysis of Electromagnetic Transients and Adaptability of Second Harmonic Restraint Based Differential Protection of a UHV Power Transformer 17 -- 1.4.1 Modelling of the UHV Power Transformer 18 -- 1.4.2 Simulation and Analysis 20 -- 1.5 Study on Comparisons among Some Waveform Symmetry Principle Based Transformer Differential Protection 27 -- 1.5.1 The Comparison and Analysis of Several Kinds of Symmetrical Waveform Theories 27 -- 1.5.2 The Theory of Waveform Symmetry of Derivatives of Current and Its Analysis 28 -- 1.5.3 Principle and Analysis of the Waveform Correlation Method 32 -- 1.5.4 Analysis of Reliability and Sensitivity of Several Criteria 33 -- 1.6 Summary 36 -- References 36 -- 2 Malfunction Mechanism Analysis due to Nonlinearity of Transformer Core 39 -- 2.1 Introduction 39 -- 2.2 The Ultra-Saturation Phenomenon of Loaded Transformer Energizing and its Impacts on Differential Protection 43 -- 2.2.1 Loaded Transformer Energizing Model Based on Second Order Equivalent Circuit 43 -- 2.2.2 Preliminary Simulation Studies 48 -- 2.3 Studies on the Unusual Mal-Operation of Transformer Differential Protection during the Nonlinear Load Switch-In 57 -- 2.3.1 Simulation Model of the Nonlinear Load Switch-In 57 -- 2.3.2 Simulation Results and Analysis of Mal-Operation Mechanism of Differential Protection 62 -- 2.4 Analysis of a Sort of Unusual Mal-operation of Transformer Differential Protection due to Removal of External Fault 70.
2.4.1 Modelling of the External Fault Inception and Removal and Current Transformer 70 -- 2.4.2 Analysis of Low Current Mal-operation of Differential Protection 72 -- 2.5 Analysis and Countermeasure of Abnormal Operation Behaviours of the Differential Protection of the Converter Transformer 80 -- 2.5.1 Recurrence and Analysis of the Reported Abnormal Operation of the Differential Protection of the Converter Transformer 80 -- 2.5.2 Time-Difference Criterion to Discriminate between Faults and Magnetizing Inrushes of the Converter Transformer 86 -- 2.6 Summary 95 -- References 95 -- 3 Novel Analysis Tools on Operating Characteristics of Transformer Differential Protection 97 -- 3.1 Introduction 97 -- 3.2 Studies on the Operation Behaviour of Differential Protection during a Loaded Transformer Energizing 99 -- 3.2.1 Simulation Models of Loaded Transformer Switch-On and CT 99 -- 3.2.2 Analysis of the Mal-operation Mechanism of Differential Protection 102 -- 3.3 Comparative Investigation on Current Differential Criteria between One Using Phase Current and One Using Phase-Phase Current Difference for the Transformer using Y-Delta Connection 109 -- 3.3.1 Analyses of Applying the Phase Current Differential to the Power Transformer with Y/Δ Connection and its Existing Bases 109 -- 3.3.2 Rationality Analyses of Applying the Phase Current Differential Criterion to the Power Transformer with Y/Δ Connection 113 -- 3.4 Comparative Analysis on Current Percentage Differential Protections Using a Novel Reliability Evaluation Criterion 117 -- 3.4.1 Introduction to CPD and NPD 117 -- 3.4.2 Performance Comparison between CPD and NPD in the Case of CT Saturation 118 -- 3.4.3 Performance Comparison between CPD and NPD in the Case of Internal Fault 121 -- 3.5 Comparative Studies on Percentage Differential Criteria Using Phase Current and Superimposed Phase Current 123 -- 3.5.1 The Dynamic Locus of p - 1p +1 in the Case of CT Saturation 123 -- 3.5.2 Sensitivity Comparison between the Phase Current Based and the Superimposed Current Based Differential Criteria 126.
