top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Polyhydroxyalkanoate (PHA) Production / / Martin Koller, editor
Advances in Polyhydroxyalkanoate (PHA) Production / / Martin Koller, editor
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017]
Descrizione fisica 1 online resource (258 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Poly-beta-hydroxyalkanoates
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Special Issue Editor v -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" vii Martin Koller -- Advances in Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 1 -- Constantina Kourmentza, Jersson Plácido, Nikolaos Venetsaneas, Anna Burniol‐Figols, -- Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 8 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and André Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low‐Cost Substrates -- Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 51 Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra -- Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry -- Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 64 Bhakti B. Salgaonkar and Judith M. Bragança -- Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) -- Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 75 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 93 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki -- Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant -- Strain of Pseudomonas sp. 61‐3 -- Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 102 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecień, Magdalena Zięba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka -- The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene -- Using Non‐Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production -- Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 112 -- Stephanie Karmann, Sven Panke and Manfred Zinn -- The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation -- Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 126 -- Liliana Montano‐Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt -- The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents -- Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020. 138 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and André Oliveira de Souza Lima -- Molecular Diagnostic for Prospecting Polyhydroxyalkanoate‐Producing Bacteria -- Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 155 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg -- Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years'-- Working Experience Running a Pilot Plant -- Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 165-- Timo Pittmann and Heidrun Steinmetz -- Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste -- Water Treatment Plants -- Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 184 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, -- Federica Chiellini and Gerhart Braunegg -- Fed‐Batch Synthesis of Poly(3‐Hydroxybutyrate) and Poly(3‐Hydroxybutyrate‐co‐4‐Hydroxybutyrate) from Sucrose and 4‐Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 -- Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 208 -- Dario Puppi, Andrea Morelli and Federica Chiellini -- Additive Manufacturing of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(ε‐caprolactone) -- Blend Scaffolds for Tissue Engineering -- Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049 227.
Altri titoli varianti Advances in Polyhydroxyalkanoate
Record Nr. UNINA-9910598003903321
[Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Polyhydroxyalkanoate (PHA) production / / edited by Martin Koller
Advances in Polyhydroxyalkanoate (PHA) production / / edited by Martin Koller
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2017
Descrizione fisica 1 online resource (258 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Poly-beta-hydroxyalkanoates
ISBN 3-03842-636-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Special Issue Editor -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" -- Martin Koller Advances in Polyhydroxyalkanoate (PHA) Production Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 -- Constantina Kourmentza, Jersson Placido, Nikolaos Venetsaneas, Anna Burniol-Figols, Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and Andre Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 -- Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 -- Bhakti B. Salgaonkar and Judith M. Braganc¸a Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3 Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecien, Magdalena Zie?ba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 -- Stephanie Karmann, Sven Panke and Manfred Zinn The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 -- Liliana Montano-Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and Andre Oliveira de Souza Lima Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 -- Timo Pittmann and Heidrun Steinmetz Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, Federica Chiellini and Gerhart Braunegg Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 -- Dario Puppi, Andrea Morelli and Federica Chiellini Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(e-caprolactone) Blend Scaffolds for Tissue Engineering Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049.
Altri titoli varianti Advances in Polyhydroxyalkanoate
Record Nr. UNINA-9910688468303321
Basel, Switzerland : , : MDPI, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable Metals / / E. Aghion
Biodegradable Metals / / E. Aghion
Autore Aghion E.
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2018
Descrizione fisica 1 online resource (242 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
ISBN 3-03897-387-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910688444203321
Aghion E.  
Basel, Switzerland : , : MDPI, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (491 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Polymers - Biodegradation
Plastics - Environmental aspects
ISBN 9783527827565
9783527347612
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910573098403321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (491 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Polymers - Biodegradation
Plastics - Environmental aspects
ISBN 3-527-82756-0
3-527-82758-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686750903321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioplastics for sustainable development / / Mohammed Kuddus, Roohi, editors
Bioplastics for sustainable development / / Mohammed Kuddus, Roohi, editors
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource : ǂb illustrations
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Plàstics biodegradables
Desenvolupament sostenible
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1823-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1: Microbial Production of Bioplastics: Current Trends and Future Perspectives -- 1.1 Introduction -- 1.2 Biosynthesis of Microbial Bioplastics -- 1.2.1 In Vitro Synthesis of Microbial Bioplastic Granules -- 1.2.2 In Vivo Synthesis of Microbial Bioplastic Granules -- 1.2.3 Morphology of Microbial Bioplastic Granule -- 1.3 Mechanism and Enzymes Involved in the Synthesis of Microbial Bioplastic -- 1.4 Chemical Structure and Classification of Microbial Plastic -- 1.5 Microorganisms Producing PHA and Its Co-polymers -- 1.6 Major Drawbacks of Microbial Bioplastic Production -- 1.7 Sustainable and Cost-Free Substrates for Microbial Bioplastic Production -- 1.7.1 Dairy Wastes Used for PHA Production -- 1.7.2 Agro-Industrial Wastes Used for PHA Production -- 1.7.3 Lignocellulosic Wastes Used for PHA Production -- 1.7.4 Waste from Frying Oils and Animal Fats for PHA Production -- 1.7.5 Plastics Wastes for PHA Production -- 1.8 Cost-Effective Microbial Bioplastic Production Involving Extremophiles -- 1.9 Innovative Research on Microbial Bioplastics -- 1.9.1 PHA Nanocomposites -- 1.9.2 PHA-Polymer Hybrids -- 1.9.3 PHA Nanoparticles -- 1.10 Applications of Advanced Microbial Bioplastics -- 1.10.1 PHA Nanocomposites for Scaffolds, Tissue Engineering, and Nanocoatings -- 1.10.2 PHA Nanocarriers for Cancer Therapy and Drug Delivery -- 1.10.3 PHA Nanocomposites as Smart and Active Packaging Material -- 1.11 Conclusion and Future Perspectives -- References -- 2: General Structure and Classification of Bioplastics and Biodegradable Plastics -- 2.1 Introduction -- 2.2 Types of Bioplastics -- 2.3 Sources of Bioplastic -- 2.3.1 Plants as a Source of Bioplastics -- 2.3.2 Bacteria as a Source of Bioplastic -- 2.3.3 Algal Sources -- 2.4 Classification of Bioplastics -- 2.4.1 Bioplastic from Biomass Products.
2.4.1.1 Bioplastic-Based on Polysaccharide -- 2.4.1.2 Bioplastic Obtained from Starch -- Bioplastic from the Modified Form of Starch -- 2.4.1.3 Bioplastic Obtained from Cellulose -- 2.4.1.4 Bioplastic Obtained from Pectin -- 2.4.1.5 Bioplastic Obtained from Chitin and Chitosan -- 2.4.2 Bioplastic Obtained from Proteins -- 2.4.2.1 Bioplastic from Wheat Gluten Protein -- 2.4.2.2 Bioplastic from Cottonseed Protein -- 2.5 Bioplastics from Microorganisms -- 2.5.1 Polyhydroxyalkanoate (PHA) -- 2.5.2 Polyhydroxybutyrate (PHB) -- 2.6 Bioplastics Obtained from Biotechnological Inventions -- 2.6.1 Polylactic Acid (PLA) -- 2.6.2 Polyethylene -- 2.7 Bioplastics Obtained Chemically -- 2.7.1 Polycaprolactones -- 2.7.2 Polyamides -- 2.7.2.1 Polyamide (PA11) -- 2.8 Role of Petrochemical Products in the Synthesis of Bioplastics -- 2.9 Conclusion and Future Perspective -- References -- 3: Innovative Technologies Adopted for the Production of Bioplastics at Industrial Level -- 3.1 Introduction -- 3.2 Definition of Biopolymers and Bioplastics -- 3.3 Recent Developments in the Bioplastic Industry -- 3.4 PHA Production -- 3.5 Manufacturing Methods of Bioplastics -- 3.6 Traditional Technologies for the Manufacturing of Bioplastics -- 3.6.1 Injection Molding -- 3.6.2 Compression Molding -- 3.7 Innovative Technologies for the Production of PHA -- 3.7.1 Waste Utilization/Valorization -- 3.7.2 Engineered Microorganism and PHAome -- 3.7.3 Recycling and Symbiotic Technologies -- 3.8 Conclusions -- References -- 4: Processing of Commercially Available Bioplastics -- 4.1 Introduction -- 4.2 Processing of Commercial Bioplastics -- 4.2.1 Injection Molding Technology -- 4.2.2 Extrusion Technology -- 4.2.3 Thermoforming Technology -- 4.2.4 3D Printing Technology -- 4.2.5 Electrospinning Process -- 4.2.6 Casting Method -- 4.2.7 Coating Method -- 4.3 Recyclability of Bioplastics.
4.4 Conclusion -- References -- 5: Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications -- 5.1 Introduction -- 5.2 Protein Sources -- 5.2.1 Plant Proteins -- 5.2.1.1 Soy Protein -- 5.2.1.2 Wheat Protein -- 5.2.1.3 Corn Protein -- 5.2.1.4 Animal Proteins -- Keratin -- Milk Proteins -- Egg Albumin -- Blood -- Collagen and Gelatine -- 5.2.2 Processing of Protein-Based Bioplastics -- 5.2.2.1 Wet Techniques -- Casting -- Electrospinning -- 5.2.2.2 Dry Techniques -- Compression Moulding -- Injection Moulding -- Extrusion -- 3D Printing -- 5.2.3 Characterisation of Protein-Based Bioplastics -- 5.2.3.1 Mechanical Properties -- Rheological Tests -- Dynamic Mechanical Analysis (DMA) -- Continuous Deformation Tests -- Tensile Strength Tests -- 5.2.3.2 Thermal Properties -- DSC -- TGA -- DMTA -- 5.2.3.3 Morphological Properties -- 5.2.3.4 Optical Properties -- 5.2.3.5 Other Features Required for Protein-Based Bioplastics -- 5.2.4 Applications and Trends -- 5.2.4.1 Current Applications -- 5.2.4.2 Future Trends -- References -- 6: Conversion of Agro-industrial Wastes for the Manufacture of Bio-based Plastics -- 6.1 Introduction -- 6.2 Pre-treatment of Lignocellulose -- 6.2.1 Physical Pre-treatment -- 6.2.1.1 Types -- 6.2.1.2 Conversion of Physically Pre-treated Agro-wastes to PHA -- 6.2.2 Chemical and Physico-chemical Pre-treatment -- 6.2.2.1 Types of Chemical and Physico-chemical Pre-treatments -- 6.2.2.2 Conversion of Chemically Pre-treated Agro-wastes to PHA -- 6.2.3 Biological Pre-treatment -- 6.2.3.1 Types of Biological Pre-treatment -- 6.2.3.2 Conversion of Biologically Pre-treated Agro-wastes to PHA -- 6.2.4 Genetic Adjustment -- 6.2.4.1 Strategies for Genetic Adjustment of Lignin -- 6.2.4.2 Targets for Genetic Adjustment -- 6.3 Direct Conversion of Lignocellulosic Agro-waste to PHA -- 6.4 Conclusion -- References.
7: Fruit Waste as Sustainable Resources for Polyhydroxyalkanoate (PHA) Production -- 7.1 Introduction -- 7.2 Bioplastics -- 7.3 Polyhydroxyalkanoates (PHAs) -- 7.3.1 Chemical Structure of PHA -- 7.3.2 Enzymatic Synthesis of PHA -- 7.3.3 Biosynthetic Pathways for PHA Production -- 7.3.3.1 PHA Biosynthetic Pathway I -- 7.3.3.2 PHA Biosynthetic Pathway II -- 7.3.3.3 PHA Biosynthetic Pathway III -- 7.3.3.4 PHA Biosynthetic Pathway IV -- 7.3.4 Properties of PHAs -- 7.3.4.1 Physical Properties -- 7.3.4.2 Chemical Properties -- 7.3.4.3 Mechanical Properties -- 7.3.4.4 Biological Properties -- 7.3.5 Applications of PHA -- 7.3.5.1 Applications of PHA in the Medical and Pharmaceutical Fields -- 7.3.5.2 Industrial Applications -- 7.3.5.3 Agricultural Applications -- 7.3.5.4 Other Applications -- 7.4 Fermentative Strategies for PHA Production from Fruit Waste -- 7.5 Extraction of PHA -- 7.5.1 Solvent Extraction -- 7.5.2 Extraction by Digestion -- 7.5.2.1 Chemical Digestion -- 7.5.2.2 Enzymatic Digestion -- 7.5.2.3 Mechanical Disruptions -- 7.5.2.4 Other Digestion/Disruption Techniques -- 7.6 Characterization Methods -- 7.6.1 Crotonic Acid Method -- 7.6.2 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.6.3 Nuclear Magnetic Resonance (NMR) Analysis -- 7.6.4 Gas Chromatography-Mass Spectrometry (GC-MS) Analysis -- 7.6.5 X-Ray Diffraction (XRD) Analysis -- 7.6.6 Differential Scanning Calorimetry (DSC) Analysis -- 7.6.7 Thermogravimetric Analysis (TGA) -- 7.7 Challenges in Commercialization and Future Prospects -- 7.8 Conclusion -- References -- 8: Bio-plastic Polyhydroxyalkanoate (PHA): Applications in Modern Medicine -- 8.1 Introduction -- 8.2 Synthesis of PHA -- 8.3 Types of PHA -- 8.4 Properties of PHA -- 8.4.1 Biodegradability and Biocompatibility -- 8.5 Applications in Tissue Engineering and Regenerative Medicine -- 8.5.1 Orthopedic -- 8.5.2 Cardiovascular.
