Advanced Strategies for Biodegradation of Plastic Polymers / / edited by Ravindra Soni, Prasenjit Debbarma, Deep Chandra Suyal, Reeta Goel |
Autore | Soni Ravindra |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (417 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Environmental management
Pollution Sustainability Biology Refuse and refuse disposal Environmental Management Biological Sciences Waste Management/Waste Technology |
ISBN | 3-031-55661-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910847593503321 |
Soni Ravindra | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Polyhydroxyalkanoate (PHA) Production / / Martin Koller, editor |
Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017] |
Descrizione fisica | 1 online resource (258 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Poly-beta-hydroxyalkanoates |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Special Issue Editor v -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" vii Martin Koller -- Advances in Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 1 -- Constantina Kourmentza, Jersson Plácido, Nikolaos Venetsaneas, Anna Burniol‐Figols, -- Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 8 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and André Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low‐Cost Substrates -- Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 51 Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra -- Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry -- Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 64 Bhakti B. Salgaonkar and Judith M. Bragança -- Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) -- Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 75 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 93 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki -- Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant -- Strain of Pseudomonas sp. 61‐3 -- Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 102 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecień, Magdalena Zięba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka -- The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene -- Using Non‐Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production -- Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 112 -- Stephanie Karmann, Sven Panke and Manfred Zinn -- The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation -- Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 126 -- Liliana Montano‐Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt -- The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents -- Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020. 138 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and André Oliveira de Souza Lima -- Molecular Diagnostic for Prospecting Polyhydroxyalkanoate‐Producing Bacteria -- Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 155 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg -- Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years'-- Working Experience Running a Pilot Plant -- Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 165-- Timo Pittmann and Heidrun Steinmetz -- Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste -- Water Treatment Plants -- Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 184 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, -- Federica Chiellini and Gerhart Braunegg -- Fed‐Batch Synthesis of Poly(3‐Hydroxybutyrate) and Poly(3‐Hydroxybutyrate‐co‐4‐Hydroxybutyrate) from Sucrose and 4‐Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 -- Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 208 -- Dario Puppi, Andrea Morelli and Federica Chiellini -- Additive Manufacturing of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(ε‐caprolactone) -- Blend Scaffolds for Tissue Engineering -- Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049 227. |
Altri titoli varianti | Advances in Polyhydroxyalkanoate |
Record Nr. | UNINA-9910598003903321 |
[Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Polyhydroxyalkanoate (PHA) production / / edited by Martin Koller |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2017 |
Descrizione fisica | 1 online resource (258 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Poly-beta-hydroxyalkanoates |