3.5.3 Security Comparison between the Phase Current Based and the Superimposed Current Based Differential Criteria 128 -- 3.5.4 Simulation Analyses 130 -- 3.6 A Novel Analysis Methodology of Differential Protection Operation Behaviour 132 -- 3.6.1 The Relationship between Transforming Rate and the Angular Change Rate under CT Saturation 132 -- 3.6.2 Principles of Novel Percentage Restraint Criteria 133 -- 3.6.3 Analysis of Novel Percentage Differential Criteria 142 -- 3.7 Summary 151 -- References 151 -- 4 Novel Magnetizing Inrush Identification Schemes 153 -- 4.1 Introduction 153 -- 4.2 Studies for Identification of the Inrush Based on Improved Correlation Algorithm 155 -- 4.2.1 Basic Principle of Waveform Correlation Scheme 155 -- 4.2.2 Design and Test of the Improved Waveform Correlation Principle 159 -- 4.3 A Novel Method for Discrimination of Internal Faults and Inrush Currents by Using Waveform Singularity Factor 163 -- 4.3.1 Waveform Singularity Factor Based Algorithm 163 -- 4.3.2 Testing Results and Analysis 164 -- 4.4 A New Principle of Discrimination between Inrush Current and Internal Fault Current of Transformer Based on Self-Correlation Function 169 -- 4.4.1 Basic Principle of Correlation Function Applied to Random Single Analysis 169 -- 4.4.2 Theory and Analysis of Waveform Similarity Based on Self-Correlation Function 170 -- 4.4.3 EPDL Testing Results and Analysis 173 -- 4.5 Identifying Inrush Current Using Sinusoidal Proximity Factor 174 -- 4.5.1 Sinusoidal Proximity Factor Based Algorithm 174 -- 4.5.2 Testing Results and Analysis 176 -- 4.6 A Wavelet Transform Based Scheme for Power Transformer Inrush Identification 181 -- 4.6.1 Principle of Wavelet Transform 181 -- 4.6.2 Inrush Identification with WPT 185 -- 4.6.3 Results and Analysis 185 -- 4.7 A Novel Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 190 -- 4.7.1 Mathematical Morphology 190 -- 4.7.2 Principle and Scheme Design 193.
4.7.3 Testing Results and Analysis 194 -- 4.8 Identifying Transformer Inrush Current Based on Normalized Grille Curve 202 -- 4.8.1 Normalized Grille Curve 202 -- 4.8.2 Experimental System 205 -- 4.8.3 Testing Results and Analysis 207 -- 4.9 A Novel Algorithm for Discrimination between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 211 -- 4.9.1 Basic Principle 211 -- 4.9.2 EILI-Based Criterion 217 -- 4.9.3 Experimental Results and Analysis 218 -- 4.10 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 222 -- 4.10.1 Basic Principle 222 -- 4.10.2 Experimental System 230 -- 4.10.3 Testing Results and Analysis 230 -- 4.11 Summary 234 -- References 234 -- 5 Comprehensive Countermeasures for Improving the Performance of Transformer Differential Protection 237 -- 5.1 Introduction 237 -- 5.2 A Method to Eliminate the Magnetizing Inrush Current of Energized Transformers 242 -- 5.2.1 Principles and Modelling of the Inrush Suppressor and Parameter Design 242 -- 5.2.2 Simulation Validation and Results Analysis 249 -- 5.3 Identification of the Cross-Country Fault of a Power Transformer for Fast Unblocking of Differential Protection 255 -- 5.3.1 Criterion for Identifying Cross-Country Faults Using the Variation of the Saturated Secondary Current with Respect to the Differential Current 255 -- 5.3.2 Simulation Analyses and Test Verification 257 -- 5.4 Adaptive Scheme in the Transformer Main Protection 268 -- 5.4.1 The Fundamental of the Time Difference Based Method to Discriminate between the Fault Current and the Inrush of the Transformer 268 -- 5.4.2 Preset Filter 269 -- 5.4.3 Comprehensive Protection Scheme 271 -- 5.4.4 Simulation Tests and Analysis 274 -- 5.5 A Series Multiresolution Morphological Gradient Based Criterion to Identify CT Saturation 294 -- 5.5.1 Time Difference Extraction Criterion Using Mathematical Morphology 294 -- 5.5.2 Simulation Study and Results Analysis 297 -- 5.5.3 Performance Verification with On-site Data 302.
