FDTD modeling of metamaterials : theory and applications / / Yang Hao, Raj Mittra |
Autore | Hao Yang |
Pubbl/distr/stampa | Boston [i.e. Norwood], Massachusetts : , : Artech House, , ©2009 |
Descrizione fisica | 1 online resource (395 p.) |
Disciplina |
620.1/297 22
621.30284 |
Altri autori (Persone) | MittraRaj |
Soggetto topico |
Metamaterials - Mathematical models
Electromagnetism - Computer simulation Time-domain analysis Finite differences |
Soggetto genere / forma | Electronic books. |
ISBN | 1-59693-161-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
FDTD Modeling of Metamaterials: Theory and Applications; Contents; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Fundamentals and Applications of Electromagnetic Bandgap Structures; Chapter 3: A Brief Introduction to the FDTD Method for Modeling Metamaterials; Chapter 4: FDTD Modeling of EBGs and Their Applications; Chapter 5: Left-Handed Metamaterials (LHMs)and Their Applications; Chapter 6: Numerical Modeling of Left-Handed Material (LHM) Using a Dispersive FDTD Method; Chapter 7: FDTD Modeling and Figure-of-Merit(FOM) Analysis of Practical Metamaterials
Chapter 8: Accurate FDTD Modeling of a Perfect Lens Chapter 9: Spatially Dispersive FDTD Modeling of Wire Medium; Chapter 10: FDTD Modeling of Metamaterials for Optics; Chapter 11: Overviews and Final Remarks; List of Abbreviations; About the Authors; Index |
Record Nr. | UNINA-9910455181103321 |
Hao Yang | ||
Boston [i.e. Norwood], Massachusetts : , : Artech House, , ©2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
FDTD modeling of metamaterials : theory and applications / / Yang Hao, Raj Mittra |
Autore | Hao Yang |
Pubbl/distr/stampa | Boston [i.e. Norwood], Massachusetts : , : Artech House, , ©2009 |
Descrizione fisica | 1 online resource (395 p.) |
Disciplina |
620.1/297 22
621.30284 |
Altri autori (Persone) | MittraRaj |
Soggetto topico |
Metamaterials - Mathematical models
Electromagnetism - Computer simulation Time-domain analysis Finite differences |
ISBN | 1-59693-161-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
FDTD Modeling of Metamaterials: Theory and Applications; Contents; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Fundamentals and Applications of Electromagnetic Bandgap Structures; Chapter 3: A Brief Introduction to the FDTD Method for Modeling Metamaterials; Chapter 4: FDTD Modeling of EBGs and Their Applications; Chapter 5: Left-Handed Metamaterials (LHMs)and Their Applications; Chapter 6: Numerical Modeling of Left-Handed Material (LHM) Using a Dispersive FDTD Method; Chapter 7: FDTD Modeling and Figure-of-Merit(FOM) Analysis of Practical Metamaterials
Chapter 8: Accurate FDTD Modeling of a Perfect Lens Chapter 9: Spatially Dispersive FDTD Modeling of Wire Medium; Chapter 10: FDTD Modeling of Metamaterials for Optics; Chapter 11: Overviews and Final Remarks; List of Abbreviations; About the Authors; Index |
Record Nr. | UNINA-9910778002903321 |
Hao Yang | ||
Boston [i.e. Norwood], Massachusetts : , : Artech House, , ©2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of power systems engineering with power electronics applications [[electronic resource] /] / Yoshihide Hase |
Autore | Hase Yoshihide <1937-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley, 2013 |
Descrizione fisica | 1 online resource (798 p.) |
Disciplina |
621.30284
621.319 |
Altri autori (Persone) | HaseYoshihide <1937-> |
Soggetto topico | Electric power systems |
ISBN |
1-118-44315-2
1-299-18687-4 1-118-44324-1 1-118-44323-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
HANDBOOK OF POWER SYSTEMS ENGINEERING WITH POWER ELECTRONICS APPLICATIONS; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; ABOUT THE AUTHOR; INTRODUCTION; 1 OVERHEAD TRANSMISSION LINES AND THEIR CIRCUIT CONSTANTS; 1.1 Overhead Transmission Lines with LR Constants; 1.1.1 Three-phase single circuit line without overhead grounding wire; 1.1.2 Three-phase single circuit line with OGW, OPGW; 1.1.3 Three-phase double circuit line with LR constants; 1.2 Stray Capacitance of Overhead Transmission Lines; 1.2.1 Stray capacitance of three-phase single circuit line; 1.2.2 Three-phase single circuit line with OGW
1.2.3 Three-phase double circuit line1.3 Working Inductance and Working Capacitance; 1.3.1 Introduction of working inductance; 1.3.2 Introduction of working capacitance; 1.3.3 Special properties of working inductance and working capacitance; 1.3.4 MKS rational unit system and the various MKS practical units in electrical engineering field; 1.4 Supplement: Proof of Equivalent Radius req = r1/n · wn -1/n for a Multi-bundled Conductor; 1.4.1 Equivalent radius for inductance calculation; 1.4.2 Equivalent radius of capacitance calculation; Coffee break 1: Electricity, its substance and methodology 2 SYMMETRICAL COORDINATE METHOD (SYMMETRICAL COMPONENTS)2.1 Fundamental Concept of Symmetrical Components; 2.2 Definition of Symmetrical Components; 2.2.1 Definition; 2.2.2 Implication of symmetrical components; 2.3 Conversion of Three-phase Circuit into Symmetrical Coordinated Circuit; 2.4 Transmission Lines by Symmetrical Components; 2.4.1 Single circuit line with LR constants; 2.4.2 Double circuit line with LR constants; 2.4.3 Single circuit line with stray capacitance C; 2.4.4 Double circuit line with C constants; 2.5 Typical Transmission Line Constants; 2.5.1 Typical line constants 2.5.2 L, C constant values derived from typical travelling-wave velocity and surge impedance2.6 Generator by Symmetrical Components (Easy Description); 2.6.1 Simplified symmetrical equations; 2.6.2 Reactance of generator; 2.7 Description of Three-phase Load Circuit by Symmetrical Components; 3 FAULT ANALYSIS BY SYMMETRICAL COMPONENTS; 3.1 Fundamental Concept of Symmetrical Coordinate Method; 3.2 Line-to-ground Fault (Phase a to Ground Fault: 1øG); 3.2.1 Condition before the fault; 3.2.2 Condition of phase a to ground fault 3.2.3 Voltages and currents at virtual terminal point f in the 0-1-2 domain3.2.4 Voltages and currents at an arbitrary point under fault conditions; 3.2.5 Fault under no-load conditions; 3.3 Fault Analysis at Various Fault Modes; 3.4 Conductor Opening; 3.4.1 Single-phase (phase a) conductor opening; 3.4.2 Two-phases (phase b, c) conductor opening; Coffee break 2: Dawn of the world of electricity, from Coulomb to Amp ere and Ohm; 4 FAULT ANALYSIS OF PARALLEL CIRCUIT LINES (INCLUDING SIMULTANEOUS DOUBLE CIRCUIT FAULT); 4.1 Two-phase Circuit and its Symmetrical Coordinate Method 4.1.1 Definition and meaning |
Record Nr. | UNINA-9910141500103321 |
Hase Yoshihide <1937-> | ||
Hoboken, N.J., : John Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk |
Autore | Munk Ben (Benedikt A.) |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley, c2009 |
Descrizione fisica | 1 online resource (209 p.) |
Disciplina |
621.3028/4
621.30284 |
Soggetto topico |
Metamaterials
Antennas (Electronics) - Materials Electromagnetism Radio wave propagation - Mathematical models Antennas (Electronics) - Experiments Negative refraction Negative refractive index |
ISBN |
1-282-03077-9
9786612030772 0-470-42387-0 0-470-42386-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
METAMATERIALS; CONTENTS; Foreword; Preface; ACKNOWLEDGMENTS; 1 Why Periodic Structures Cannot Synthesize Negative Indices of Refraction; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Background; 1.2 Current Assumptions Regarding Veselago's Medium; 1.2.1 Negative Index of Refraction; 1.2.2 Phase Advance when n(1) < 0; 1.2.3 Evanescent Waves Grow with Distance for n(1) < 0; 1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet for n(1) < 0; 1.3 Fantastic Designs Could Be Realized if Veselago's Material Existed; 1.4 How Veselago's Medium Is Envisioned To Be Synthesized Using Periodic Structures
1.5 How Does a Periodic Structure Refract?1.5.1 Infinite Arrays; 1.5.2 What About Finite Arrays?; 1.6 On the Field Surrounding an Infinite Periodic Structure of Arbitrary Wire Elements Located in One or More Arrays; 1.6.1 Single Array of Elements with One Segment; 1.6.2 Single Array of Elements with Two Segments; 1.6.3 Single Array of Elements with an Arbitrary Number of Segments; 1.6.4 On Grating Lobes and Backward-Traveling Waves; 1.6.5 Two Arrays of Elements with an Arbitrary Number of Segments; 1.6.6 Can Arrays of Wires Ever Change the Direction of the Incident Field? 1.7 On Increasing Evanescent Waves: A Fatal Misconception1.8 Preliminary Conclusion: Synthesizing Veselago's Medium by a Periodic Structure Is Not Feasible; 1.9 On Transmission-Line Dispersion: Backward-Traveling Waves; 1.9.1 Transmission Lines; 1.9.2 Periodic Structures; 1.10 Regarding Veselago's Conclusion: Are There Deficiencies?; 1.10.1 Background; 1.10.2 Veselago's Argument for a Negative Index of Refraction; 1.10.3 Veselago's Flat Lens: Is It Really Realistic?; 1.11 Conclusions; 1.12 Common Misconceptions; 1.12.1 Artificial Dielectrics: Do They Really Refract? 1.12.2 Real Dielectrics: How Do They Refract?1.12.3 On the E- and H-Fields; 1.12.4 On Concentric Split-Ring Resonators; 1.12.5 What Would Veselago Have Asked if . . .; 1.12.6 On "Magic" Structures; References; 2 On Cloaks and Reactive Radomes; 2.1 Cloaks; 2.1.1 Concept; 2.1.2 Prior Art; 2.1.3 Alternative Explanation; 2.1.4 Alternative Design; 2.1.5 What Can You Really Expect from a Cloak?; 2.2 Reactive Radomes; 2.2.1 Infinite Planar Array with and Without Reactive Radome; 2.2.2 Line Arrays and Single Elements; 2.3 Common Misconceptions; 2.3.1 Misinterpretation of Calculated Results 2.3.2 Ultimately: What Power Can You Expect from a Short Dipole Encapsulated in a Small Spherical Radome?2.4 Concluding Remarks; References; 3 Absorbers with Windows; 3.1 Introduction; 3.2 Statement of the Problem; 3.3 Concept; 3.4 Conceptual Designs; 3.5 Extension to Arbitrary Polarization; 3.6 The High-Frequency Band; 3.7 Complete Conceptual Rasorber Design; 3.8 Practical Designs; 3.9 Other Applications of Traps: Multiband Arrays; Reference; 4 On Designing Absorbers for an Oblique Angle of Incidence; 4.1 Lagarkov's and Classical Designs; 4.2 Salisbury Screen; 4.3 Scan Compensation 4.4 Frequency Compensation |
Record Nr. | UNINA-9910146147603321 |
Munk Ben (Benedikt A.) | ||
Hoboken, N.J., : John Wiley, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk |
Autore | Munk Ben (Benedikt A.) |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley, c2009 |
Descrizione fisica | 1 online resource (209 p.) |
Disciplina |
621.3028/4
621.30284 |
Soggetto topico |
Metamaterials
Antennas (Electronics) - Materials Electromagnetism Radio wave propagation - Mathematical models Antennas (Electronics) - Experiments Negative refraction Negative refractive index |
ISBN |
1-282-03077-9
9786612030772 0-470-42387-0 0-470-42386-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
METAMATERIALS; CONTENTS; Foreword; Preface; ACKNOWLEDGMENTS; 1 Why Periodic Structures Cannot Synthesize Negative Indices of Refraction; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Background; 1.2 Current Assumptions Regarding Veselago's Medium; 1.2.1 Negative Index of Refraction; 1.2.2 Phase Advance when n(1) < 0; 1.2.3 Evanescent Waves Grow with Distance for n(1) < 0; 1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet for n(1) < 0; 1.3 Fantastic Designs Could Be Realized if Veselago's Material Existed; 1.4 How Veselago's Medium Is Envisioned To Be Synthesized Using Periodic Structures
1.5 How Does a Periodic Structure Refract?1.5.1 Infinite Arrays; 1.5.2 What About Finite Arrays?; 1.6 On the Field Surrounding an Infinite Periodic Structure of Arbitrary Wire Elements Located in One or More Arrays; 1.6.1 Single Array of Elements with One Segment; 1.6.2 Single Array of Elements with Two Segments; 1.6.3 Single Array of Elements with an Arbitrary Number of Segments; 1.6.4 On Grating Lobes and Backward-Traveling Waves; 1.6.5 Two Arrays of Elements with an Arbitrary Number of Segments; 1.6.6 Can Arrays of Wires Ever Change the Direction of the Incident Field? 1.7 On Increasing Evanescent Waves: A Fatal Misconception1.8 Preliminary Conclusion: Synthesizing Veselago's Medium by a Periodic Structure Is Not Feasible; 1.9 On Transmission-Line Dispersion: Backward-Traveling Waves; 1.9.1 Transmission Lines; 1.9.2 Periodic Structures; 1.10 Regarding Veselago's Conclusion: Are There Deficiencies?; 1.10.1 Background; 1.10.2 Veselago's Argument for a Negative Index of Refraction; 1.10.3 Veselago's Flat Lens: Is It Really Realistic?; 1.11 Conclusions; 1.12 Common Misconceptions; 1.12.1 Artificial Dielectrics: Do They Really Refract? 1.12.2 Real Dielectrics: How Do They Refract?1.12.3 On the E- and H-Fields; 1.12.4 On Concentric Split-Ring Resonators; 1.12.5 What Would Veselago Have Asked if . . .; 1.12.6 On "Magic" Structures; References; 2 On Cloaks and Reactive Radomes; 2.1 Cloaks; 2.1.1 Concept; 2.1.2 Prior Art; 2.1.3 Alternative Explanation; 2.1.4 Alternative Design; 2.1.5 What Can You Really Expect from a Cloak?; 2.2 Reactive Radomes; 2.2.1 Infinite Planar Array with and Without Reactive Radome; 2.2.2 Line Arrays and Single Elements; 2.3 Common Misconceptions; 2.3.1 Misinterpretation of Calculated Results 2.3.2 Ultimately: What Power Can You Expect from a Short Dipole Encapsulated in a Small Spherical Radome?2.4 Concluding Remarks; References; 3 Absorbers with Windows; 3.1 Introduction; 3.2 Statement of the Problem; 3.3 Concept; 3.4 Conceptual Designs; 3.5 Extension to Arbitrary Polarization; 3.6 The High-Frequency Band; 3.7 Complete Conceptual Rasorber Design; 3.8 Practical Designs; 3.9 Other Applications of Traps: Multiband Arrays; Reference; 4 On Designing Absorbers for an Oblique Angle of Incidence; 4.1 Lagarkov's and Classical Designs; 4.2 Salisbury Screen; 4.3 Scan Compensation 4.4 Frequency Compensation |
Record Nr. | UNINA-9910830835403321 |
Munk Ben (Benedikt A.) | ||
Hoboken, N.J., : John Wiley, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Metamaterials for Perfect Absorption / / by Young Pak Lee, Joo Yull Rhee, Young Joon Yoo, Ki Won Kim |
Autore | Lee Young Pak |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (180 p.) |
Disciplina | 621.30284 |
Collana | Springer Series in Materials Science |
Soggetto topico |
Lasers
Photonics Optical materials Electronic materials Microwaves Optical engineering Optics, Lasers, Photonics, Optical Devices Optical and Electronic Materials Microwaves, RF and Optical Engineering |
ISBN | 981-10-0105-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | I. Introduction -- II. Theoretical Backgrounds -- III. MMPA operating in different frequency ranges -- IV. MMPA, based on electromagnetically-induced transparency -- V. Broadband and tunable MMPA -- VI. Polarization-independent and wide-incident-angle MMPA -- VII. Perspectives and future works. Index. . |
Record Nr. | UNINA-9910254637803321 |
Lee Young Pak | ||
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optical Metamaterials by Block Copolymer Self-Assembly / / by Stefano Salvatore |
Autore | Salvatore Stefano |
Edizione | [1st ed. 2015.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
Descrizione fisica | 1 online resource (89 p.) |
Disciplina | 621.30284 |
Collana | Springer Theses, Recognizing Outstanding Ph.D. Research |
Soggetto topico |
Nanoscale science
Nanoscience Nanostructures Optical materials Electronic materials Polymers Nanotechnology Engineering—Materials Nanoscale Science and Technology Optical and Electronic Materials Polymer Sciences Materials Engineering |
ISBN | 3-319-05332-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Background -- Gyroid Metamaterial Fabrication -- Gyroid Metamaterial Characterization -- Tuning Methods -- Hollow Gyroid -- Flexible and Stretchable Gyroid Metamaterials -- Metamaterial Sensors. |
Record Nr. | UNINA-9910300427003321 |
Salvatore Stefano | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Tunable Microwave Metamaterial Structures / / by Matthias Maasch |
Autore | Maasch Matthias |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (151 p.) |
Disciplina | 621.30284 |
Collana | Springer Theses, Recognizing Outstanding Ph.D. Research |
Soggetto topico |
Microwaves
Optical engineering Nanotechnology Lasers Photonics Microwaves, RF and Optical Engineering Nanotechnology and Microengineering Optics, Lasers, Photonics, Optical Devices |
ISBN | 3-319-28179-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Wave Propagation in Periodic Structures -- Implementation of Three-Dimensional Lorentz-Drude-Materials -- Extraction of Dispersion Parameters -- Tunable Transmission Line Metamaterials -- Artificial Gradient-Index Lens -- Conclusion and Outlook. |
Record Nr. | UNINA-9910254247003321 |
Maasch Matthias | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|