ISBN | 3-03842-636-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Special Issue Editor -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" -- Martin Koller Advances in Polyhydroxyalkanoate (PHA) Production Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 -- Constantina Kourmentza, Jersson Placido, Nikolaos Venetsaneas, Anna Burniol-Figols, Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and Andre Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 -- Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 -- Bhakti B. Salgaonkar and Judith M. Braganc¸a Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3 Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecien, Magdalena Zie?ba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 -- Stephanie Karmann, Sven Panke and Manfred Zinn The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 -- Liliana Montano-Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and Andre Oliveira de Souza Lima Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 -- Timo Pittmann and Heidrun Steinmetz Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, Federica Chiellini and Gerhart Braunegg Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 -- Dario Puppi, Andrea Morelli and Federica Chiellini Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(e-caprolactone) Blend Scaffolds for Tissue Engineering Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049. |
Altri titoli varianti | Advances in Polyhydroxyalkanoate |
Record Nr. | UNINA-9910688468303321 |
Basel, Switzerland : , : MDPI, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodegradable Metals / / E. Aghion |
Autore | Aghion E. |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2018 |
Descrizione fisica | 1 online resource (242 pages) |
Disciplina | 620.192323 |
Soggetto topico | Biodegradable plastics |
ISBN | 3-03897-387-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910688444203321 |
Aghion E. | ||
Basel, Switzerland : , : MDPI, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
Descrizione fisica | 1 online resource (491 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Polymers - Biodegradation Plastics - Environmental aspects |
ISBN |
9783527827565
9783527347612 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910573098403321 |
Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodegradable polymers in the circular plastics economy / / edited by Michiel Dusselier and Jean-Paul Lange |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
Descrizione fisica | 1 online resource (491 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Polymers - Biodegradation Plastics - Environmental aspects |
ISBN |
3-527-82756-0
3-527-82758-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910686750903321 |
Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioplastics for sustainable development / / Mohammed Kuddus, Roohi, editors |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource : ǂb illustrations |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Plàstics biodegradables Desenvolupament sostenible |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-1823-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1: Microbial Production of Bioplastics: Current Trends and Future Perspectives -- 1.1 Introduction -- 1.2 Biosynthesis of Microbial Bioplastics -- 1.2.1 In Vitro Synthesis of Microbial Bioplastic Granules -- 1.2.2 In Vivo Synthesis of Microbial Bioplastic Granules -- 1.2.3 Morphology of Microbial Bioplastic Granule -- 1.3 Mechanism and Enzymes Involved in the Synthesis of Microbial Bioplastic -- 1.4 Chemical Structure and Classification of Microbial Plastic -- 1.5 Microorganisms Producing PHA and Its Co-polymers -- 1.6 Major Drawbacks of Microbial Bioplastic Production -- 1.7 Sustainable and Cost-Free Substrates for Microbial Bioplastic Production -- 1.7.1 Dairy Wastes Used for PHA Production -- 1.7.2 Agro-Industrial Wastes Used for PHA Production -- 1.7.3 Lignocellulosic Wastes Used for PHA Production -- 1.7.4 Waste from Frying Oils and Animal Fats for PHA Production -- 1.7.5 Plastics Wastes for PHA Production -- 1.8 Cost-Effective Microbial Bioplastic Production Involving Extremophiles -- 1.9 Innovative Research on Microbial Bioplastics -- 1.9.1 PHA Nanocomposites -- 1.9.2 PHA-Polymer Hybrids -- 1.9.3 PHA Nanoparticles -- 1.10 Applications of Advanced Microbial Bioplastics -- 1.10.1 PHA Nanocomposites for Scaffolds, Tissue Engineering, and Nanocoatings -- 1.10.2 PHA Nanocarriers for Cancer Therapy and Drug Delivery -- 1.10.3 PHA Nanocomposites as Smart and Active Packaging Material -- 1.11 Conclusion and Future Perspectives -- References -- 2: General Structure and Classification of Bioplastics and Biodegradable Plastics -- 2.1 Introduction -- 2.2 Types of Bioplastics -- 2.3 Sources of Bioplastic -- 2.3.1 Plants as a Source of Bioplastics -- 2.3.2 Bacteria as a Source of Bioplastic -- 2.3.3 Algal Sources -- 2.4 Classification of Bioplastics -- 2.4.1 Bioplastic from Biomass Products.
2.4.1.1 Bioplastic-Based on Polysaccharide -- 2.4.1.2 Bioplastic Obtained from Starch -- Bioplastic from the Modified Form of Starch -- 2.4.1.3 Bioplastic Obtained from Cellulose -- 2.4.1.4 Bioplastic Obtained from Pectin -- 2.4.1.5 Bioplastic Obtained from Chitin and Chitosan -- 2.4.2 Bioplastic Obtained from Proteins -- 2.4.2.1 Bioplastic from Wheat Gluten Protein -- 2.4.2.2 Bioplastic from Cottonseed Protein -- 2.5 Bioplastics from Microorganisms -- 2.5.1 Polyhydroxyalkanoate (PHA) -- 2.5.2 Polyhydroxybutyrate (PHB) -- 2.6 Bioplastics Obtained from Biotechnological Inventions -- 2.6.1 Polylactic Acid (PLA) -- 2.6.2 Polyethylene -- 2.7 Bioplastics Obtained Chemically -- 2.7.1 Polycaprolactones -- 2.7.2 Polyamides -- 2.7.2.1 Polyamide (PA11) -- 2.8 Role of Petrochemical Products in the Synthesis of Bioplastics -- 2.9 Conclusion and Future Perspective -- References -- 3: Innovative Technologies Adopted for the Production of Bioplastics at Industrial Level -- 3.1 Introduction -- 3.2 Definition of Biopolymers and Bioplastics -- 3.3 Recent Developments in the Bioplastic Industry -- 3.4 PHA Production -- 3.5 Manufacturing Methods of Bioplastics -- 3.6 Traditional Technologies for the Manufacturing of Bioplastics -- 3.6.1 Injection Molding -- 3.6.2 Compression Molding -- 3.7 Innovative Technologies for the Production of PHA -- 3.7.1 Waste Utilization/Valorization -- 3.7.2 Engineered Microorganism and PHAome -- 3.7.3 Recycling and Symbiotic Technologies -- 3.8 Conclusions -- References -- 4: Processing of Commercially Available Bioplastics -- 4.1 Introduction -- 4.2 Processing of Commercial Bioplastics -- 4.2.1 Injection Molding Technology -- 4.2.2 Extrusion Technology -- 4.2.3 Thermoforming Technology -- 4.2.4 3D Printing Technology -- 4.2.5 Electrospinning Process -- 4.2.6 Casting Method -- 4.2.7 Coating Method -- 4.3 Recyclability of Bioplastics. 4.4 Conclusion -- References -- 5: Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications -- 5.1 Introduction -- 5.2 Protein Sources -- 5.2.1 Plant Proteins -- 5.2.1.1 Soy Protein -- 5.2.1.2 Wheat Protein -- 5.2.1.3 Corn Protein -- 5.2.1.4 Animal Proteins -- Keratin -- Milk Proteins -- Egg Albumin -- Blood -- Collagen and Gelatine -- 5.2.2 Processing of Protein-Based Bioplastics -- 5.2.2.1 Wet Techniques -- Casting -- Electrospinning -- 5.2.2.2 Dry Techniques -- Compression Moulding -- Injection Moulding -- Extrusion -- 3D Printing -- 5.2.3 Characterisation of Protein-Based Bioplastics -- 5.2.3.1 Mechanical Properties -- Rheological Tests -- Dynamic Mechanical Analysis (DMA) -- Continuous Deformation Tests -- Tensile Strength Tests -- 5.2.3.2 Thermal Properties -- DSC -- TGA -- DMTA -- 5.2.3.3 Morphological Properties -- 5.2.3.4 Optical Properties -- 5.2.3.5 Other Features Required for Protein-Based Bioplastics -- 5.2.4 Applications and Trends -- 5.2.4.1 Current Applications -- 5.2.4.2 Future Trends -- References -- 6: Conversion of Agro-industrial Wastes for the Manufacture of Bio-based Plastics -- 6.1 Introduction -- 6.2 Pre-treatment of Lignocellulose -- 6.2.1 Physical Pre-treatment -- 6.2.1.1 Types -- 6.2.1.2 Conversion of Physically Pre-treated Agro-wastes to PHA -- 6.2.2 Chemical and Physico-chemical Pre-treatment -- 6.2.2.1 Types of Chemical and Physico-chemical Pre-treatments -- 6.2.2.2 Conversion of Chemically Pre-treated Agro-wastes to PHA -- 6.2.3 Biological Pre-treatment -- 6.2.3.1 Types of Biological Pre-treatment -- 6.2.3.2 Conversion of Biologically Pre-treated Agro-wastes to PHA -- 6.2.4 Genetic Adjustment -- 6.2.4.1 Strategies for Genetic Adjustment of Lignin -- 6.2.4.2 Targets for Genetic Adjustment -- 6.3 Direct Conversion of Lignocellulosic Agro-waste to PHA -- 6.4 Conclusion -- References. 7: Fruit Waste as Sustainable Resources for Polyhydroxyalkanoate (PHA) Production -- 7.1 Introduction -- 7.2 Bioplastics -- 7.3 Polyhydroxyalkanoates (PHAs) -- 7.3.1 Chemical Structure of PHA -- 7.3.2 Enzymatic Synthesis of PHA -- 7.3.3 Biosynthetic Pathways for PHA Production -- 7.3.3.1 PHA Biosynthetic Pathway I -- 7.3.3.2 PHA Biosynthetic Pathway II -- 7.3.3.3 PHA Biosynthetic Pathway III -- 7.3.3.4 PHA Biosynthetic Pathway IV -- 7.3.4 Properties of PHAs -- 7.3.4.1 Physical Properties -- 7.3.4.2 Chemical Properties -- 7.3.4.3 Mechanical Properties -- 7.3.4.4 Biological Properties -- 7.3.5 Applications of PHA -- 7.3.5.1 Applications of PHA in the Medical and Pharmaceutical Fields -- 7.3.5.2 Industrial Applications -- 7.3.5.3 Agricultural Applications -- 7.3.5.4 Other Applications -- 7.4 Fermentative Strategies for PHA Production from Fruit Waste -- 7.5 Extraction of PHA -- 7.5.1 Solvent Extraction -- 7.5.2 Extraction by Digestion -- 7.5.2.1 Chemical Digestion -- 7.5.2.2 Enzymatic Digestion -- 7.5.2.3 Mechanical Disruptions -- 7.5.2.4 Other Digestion/Disruption Techniques -- 7.6 Characterization Methods -- 7.6.1 Crotonic Acid Method -- 7.6.2 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.6.3 Nuclear Magnetic Resonance (NMR) Analysis -- 7.6.4 Gas Chromatography-Mass Spectrometry (GC-MS) Analysis -- 7.6.5 X-Ray Diffraction (XRD) Analysis -- 7.6.6 Differential Scanning Calorimetry (DSC) Analysis -- 7.6.7 Thermogravimetric Analysis (TGA) -- 7.7 Challenges in Commercialization and Future Prospects -- 7.8 Conclusion -- References -- 8: Bio-plastic Polyhydroxyalkanoate (PHA): Applications in Modern Medicine -- 8.1 Introduction -- 8.2 Synthesis of PHA -- 8.3 Types of PHA -- 8.4 Properties of PHA -- 8.4.1 Biodegradability and Biocompatibility -- 8.5 Applications in Tissue Engineering and Regenerative Medicine -- 8.5.1 Orthopedic -- 8.5.2 Cardiovascular. 8.5.3 Nerve -- 8.5.4 Drug Delivery -- 8.5.5 Wound Management -- 8.5.6 Medical Devices -- 8.5.7 Industrial -- 8.6 Future Prospect -- 8.7 Conclusion -- References -- 9: Bacterial Production of Poly-beta-hydroxybutyrate (PHB): Converting Starch into Bioplastics -- 9.1 Introduction -- 9.2 Overview of Starch as a Substrate for PHB Production -- 9.3 Poly-beta-hydroxybutyrate (PHB)-Producing Microbes -- 9.4 PHB Detection -- 9.5 Downstream Processing of PHB (Recovery and Purification) -- 9.6 Metabolism of Poly-beta-hydroxybutyrate (PHB) -- 9.6.1 Synthesis of PHB -- 9.6.2 Degradation of PHB -- 9.7 Fermentation Process -- 9.8 Characteristics of PHB -- 9.9 Applications of Bioplastic PHB -- References -- 10: Halophilic Microorganisms as Potential Producers of Polyhydroxyalkanoates -- 10.1 Introduction -- 10.2 Halophilic Microorganisms -- 10.2.1 Habitat and Physiological Adaptation of Halophiles -- 10.2.2 Diversity of Halophiles Accumulating PHA -- 10.3 PHA Production by Halophilic Microorganisms -- 10.3.1 PHA Production by Halophilic Bacteria -- 10.3.2 PHA Production by Archaea -- 10.4 Fermentation Strategy for PHA Production: A Case Study of Halomonas sp. -- 10.4.1 Optimization of Growth Medium -- 10.4.2 Bioreactor-Scale Operation -- 10.4.3 Downstream Processes for Effective PHA Recovery -- 10.4.4 Metabolic Engineering of Halophiles for PHA Production -- 10.5 Applications of PHA -- 10.6 Conclusion -- References -- 11: Aliphatic Biopolymers as a Sustainable Green Alternative to Traditional Petrochemical-Based Plastics -- 11.1 Introduction -- 11.2 Polyhydroxyalkanoates -- 11.2.1 Chemical Nature of PHA -- 11.2.2 Biosynthesis of PHA -- 11.2.3 Applications -- 11.3 Polylactides -- 11.3.1 Chemical Nature -- 11.3.2 Physical Nature -- 11.3.3 Synthesis of Polylactides -- 11.3.4 Applications -- 11.4 Copolymerization of Polyhydroxyalkanoate and Polylactide Copolymers. 11.5 Biodegradation of PHA, PLA, and PHA-PLA Copolymers. |
Record Nr. | UNINA-9910485606003321 |
Gateway East, Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The chemistry of bio-based polymers / / Johannes Karl Fink |
Autore | Fink Johannes Karl |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (587 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Biopolymers |
ISBN |
1-119-68126-X
1-5231-3333-3 1-119-68137-5 1-119-68129-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555199703321 |
Fink Johannes Karl | ||
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The chemistry of bio-based polymers / / Johannes Karl Fink |
Autore | Fink Johannes Karl |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (587 pages) |
Disciplina | 620.192323 |
Soggetto topico |
Biodegradable plastics
Biopolymers |
ISBN |
1-119-68126-X
1-5231-3333-3 1-119-68137-5 1-119-68129-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910825778503321 |
Fink Johannes Karl | ||
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Development of high performance engineering composites from biomass ... annual report |
Pubbl/distr/stampa | [Washington, D.C.], : U.S. Dept. of Agriculture, Agricultural Research Service |
Descrizione fisica | : HTML files |
Disciplina | 620.192323 |
Soggetto topico |
Plant biomass
Biodegradable plastics Plant biotechnology Composite materials Biomasse végétale Matières plastiques biodégradables Plantes - Biotechnologie Composites |
Soggetto genere / forma |
Annual reports.
Periodicals. |
ISSN | 2378-2390 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910703113303321 |
[Washington, D.C.], : U.S. Dept. of Agriculture, Agricultural Research Service | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|