5.6 A New Adaptive Method to Identify CT Saturation Using a Grille Fractal 304 -- 5.6.1 Analysis of the Behaviour of CT Transient Saturation 304 -- 5.6.2 The Basic Principle and Algorithm of Grille Fractal 308 -- 5.6.3 Self-Adaptive Generalized Morphological Filter 312 -- 5.6.4 The Design of Protection Program and the Verification of Results 313 -- 5.7 Summary 317 -- References 317 -- Index 319.
Record Nr. UNINA-9910824701803321
Lin Xiangning  
Singapore : , : John Wiley & Sons, Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE guide for transformer loss measurement
IEEE guide for transformer loss measurement
Pubbl/distr/stampa [Place of publication not identified], : Institute of Electrical and Electronics Engineers, 2002
Disciplina 621.31/4
Soggetto topico Electric transformers - Standards
Electric transformers - Testing - Standards
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 0-7381-3310-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996280458303316
[Place of publication not identified], : Institute of Electrical and Electronics Engineers, 2002
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE guide for transformer loss measurement
IEEE guide for transformer loss measurement
Pubbl/distr/stampa [Place of publication not identified], : Institute of Electrical and Electronics Engineers, 2002
Disciplina 621.31/4
Soggetto topico Electric transformers - Standards
Electric transformers - Testing - Standards
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 0-7381-3310-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910147238003321
[Place of publication not identified], : Institute of Electrical and Electronics Engineers, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power electronic converters for microgrids / / Suleiman M. Sharkh...[and others]
Power electronic converters for microgrids / / Suleiman M. Sharkh...[and others]
Autore Sharkh S. M (Suleiman M.)
Pubbl/distr/stampa Singapore : , : Wiley-IEEE Press, , [2014]
Descrizione fisica 1 online resource (312 p.)
Disciplina 621.31/4
Soggetto topico Electric current converters
Small power production facilities - Equipment and supplies
ISBN 0-470-82832-3
0-470-82403-4
0-470-82404-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- Preface xiii -- Acknowledgments xv -- 1 Introduction 1 -- 1.1 Modes of Operation of Microgrid Converters 2 -- 1.1.1 Grid Connection Mode 2 -- 1.1.2 Stand-Alone Mode 3 -- 1.1.3 Battery Charging Mode 3 -- 1.2 Converter Topologies 4 -- 1.3 Modulation Strategies 6 -- 1.4 Control and System Issues 7 -- 1.5 Future Challenges and Solutions 9 -- References 10 -- 2 Converter Topologies 13 -- 2.1 Topologies 13 -- 2.1.1 The Two-Level Converter 13 -- 2.1.2 The NPC Converter 14 -- 2.1.3 The CHB Converter 15 -- 2.2 Pulse Width Modulation Strategies 16 -- 2.2.1 Carrier-Based Strategies 17 -- 2.2.2 SVM Strategies 22 -- 2.3 Modeling 27 -- References 28 -- 3 DC-Link Capacitor Current and Sizing in NPC and CHB Inverters 29 -- 3.1 Introduction 29 -- 3.2 Inverter DC-Link Capacitor Sizing 30 -- 3.3 Analytical Derivation of DC-Link Capacitor Current RMS Expressions 32 -- 3.3.1 NPC Inverter 33 -- 3.3.2 CHB Inverter 36 -- 3.4 Analytical Derivation of DC-Link Capacitor Current Harmonics 37 -- 3.4.1 NPC Inverter 38 -- 3.4.2 CHB Inverter 39 -- 3.5 Numerical Derivation of DC-Link Capacitor Current RMS Value and Voltage Ripple Amplitude 41 -- 3.6 Simulation Results 42 -- 3.7 Discussion 45 -- 3.7.1 Comparison of Capacitor Size for the NPC and CHB Inverters 45 -- 3.7.2 Comparison of Presented Methods for Analyzing DC-Link Capacitor Current 46 -- 3.7.3 Extension to Higher-Level Inverters 48 -- 3.8 Conclusion 48 -- References 48 -- 4 Loss Comparison of Two- and Three-Level Inverter Topologies 51 -- 4.1 Introduction 51 -- 4.2 Selection of IGBT-Diode Modules 53 -- 4.3 Switching Losses 54 -- 4.3.1 Switching Losses in the Two-Level Inverters 54 -- 4.3.2 Switching Losses in the NPC Inverter 57 -- 4.3.3 Switching Losses in the CHB Inverter 58 -- 4.4 Conduction Losses 58 -- 4.4.1 Conduction Losses in the Two-Level Inverter 60 -- 4.4.2 Conduction Losses in the NPC Inverter 61 -- 4.4.3 Conduction Losses in the CHB Inverter 63 -- 4.5 DC-Link Capacitor RMS Current 65 -- 4.6 Results 69.
4.7 Conclusion 70 -- References 71 -- 5 Minimization of Low-Frequency Neutral-Point Voltage Oscillations in NPC Converters 73 -- 5.1 Introduction 73 -- 5.2 NPC Converter Modulation Strategies 74 -- 5.3 Minimum NP Ripple Achievable by NV Strategies 77 -- 5.3.1 Locally Averaged NP Current 78 -- 5.3.2 Effect of Switching Constraints 79 -- 5.3.3 Zero-Ripple Region 81 -- 5.3.4 A Lower Boundary for the NP Voltage Ripple 81 -- 5.4 Proposed Band-NV Strategies 83 -- 5.4.1 Criterion Used by Conventional NV Strategies 83 -- 5.4.2 Proposed Criterion 84 -- 5.4.3 Regions of Operation 85 -- 5.4.4 Algorithm 88 -- 5.4.5 Switching Sequences - Conversion to Band-NV 90 -- 5.5 Performance of Band-NV Strategies 91 -- 5.5.1 NP Voltage Ripple 91 -- 5.5.2 Effective Switching Frequency - Output Voltage Harmonic Distortion 93 -- 5.6 Simulation of Band-NV Strategies 94 -- 5.7 Hybrid Modulation Strategies 100 -- 5.7.1 Proposed Hybrid Strategies 101 -- 5.7.2 Simulation Results 102 -- 5.8 Conclusions 106 -- References 107 -- 6 Digital Control of a Three-Phase Two-Level Grid-Connected Inverter 109 -- 6.1 Introduction 109 -- 6.2 Control Strategy 112 -- 6.3 Digital Sampling Strategy 113 -- 6.4 Effect of Time Delay on Stability 115 -- 6.5 Capacitor Current Observer 116 -- 6.6 Design of Feedback Controllers 119 -- 6.7 Simulation Results 121 -- 6.8 Experimental Results 123 -- 6.9 Conclusions 127 -- References 128 -- 7 Design and Control of a Grid-Connected Interleaved Inverter 131 -- 7.1 Introduction 131 -- 7.2 Ripple Cancellation 135 -- 7.3 Hardware Design 137 -- 7.3.1 Hardware Design Guidelines 138 -- 7.3.2 Application of the Design Guidelines 145 -- 7.4 Controller Structure 146 -- 7.5 System Analysis 149 -- 7.5.1 Effect of Passive Damping and Grid Impedance 151 -- 7.5.2 Effect of Computational Time Delay 151 -- 7.5.3 Grid Disturbance Rejection 154 -- 7.6 Controller Design 154 -- 7.7 Simulation and Practical Results 158 -- 7.8 Conclusions 167 -- References 167 -- 8 Repetitive Current Control of an Interleaved Grid-Connected Inverter 171.
8.1 Introduction 171 -- 8.2 Proposed Controller and System Modeling 172 -- 8.3 System Analysis and Controller Design 175 -- 8.4 Simulation Results 178 -- 8.5 Experimental Results 179 -- 8.6 Conclusions 182 -- References 182 -- 9 Line Interactive UPS 185 -- 9.1 Introduction 185 -- 9.2 System Overview 188 -- 9.3 Core Controller 192 -- 9.3.1 Virtual Impedance and Grid Harmonics Rejection 193 -- 9.4 Power Flow Controller 195 -- 9.4.1 Drooping Control Equations 195 -- 9.4.2 Small Signal Analysis 196 -- 9.4.3 Stability Analysis and Drooping Coefficients Selection 200 -- 9.5 DC Link Voltage Controller 206 -- 9.6 Experimental Results 209 -- 9.7 Conclusions 217 -- References 218 -- 10 Microgrid Protection 221 -- 10.1 Introduction 221 -- 10.2 Key Protection Challenges 221 -- 10.2.1 Fault Current Level Modification 221 -- 10.2.2 Device Discrimination 223 -- 10.2.3 Reduction in Reach of Impedance Relays 223 -- 10.2.4 Bidirectionality and Voltage Profile Change 224 -- 10.2.5 Sympathetic Tripping 224 -- 10.2.6 Islanding 224 -- 10.2.7 Effect on Feeder Reclosure 224 -- 10.3 Possible Solutions to Key Protection Challenges 225 -- 10.3.1 Possible Solutions to Key Protection Challenges for an Islanded Microgrid Having IIDG Units 225 -- 10.4 Case Study 229 -- 10.4.1 Fault Level Modification 231 -- 10.4.2 Blinding of Protection 232 -- 10.4.3 Sympathetic Tripping 233 -- 10.4.4 Reduction in Reach of Distance Relay 233 -- 10.4.5 Discussion 234 -- 10.5 Conclusions 235 -- References 236 -- 11 An Adaptive Relaying Scheme for Fuse Saving 239 -- 11.1 Introduction 239 -- 11.1.1 Preventive Solutions Proposed in the Literature 240 -- 11.1.2 Remedial Solutions Proposed in the Literature 241 -- 11.1.3 Contributions of the Chapter 242 -- 11.2 Case Study 242 -- 11.3 Simulation Results and Discussion 245 -- 11.4 Fuse Saving Strategy 247 -- 11.4.1 Options and Considerations for the Selection of Ipickup of the 50 Element 249 -- 11.4.2 Adaptive Algorithm 251 -- 11.5 How Reclosing Will Be Applied 252 -- 11.6 Observations 255.
11.7 Conclusions 257 -- References 257 -- Appendix A SVM for the NPC Converter-MATLABª-Simulink Models 261 -- A.1 Calculation of Duty Cycles for Nearest Space Vectors 261 -- A.2 Symmetric Modulation Strategy 262 -- A.3 MATLABª-Simulink Models 263 -- References 279 -- Appendix B DC-Link Capacitor Current Numerical Calculation 281 -- Index 285.
Record Nr. UNINA-9910139119203321
Sharkh S. M (Suleiman M.)  
Singapore : , : Wiley-IEEE Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power electronic converters for microgrids / / Suleiman M. Sharkh...[and others]
Power electronic converters for microgrids / / Suleiman M. Sharkh...[and others]
Autore Sharkh S. M (Suleiman M.)
Pubbl/distr/stampa Singapore : , : Wiley-IEEE Press, , [2014]
Descrizione fisica 1 online resource (312 p.)
Disciplina 621.31/4
Soggetto topico Electric current converters
Small power production facilities - Equipment and supplies
ISBN 0-470-82832-3
0-470-82403-4
0-470-82404-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- Preface xiii -- Acknowledgments xv -- 1 Introduction 1 -- 1.1 Modes of Operation of Microgrid Converters 2 -- 1.1.1 Grid Connection Mode 2 -- 1.1.2 Stand-Alone Mode 3 -- 1.1.3 Battery Charging Mode 3 -- 1.2 Converter Topologies 4 -- 1.3 Modulation Strategies 6 -- 1.4 Control and System Issues 7 -- 1.5 Future Challenges and Solutions 9 -- References 10 -- 2 Converter Topologies 13 -- 2.1 Topologies 13 -- 2.1.1 The Two-Level Converter 13 -- 2.1.2 The NPC Converter 14 -- 2.1.3 The CHB Converter 15 -- 2.2 Pulse Width Modulation Strategies 16 -- 2.2.1 Carrier-Based Strategies 17 -- 2.2.2 SVM Strategies 22 -- 2.3 Modeling 27 -- References 28 -- 3 DC-Link Capacitor Current and Sizing in NPC and CHB Inverters 29 -- 3.1 Introduction 29 -- 3.2 Inverter DC-Link Capacitor Sizing 30 -- 3.3 Analytical Derivation of DC-Link Capacitor Current RMS Expressions 32 -- 3.3.1 NPC Inverter 33 -- 3.3.2 CHB Inverter 36 -- 3.4 Analytical Derivation of DC-Link Capacitor Current Harmonics 37 -- 3.4.1 NPC Inverter 38 -- 3.4.2 CHB Inverter 39 -- 3.5 Numerical Derivation of DC-Link Capacitor Current RMS Value and Voltage Ripple Amplitude 41 -- 3.6 Simulation Results 42 -- 3.7 Discussion 45 -- 3.7.1 Comparison of Capacitor Size for the NPC and CHB Inverters 45 -- 3.7.2 Comparison of Presented Methods for Analyzing DC-Link Capacitor Current 46 -- 3.7.3 Extension to Higher-Level Inverters 48 -- 3.8 Conclusion 48 -- References 48 -- 4 Loss Comparison of Two- and Three-Level Inverter Topologies 51 -- 4.1 Introduction 51 -- 4.2 Selection of IGBT-Diode Modules 53 -- 4.3 Switching Losses 54 -- 4.3.1 Switching Losses in the Two-Level Inverters 54 -- 4.3.2 Switching Losses in the NPC Inverter 57 -- 4.3.3 Switching Losses in the CHB Inverter 58 -- 4.4 Conduction Losses 58 -- 4.4.1 Conduction Losses in the Two-Level Inverter 60 -- 4.4.2 Conduction Losses in the NPC Inverter 61 -- 4.4.3 Conduction Losses in the CHB Inverter 63 -- 4.5 DC-Link Capacitor RMS Current 65 -- 4.6 Results 69.
4.7 Conclusion 70 -- References 71 -- 5 Minimization of Low-Frequency Neutral-Point Voltage Oscillations in NPC Converters 73 -- 5.1 Introduction 73 -- 5.2 NPC Converter Modulation Strategies 74 -- 5.3 Minimum NP Ripple Achievable by NV Strategies 77 -- 5.3.1 Locally Averaged NP Current 78 -- 5.3.2 Effect of Switching Constraints 79 -- 5.3.3 Zero-Ripple Region 81 -- 5.3.4 A Lower Boundary for the NP Voltage Ripple 81 -- 5.4 Proposed Band-NV Strategies 83 -- 5.4.1 Criterion Used by Conventional NV Strategies 83 -- 5.4.2 Proposed Criterion 84 -- 5.4.3 Regions of Operation 85 -- 5.4.4 Algorithm 88 -- 5.4.5 Switching Sequences - Conversion to Band-NV 90 -- 5.5 Performance of Band-NV Strategies 91 -- 5.5.1 NP Voltage Ripple 91 -- 5.5.2 Effective Switching Frequency - Output Voltage Harmonic Distortion 93 -- 5.6 Simulation of Band-NV Strategies 94 -- 5.7 Hybrid Modulation Strategies 100 -- 5.7.1 Proposed Hybrid Strategies 101 -- 5.7.2 Simulation Results 102 -- 5.8 Conclusions 106 -- References 107 -- 6 Digital Control of a Three-Phase Two-Level Grid-Connected Inverter 109 -- 6.1 Introduction 109 -- 6.2 Control Strategy 112 -- 6.3 Digital Sampling Strategy 113 -- 6.4 Effect of Time Delay on Stability 115 -- 6.5 Capacitor Current Observer 116 -- 6.6 Design of Feedback Controllers 119 -- 6.7 Simulation Results 121 -- 6.8 Experimental Results 123 -- 6.9 Conclusions 127 -- References 128 -- 7 Design and Control of a Grid-Connected Interleaved Inverter 131 -- 7.1 Introduction 131 -- 7.2 Ripple Cancellation 135 -- 7.3 Hardware Design 137 -- 7.3.1 Hardware Design Guidelines 138 -- 7.3.2 Application of the Design Guidelines 145 -- 7.4 Controller Structure 146 -- 7.5 System Analysis 149 -- 7.5.1 Effect of Passive Damping and Grid Impedance 151 -- 7.5.2 Effect of Computational Time Delay 151 -- 7.5.3 Grid Disturbance Rejection 154 -- 7.6 Controller Design 154 -- 7.7 Simulation and Practical Results 158 -- 7.8 Conclusions 167 -- References 167 -- 8 Repetitive Current Control of an Interleaved Grid-Connected Inverter 171.
8.1 Introduction 171 -- 8.2 Proposed Controller and System Modeling 172 -- 8.3 System Analysis and Controller Design 175 -- 8.4 Simulation Results 178 -- 8.5 Experimental Results 179 -- 8.6 Conclusions 182 -- References 182 -- 9 Line Interactive UPS 185 -- 9.1 Introduction 185 -- 9.2 System Overview 188 -- 9.3 Core Controller 192 -- 9.3.1 Virtual Impedance and Grid Harmonics Rejection 193 -- 9.4 Power Flow Controller 195 -- 9.4.1 Drooping Control Equations 195 -- 9.4.2 Small Signal Analysis 196 -- 9.4.3 Stability Analysis and Drooping Coefficients Selection 200 -- 9.5 DC Link Voltage Controller 206 -- 9.6 Experimental Results 209 -- 9.7 Conclusions 217 -- References 218 -- 10 Microgrid Protection 221 -- 10.1 Introduction 221 -- 10.2 Key Protection Challenges 221 -- 10.2.1 Fault Current Level Modification 221 -- 10.2.2 Device Discrimination 223 -- 10.2.3 Reduction in Reach of Impedance Relays 223 -- 10.2.4 Bidirectionality and Voltage Profile Change 224 -- 10.2.5 Sympathetic Tripping 224 -- 10.2.6 Islanding 224 -- 10.2.7 Effect on Feeder Reclosure 224 -- 10.3 Possible Solutions to Key Protection Challenges 225 -- 10.3.1 Possible Solutions to Key Protection Challenges for an Islanded Microgrid Having IIDG Units 225 -- 10.4 Case Study 229 -- 10.4.1 Fault Level Modification 231 -- 10.4.2 Blinding of Protection 232 -- 10.4.3 Sympathetic Tripping 233 -- 10.4.4 Reduction in Reach of Distance Relay 233 -- 10.4.5 Discussion 234 -- 10.5 Conclusions 235 -- References 236 -- 11 An Adaptive Relaying Scheme for Fuse Saving 239 -- 11.1 Introduction 239 -- 11.1.1 Preventive Solutions Proposed in the Literature 240 -- 11.1.2 Remedial Solutions Proposed in the Literature 241 -- 11.1.3 Contributions of the Chapter 242 -- 11.2 Case Study 242 -- 11.3 Simulation Results and Discussion 245 -- 11.4 Fuse Saving Strategy 247 -- 11.4.1 Options and Considerations for the Selection of Ipickup of the 50 Element 249 -- 11.4.2 Adaptive Algorithm 251 -- 11.5 How Reclosing Will Be Applied 252 -- 11.6 Observations 255.
11.7 Conclusions 257 -- References 257 -- Appendix A SVM for the NPC Converter-MATLABª-Simulink Models 261 -- A.1 Calculation of Duty Cycles for Nearest Space Vectors 261 -- A.2 Symmetric Modulation Strategy 262 -- A.3 MATLABª-Simulink Models 263 -- References 279 -- Appendix B DC-Link Capacitor Current Numerical Calculation 281 -- Index 285.
Record Nr. UNINA-9910822663103321
Sharkh S. M (Suleiman M.)  
Singapore : , : Wiley-IEEE Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transformers and inductors for power electronics : theory, design and applications / / W.G. Hurley, W.H. Wölfle
Transformers and inductors for power electronics : theory, design and applications / / W.G. Hurley, W.H. Wölfle
Autore Hurley William G.
Pubbl/distr/stampa Chichester, West Sussex : , : John Wiley, , 2013
Descrizione fisica xxv, 344 pages : illustrations
Disciplina 621.31/4
Soggetto topico Electric transformers - Design and construction
Electric inductors - Design and construction
ISBN 1-118-54466-8
1-299-31574-7
1-118-54467-6
1-118-54464-1
Classificazione 542.7
621.314
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione und
Nota di contenuto section I. Inductors -- section II. Transformers -- section III. Advanced topics.
Record Nr. UNINA-9910795978103321
Hurley William G.  
Chichester, West Sussex : , : John Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui