2021 international conference on development and application of carbon nanomaterials in energetic materials / / Alon Gany and Xiaolong Fu |
Autore | Gany Alon |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (640 pages) |
Disciplina | 620.115 |
Collana | Springer Proceedings in Physics |
Soggetto topico |
Nanostructured materials
Nanostructured materials - Design |
ISBN | 981-19-1774-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996475871003316 |
Gany Alon
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
2021 international conference on development and application of carbon nanomaterials in energetic materials / / Alon Gany and Xiaolong Fu |
Autore | Gany Alon |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (640 pages) |
Disciplina | 620.115 |
Collana | Springer Proceedings in Physics |
Soggetto topico |
Nanostructured materials
Nanostructured materials - Design |
ISBN | 981-19-1774-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910568286403321 |
Gany Alon
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
21st Century Nanostructured Materials : Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture / / Phuong V. Pham |
Autore | Pham Phuong V. |
Pubbl/distr/stampa | London : , : IntechOpen, , 2022 |
Descrizione fisica | 1 online resource (388 pages) |
Disciplina | 620.115 |
Soggetto topico | Nanostructured materials |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | 21st Century Nanostructured Materials |
Record Nr. | UNINA-9910688365703321 |
Pham Phuong V.
![]() |
||
London : , : IntechOpen, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
21st century nanostructured materials : physics, chemistry, classification, and emerging applications in industry, biomedicine, and agriculture / / edited by Phuong Pham |
Pubbl/distr/stampa | London, England : , : IntechOpen, , [2022] |
Descrizione fisica | 1 online resource (388 pages) |
Disciplina | 620.115 |
Soggetto topico | Nanostructured materials |
ISBN | 1-80355-085-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | 21st Century Nanostructured Materials |
Record Nr. | UNINA-9910586650403321 |
London, England : , : IntechOpen, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
Descrizione fisica | 1 online resource (449 pages) |
Disciplina | 620.115 |
Soggetto topico |
Nanostructured materials - Synthesis
Nanostructured materials Nanostructures |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-82394-8
3-527-82396-4 3-527-82395-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State‐of‐the‐Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide‐Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co‐precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self‐Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co‐remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two‐Dimensional Nanomaterials for Next‐Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation.
4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D‐Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation. 6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X‐ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X‐ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR‐Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X‐Ray‐Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications. 9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two‐Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene‐Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two‐Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution‐Processed MoS2‐Based Resistive Memories -- 10.5.2.2 Solution‐Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h‐BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT. 11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?. 15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells. |
Record Nr. | UNINA-9910555274103321 |
Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
Descrizione fisica | 1 online resource (449 pages) |
Disciplina | 620.115 |
Soggetto topico |
Nanostructured materials
Nanostructured materials - Synthesis |
ISBN |
3-527-82394-8
3-527-82396-4 3-527-82395-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State‐of‐the‐Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide‐Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co‐precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self‐Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co‐remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two‐Dimensional Nanomaterials for Next‐Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation.
4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D‐Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation. 6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X‐ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X‐ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR‐Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X‐Ray‐Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications. 9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two‐Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene‐Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two‐Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution‐Processed MoS2‐Based Resistive Memories -- 10.5.2.2 Solution‐Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h‐BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT. 11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?. 15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells. |
Record Nr. | UNINA-9910830428203321 |
Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2D Materials : Sensing Applications / / edited by Akash Katoch, Puneet Kaur, Rahul |
Autore | Katoch Akash |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (0 pages) |
Disciplina | 620.115 |
Altri autori (Persone) |
KaurPuneet
Rahul |
Collana | Engineering Materials |
Soggetto topico |
Condensed matter
Materials Detectors Solid state chemistry Solid state physics Nanoelectromechanical systems Two-dimensional Materials Sensors and biosensors Solid-State Chemistry Electronic Devices Nanoscale Devices |
ISBN |
9789819762583
9789819762576 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Scalable and cost-effective synthesis of 2D materials -- 2D-MoS2 and WS2-based chemical gas sensor -- Surface Engineered 2D TMD Materials for Advanced Wearable Biosensors -- Recent Developments in various 2D Material-based Gas Sensors: Diagnostic perspective of human exhalation -- Electrochemical sensors based on 2d materials (2dms) and their heterostructures -- 2D Materials for Gas Sensing Application -- Organic linkers and their modified nanoparticles for colorimetric monitoring devices for inorganic water contaminants -- 2D Material-Based Textile Sensors for Human Health Monitoring Applications -- 2D Materials- Applications in Photo Sensors -- 2D Materials’ Sensing Mechanism. |
Record Nr. | UNINA-9910908368303321 |
Katoch Akash
![]() |
||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2D Materials / / edited by Chatchawal Wongchoosuk, Yotsarayuth Seekaew |
Pubbl/distr/stampa | London, England : , : IntechOpen, , [2019] |
Descrizione fisica | 1 online resource (92 pages) : illustrations |
Disciplina | 620.115 |
Soggetto topico | Nanostructured materials |
ISBN | 1-83962-263-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910353351203321 |
London, England : , : IntechOpen, , [2019] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2D Materials / / edited by Chatchawal Wongchoosuk, Yotsarayuth Seekaew |
Pubbl/distr/stampa | London, England : , : IntechOpen, , 2019 |
Descrizione fisica | 1 online resource (92 pages) |
Disciplina | 620.115 |
Soggetto topico |
Nanostructured materials
Nanocomposites (Materials) |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910688587803321 |
London, England : , : IntechOpen, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2d materials |
Pubbl/distr/stampa | [Bristol, UK] : , : IOP Publishing, , 2014- |
Descrizione fisica | 1 online resource |
Disciplina | 620.115 |
Soggetto topico |
Graphene
Materials science Graphène Science des matériaux |
Soggetto genere / forma | Periodicals. |
ISSN | 2053-1583 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Two d materials
Two dimensional materials |
Record Nr. | UNISA-996209961803316 |
[Bristol, UK] : , : IOP Publishing, , 2014- | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|