8.5.3 Nerve -- 8.5.4 Drug Delivery -- 8.5.5 Wound Management -- 8.5.6 Medical Devices -- 8.5.7 Industrial -- 8.6 Future Prospect -- 8.7 Conclusion -- References -- 9: Bacterial Production of Poly-beta-hydroxybutyrate (PHB): Converting Starch into Bioplastics -- 9.1 Introduction -- 9.2 Overview of Starch as a Substrate for PHB Production -- 9.3 Poly-beta-hydroxybutyrate (PHB)-Producing Microbes -- 9.4 PHB Detection -- 9.5 Downstream Processing of PHB (Recovery and Purification) -- 9.6 Metabolism of Poly-beta-hydroxybutyrate (PHB) -- 9.6.1 Synthesis of PHB -- 9.6.2 Degradation of PHB -- 9.7 Fermentation Process -- 9.8 Characteristics of PHB -- 9.9 Applications of Bioplastic PHB -- References -- 10: Halophilic Microorganisms as Potential Producers of Polyhydroxyalkanoates -- 10.1 Introduction -- 10.2 Halophilic Microorganisms -- 10.2.1 Habitat and Physiological Adaptation of Halophiles -- 10.2.2 Diversity of Halophiles Accumulating PHA -- 10.3 PHA Production by Halophilic Microorganisms -- 10.3.1 PHA Production by Halophilic Bacteria -- 10.3.2 PHA Production by Archaea -- 10.4 Fermentation Strategy for PHA Production: A Case Study of Halomonas sp. -- 10.4.1 Optimization of Growth Medium -- 10.4.2 Bioreactor-Scale Operation -- 10.4.3 Downstream Processes for Effective PHA Recovery -- 10.4.4 Metabolic Engineering of Halophiles for PHA Production -- 10.5 Applications of PHA -- 10.6 Conclusion -- References -- 11: Aliphatic Biopolymers as a Sustainable Green Alternative to Traditional Petrochemical-Based Plastics -- 11.1 Introduction -- 11.2 Polyhydroxyalkanoates -- 11.2.1 Chemical Nature of PHA -- 11.2.2 Biosynthesis of PHA -- 11.2.3 Applications -- 11.3 Polylactides -- 11.3.1 Chemical Nature -- 11.3.2 Physical Nature -- 11.3.3 Synthesis of Polylactides -- 11.3.4 Applications -- 11.4 Copolymerization of Polyhydroxyalkanoate and Polylactide Copolymers.
11.5 Biodegradation of PHA, PLA, and PHA-PLA Copolymers.
Record Nr. UNINA-9910485606003321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The chemistry of bio-based polymers / / Johannes Karl Fink
The chemistry of bio-based polymers / / Johannes Karl Fink
Autore Fink Johannes Karl
Edizione [Second edition.]
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Descrizione fisica 1 online resource (587 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Biopolymers
ISBN 1-119-68126-X
1-5231-3333-3
1-119-68137-5
1-119-68129-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555199703321
Fink Johannes Karl  
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The chemistry of bio-based polymers / / Johannes Karl Fink
The chemistry of bio-based polymers / / Johannes Karl Fink
Autore Fink Johannes Karl
Edizione [Second edition.]
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Descrizione fisica 1 online resource (587 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Biopolymers
ISBN 1-119-68126-X
1-5231-3333-3
1-119-68137-5
1-119-68129-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910825778503321
Fink Johannes Karl  
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Development of high performance engineering composites from biomass ... annual report
Development of high performance engineering composites from biomass ... annual report
Pubbl/distr/stampa [Washington, D.C.], : U.S. Dept. of Agriculture, Agricultural Research Service
Descrizione fisica : HTML files
Disciplina 620.192323
Soggetto topico Plant biomass
Biodegradable plastics
Plant biotechnology
Composite materials
Soggetto genere / forma Annual reports.
Periodicals.
ISSN 2378-2390
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910703113303321
[Washington, D.C.], : U.S. Dept. of Agriculture, Agricultural Research Service
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Bioplastics and Biocomposites Engineering Applications
Handbook of Bioplastics and Biocomposites Engineering Applications
Autore Inamuddin
Edizione [2nd ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (683 pages)
Disciplina 620.192323
Altri autori (Persone) AltalhiTariq A
Soggetto genere / forma Electronic books.
ISBN 1-119-16014-6
1-119-16018-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Bioplastics, Synthesis and Process Technology -- Chapter 1 An Introduction to Engineering Applications of Bioplastics -- 1.1 Introduction -- 1.2 Classification of Bioplastics -- 1.3 Physical Properties -- 1.3.1 Rheological Properties -- 1.3.2 Optical Properties -- 1.3.3 Mechanical and Thermal Properties -- 1.3.4 Electrical Properties -- 1.4 Applications of Bioplastics in Engineering -- 1.4.1 Bioplastics Applications in Sensors -- 1.4.2 Bioplastics Applications in Energy Sector -- 1.4.3 Bioplastics Applications in Bioengineering -- 1.4.4 Bioplastics Applications in "Green" Electronics -- 1.5 Conclusions -- Acknowledgement -- Dedication -- References -- Chapter 2 Biobased Materials: Types and Sources -- 2.1 Introduction -- 2.2 Biodegradable Biobased Material -- 2.2.1 Polysaccharides -- 2.2.2 Starch -- 2.2.3 Polylactic Acid -- 2.2.4 Cellulose -- 2.2.5 Esters -- 2.2.6 Ether -- 2.2.7 Chitosan -- 2.2.8 Alginate -- 2.2.9 Proteins -- 2.2.10 Gluten -- 2.2.11 Gelatine -- 2.2.12 Casein -- 2.2.13 Lipid -- 2.2.14 Polyhydroxyalkanoates (PHA) -- 2.3 Nonbiodegradable Biobased Material -- 2.3.1 Polyethylene (PE) -- 2.3.2 Polyethylene Terephthalate (PET) -- 2.3.3 Polyamide (PA) -- 2.4 Conclusion -- Acknowledgment -- References -- Chapter 3 Bioplastic From Renewable Biomass -- 3.1 Introduction -- 3.2 Plastics and Bioplastics -- 3.2.1 Plastics -- 3.2.2 Bioplastics -- 3.3 Classification of Bioplastics -- 3.4 Bioplastic Production -- 3.4.1 Biowaste to Bioplastic -- 3.4.1.1 Lipid Rich Waste -- 3.4.2 Milk Industry Waste -- 3.4.3 Sugar Industry Waste -- 3.4.4 Spent Coffee Beans Waste -- 3.4.5 Bioplastic Agro-Forestry Residue -- 3.4.6 Bioplastic from Microorganism -- 3.4.7 Biomass-Based Polymers -- 3.4.7.1 Biomass-Based Monomers for Polymerization Process -- 3.5 Characterization of Bioplastics.
3.6 Applications of Bioplastics -- 3.6.1 Food Packaging -- 3.6.2 Agricultural Applications -- 3.6.3 Biomedical Applications -- 3.7 Bioplastic Waste Management Strategies -- 3.7.1 Recycling of Poly(Lactic Acid ) (PLA) -- 3.7.1.1 Mechanical Recycling of PLA -- 3.7.1.2 Chemical Recycling of PLA -- 3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) -- 3.7.3 Landfill -- 3.7.4 Incineration -- 3.7.5 Composting -- 3.7.6 Anaerobic Digestion -- 3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) -- 3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) -- 3.8 Conclusions and Future Prospects -- References -- Chapter 4 Modeling of Natural Fiber-Based Biocomposites -- 4.1 Introduction -- 4.2 Generality of Biocomposites -- 4.2.1 Natural Matrix -- 4.2.2 Natural Reinforcement -- 4.2.3 Natural Fiber Classification -- 4.2.4 Biocomposites Processing -- 4.2.4.1 Extrusion and Injection -- 4.2.4.2 Compression Molding -- 4.2.5 RTM-Resin Transfer Molding -- 4.2.6 Hand Lay-Up Technique -- 4.3 Parameters Affecting the Biocomposites Properties -- 4.3.1 Fiber's Aspect Ratio -- 4.3.2 Fiber/Matrix Interfacial Adhesion -- 4.3.3 Fibers Orientation and Dispersion -- 4.3.3.1 Short Fibers Orientation -- 4.3.3.2 Fiber's Orientation in Simple Shear Flow -- 4.3.3.3 Fiber's Orientation in Elongational Flow -- 4.4 Process Molding of Biocomposites -- 4.4.1 Unidirectional Fibers -- 4.4.1.1 Classical Laminate Theory -- 4.4.1.2 Rule of Mixture -- 4.4.1.3 Halpin-Tsai Model -- 4.4.1.4 Hui-Shia Model -- 4.4.2 Random Fibers -- 4.4.2.1 Hirsch Model -- 4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) -- 4.4.2.3 Tsai-Pagano Model -- 4.5 Conclusion -- References -- Chapter 5 Process Modeling in Biocomposites -- 5.1 Introduction -- 5.2 Biopolymer Composites -- 5.2.1 Natural Fiber-Based Biopolymer Composites -- 5.2.2 Applications of Biopolymer Composites -- 5.2.3 Properties of Biopolymer Composites.
5.3 Classification of Biocomposites -- 5.3.1 PLA Biocomposites -- 5.3.2 Nanobiocomposites -- 5.3.3 Hybrid Biocomposites -- 5.3.4 Natural Fiber-Based Composites -- 5.4 Process Modeling of Biocomposite Models -- 5.4.1 Compression Moulding -- 5.4.2 Injection Moulding -- 5.4.3 Extrusion Method -- 5.5 Formulation of Models -- 5.5.1 Types of Model -- 5.6 Conclusion -- References -- Chapter 6 Microbial Technology in Bioplastic Production and Engineering -- 6.1 Introduction -- 6.2 Fundamental Principles of Microbial Bioplastic Production -- 6.3 Bioplastics Obtained Directly from Microorganisms -- 6.3.1 PHA -- 6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA) -- 6.4 Bioplastics from Microbial Monomers -- 6.4.1 Bioplastics from Aliphatic Monomers -- 6.4.1.1 PLA -- 6.4.1.2 Poly (Butylene Succinate) -- 6.4.1.3 Biopolyamides (Nylons) -- 6.4.1.4 1, 3-Propanediol (PDO) -- 6.4.2 Bioplastics from Aromatic Monomers -- 6.5 Lignocellulosic Biomass for Bioplastic Production -- 6.6 Conclusion -- References -- Chapter 7 Synthesis of Green Bioplastics -- 7.1 Introduction -- 7.2 Bioplastic -- 7.2.1 Polyhydroxyalkanoates (PHAs) -- 7.2.2 Poly(lactic acid) (PLA) -- 7.2.3 Cellulose -- 7.2.4 Starch -- 7.3 Renewable Raw Material to Produce Bioplastic -- 7.3.1 Raw Material from Agriculture -- 7.3.2 Organic Waste as Resources for Bioplastic Production -- 7.3.3 Algae as Resources for Bioplastic Production -- 7.3.4 Wastewater as Resources for Bioplastic Production -- 7.4 Bioplastics Applications -- 7.4.1 Food Industry -- 7.4.2 Agricultural Applications -- 7.4.3 Medical Applications -- 7.4.4 Other Applications -- 7.5 Conclusions -- References -- Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Entropy Methodology -- 8.2.2 Copras Methodology -- 8.3 Conclusions -- References.
Part II: Applications of Bioplastics in Health and Hygiene -- Chapter 9 Biomedical Applications of Bioplastics -- 9.1 Introduction -- 9.2 Synthesis of Bioplastics -- 9.2.1 Starch-Based Bioplastics -- 9.2.2 Cellulose-Based Bioplastics -- 9.2.3 Chitin and Chitosan -- 9.2.4 Polyhydroxyalkanoates (PHA) -- 9.2.5 Polylactic Acid (PLA) -- 9.2.6 Bioplastics from Microalgae -- 9.3 Properties of Bioplastics -- 9.3.1 Material Strength -- 9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic -- 9.4 Biological Properties of Bioplastics -- 9.5 Biomedical Applications of Bioplastics -- 9.5.1 Antimicrobial Property -- 9.5.2 Biocontrol Agents -- 9.5.3 Pharmaceutical Applications of Bioplastics -- 9.5.4 Implantation -- 9.5.5 Tissue Engineering Applications -- 9.5.6 Memory Enhancer -- 9.6 Limitations -- 9.7 Conclusion -- References -- Chapter 10 Applications of Bioplastics in Hygiene Cosmetic -- 10.1 Introduction -- 10.2 The Need to Find an Alternative to Plastic -- 10.3 Bioplastics -- 10.3.1 Characteristic of Bioplastics -- 10.3.2 Types (Classification) -- 10.3.3 Uses of Bioplastics -- 10.4 Resources of Bioplastic -- 10.4.1 Polysaccharides -- 10.4.2 Starch or Amylum -- 10.4.3 Cellulose -- 10.4.3.1 Source of Cellulose -- 10.5 Use of Biodegradable Materials in Packaging -- 10.6 Bionanocomposite -- 10.7 Hygiene Cosmetic Packaging -- 10.8 Conclusion -- References -- Chapter 11 Biodegradable Polymers in Drug Delivery -- 11.1 Introduction -- 11.2 Biodegradable Polymer (BP) -- 11.2.1 Natural -- 11.2.1.1 Polysaccharides -- 11.2.1.2 Proteins -- 11.2.2 Synthetic -- 11.2.2.1 Polyesters -- 11.2.2.2 Polyanhydrides -- 11.2.2.3 Polycarbonates -- 11.2.2.4 Polyphosphazenes -- 11.2.2.5 Polyurethanes -- 11.3 Device Types -- 11.3.1 Three-Dimensional Printing Devices -- 11.3.1.1 Implants -- 11.3.1.2 Tablets -- 11.3.1.3 Microneedles -- 11.3.1.4 Nanofibers -- 11.3.2 Nanocarriers.
11.3.2.1 Nanoparticles -- 11.3.2.2 Dendrimers -- 11.3.2.3 Hydrogels -- 11.4 Applications -- 11.4.1 Intravenous -- 11.4.2 Transdermal -- 11.4.3 Oral -- 11.4.4 Ocular -- 11.5 Existing Materials in the Market -- 11.6 Conclusions and Future Projections -- References -- Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications -- 12.1 Introduction -- 12.2 Types of Bioplastics -- 12.2.1 Poly(3-hydroxybutyrate) (PHB) -- 12.2.2 Polyhydroxyalkanoate -- 12.2.3 Poly-Lactic Acid -- 12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) -- 12.2.5 Poly (.-caprolactone) (PCL) -- 12.3 Properties of Bioplastics -- 12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics -- 12.3.1.1 Polylactic Acid -- 12.3.1.2 Poly Lactic-co-Glycolic Acid -- 12.3.1.3 Polycaprolactone -- 12.3.1.4 Polyhydroxyalkanoates -- 12.3.1.5 Polyethylene Glycol (PEG) -- 12.4 Applications -- 12.4.1 Tissue Engineering -- 12.4.2 Drug Delivery System -- 12.4.3 Implants and Prostheses -- 12.5 Conclusion -- References -- Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose -- 13.1 Introduction -- 13.2 Importance of Cellulose in the Field of Biocomposite -- 13.3 Classification of Cellulose -- 13.4 Synthesis of Cellulose in Different Form -- 13.4.1 Mechanical Extraction -- 13.4.2 Electrochemical Method -- 13.4.3 Chemical Extraction -- 13.4.4 Enzymatic Hydrolysis -- 13.4.5 Bacterial Production of Cellulose -- 13.5 Formation of Biocomposite Using Different Form of Cellulose -- 13.6 Biocomposites Derived from Cellulose and Their Application -- 13.6.1 Tissue Engineering -- 13.6.2 Wound Dressing -- 13.6.3 Drug Delivery -- 13.6.4 Dental Applications -- 13.6.5 Other Applications -- 13.7 Conclusion -- References -- Chapter 14 Biobased Materials for Biomedical Engineering -- 14.1 Introduction -- 14.2 Biomaterials.
14.3 Biobased Materials for Implants and Tissue Engineering.
Record Nr. UNINA-9910632495603321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui