Advanced Thermal Stress Analysis of Smart Materials and Structures / / by Zengtao Chen, Abdolhamid Akbarzadeh
| Advanced Thermal Stress Analysis of Smart Materials and Structures / / by Zengtao Chen, Abdolhamid Akbarzadeh |
| Autore | Chen Zengtao |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (X, 304 p. 104 illus., 44 illus. in color.) |
| Disciplina |
531
620.11296 |
| Collana | Structural Integrity |
| Soggetto topico |
Mechanics
Mechanics, Applied Materials science Mathematical models Solid Mechanics Characterization and Evaluation of Materials Mathematical Modeling and Industrial Mathematics |
| ISBN | 3-030-25201-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Heat conduction and moisture diffusion theories -- Basic Problems of Non-Fourier Heat Conduction -- Multiphysics of smart materials and structures -- Coupled thermal stresses in advanced and smart materials -- Thermal Fracture of Advanced Materials based on Fourier Heat Conduction -- Advanced thermal fracture analysis based on non-Fourier heat conduction models -- Future Perspectives. |
| Record Nr. | UNINA-9910366578603321 |
Chen Zengtao
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Thermoelectric Materials for Energy Harvesting Applications / / edited by Saim Memon
| Advanced Thermoelectric Materials for Energy Harvesting Applications / / edited by Saim Memon |
| Pubbl/distr/stampa | London : , : IntechOpen, , 2019 |
| Descrizione fisica | 1 online resource (xi, 140 pages) : illustrations |
| Disciplina | 620.11296 |
| Soggetto topico |
Thermoelectric materials
Energy harvesting Condensed matter |
| ISBN | 1-78984-529-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910353349103321 |
| London : , : IntechOpen, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Hard-to-Cut Materials : Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity / / Szymon Wojciechowski, Radosaw W. Maruda, Grzegorz Królczyk
| Advances in Hard-to-Cut Materials : Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity / / Szymon Wojciechowski, Radosaw W. Maruda, Grzegorz Królczyk |
| Autore | Wojciechowski Szymon |
| Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2020 |
| Descrizione fisica | 1 online resource (222 pages) |
| Disciplina | 620.11296 |
| Soggetto topico | Thermal conductivity |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Advances in Hard-to-Cut Materials |
| Record Nr. | UNINA-9910674050803321 |
Wojciechowski Szymon
|
||
| [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioinspired engineering of thermal materials / / editord by Tao Deng
| Bioinspired engineering of thermal materials / / editord by Tao Deng |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2018 |
| Descrizione fisica | 1 online resource (248 pages) : illustrations (some color), photographs |
| Disciplina | 620.11296 |
| Soggetto topico |
Materials - Thermal properties
Materials - Biotechnology |
| ISBN |
3-527-68761-0
3-527-68765-3 3-527-68759-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910270892903321 |
| Weinheim, Germany : , : Wiley-VCH, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioinspired engineering of thermal materials / / editord by Tao Deng
| Bioinspired engineering of thermal materials / / editord by Tao Deng |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2018 |
| Descrizione fisica | 1 online resource (248 pages) : illustrations (some color), photographs |
| Disciplina | 620.11296 |
| Soggetto topico |
Materials - Thermal properties
Materials - Biotechnology |
| ISBN |
3-527-68761-0
3-527-68765-3 3-527-68759-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910814764503321 |
| Weinheim, Germany : , : Wiley-VCH, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemistry, physics, and materials science of thermoelectric materials : beyond bismuth telluride
| Chemistry, physics, and materials science of thermoelectric materials : beyond bismuth telluride |
| Autore | New Thermoelectric Materials Workshop : <2002 |
| Edizione | [edited by M. G. Kanatzidis] |
| Pubbl/distr/stampa | New York [etc.], : Kluwer Academic, : Plenum, 2003 |
| Descrizione fisica | X, 317 p. : ill. ; 26 cm |
| Disciplina |
620.1
620.11296 |
| Collana | Fundamental materials research |
| Soggetto topico | MATERIALI - PROPRIETA TERMICHE |
| ISBN | 9780306477386 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-NAP0495560 |
New Thermoelectric Materials Workshop : <2002
|
||
| New York [etc.], : Kluwer Academic, : Plenum, 2003 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Convection with Local Thermal Non-Equilibrium and Microfluidic Effects / / by Brian Straughan
| Convection with Local Thermal Non-Equilibrium and Microfluidic Effects / / by Brian Straughan |
| Autore | Straughan Brian |
| Edizione | [1st ed. 2015.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Descrizione fisica | 1 online resource (318 p.) |
| Disciplina | 620.11296 |
| Collana | Advances in Mechanics and Mathematics |
| Soggetto topico |
Differential equations
Mathematical physics Fluid mechanics Mathematics - Data processing Differential Equations Theoretical, Mathematical and Computational Physics Engineering Fluid Dynamics Computational Science and Engineering |
| ISBN | 3-319-13530-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Thermal Convection with LTNE -- Rotating Convection with LTNE -- Double Diffusive Convection with LTNE -- Vertical Porous Convection with LTNE -- Penetrative Convection -- LTNE and Multi-layers -- Other Convection/Microfluidic Scenarios -- Convection with Slip Boundary Conditions -- Convection in a Porous Layer with Solid Partitions -- Convection with Produting Baffles -- Anisotropic Inertia Effect -- Bidispersive Porous Media -- Resonance in Thermal Convection -- Thermal Convection in Nanofluids -- References. |
| Record Nr. | UNINA-9910299762103321 |
Straughan Brian
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design and Application of Intelligent Thermally Conductive Materials
| Design and Application of Intelligent Thermally Conductive Materials |
| Autore | Feng Wei |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Chantilly : , : Elsevier, , 2025 |
| Descrizione fisica | 1 online resource (349 pages) |
| Disciplina | 620.11296 |
| ISBN |
9780443404108
0443404100 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Design and Application of Intelligent Thermally Conductive Materials -- Copyright -- Contents -- Preface -- Description of contents -- Chapter 1 Overview of thermal conductivity -- 1.1 Thermally conductive materials -- 1.2 Mechanism of thermal conductivity -- 1.3 Influencing factors -- 1.3.1 Thermally conductive fillers -- 1.3.1.1 Single filler -- 1.3.1.2 Composite filler -- 1.3.1.3 Orientation filler -- 1.3.1.4 Three-dimensional (3D) fillers -- 1.3.2 Thermally conductive substrates -- 1.3.2.1 Metal-based thermally conductive materials -- 1.3.2.2 Inorganic, nonmetallic-based thermally conductive materials -- 1.3.2.3 Polymer-based thermally conductive materials -- 1.3.3 Thermally conductive interfaces -- 1.3.3.1 Interface theory -- 1.3.3.2 Interface between filler and matrix -- 1.3.3.3 The contact interface between matrix and filler -- 1.3.3.4 The contact interface between the thermally conductive composite material and the device -- 1.4 Test methods -- 1.4.1 Homeostatic approach -- 1.4.1.1 Thermofluidic meter method -- 1.4.1.2 Plate method (hot plate method) -- 1.4.2 Dynamic approach -- 1.4.2.1 Hot wire method -- 1.4.2.2 Laser method -- 1.5 Research status and industry -- 1.6 Summary of this chapter -- References -- Chapter 2 Overview of intelligent thermally conductive materials -- 2.1 Concept of intelligent thermally conductive materials -- 2.2 Heat transfer mechanism of intelligent thermally conductive materials -- 2.2.1 Phonon conduction -- 2.2.2 Phonon conduction in intrinsic intelligent thermally conductive materials -- 2.2.3 Phonon conduction of embedded intelligent thermally conductive materials -- 2.3 Influencing factors -- 2.3.1 Ambient temperature -- 2.3.2 Volume morphology -- 2.3.3 External pressure -- 2.4 Classification of intelligent thermally conductive materials.
2.4.1 Metal-based intelligent thermally conductive materials -- 2.4.2 Nonmetallic carbon-based intelligent thermally conductive materials -- 2.4.3 Polymer-based intelligent thermally conductive materials -- 2.4.4 Phase-change intelligent thermally conductive materials -- 2.4.5 Thermal-induced shape memory intelligent materials -- 2.4.6 Thermochromic intelligent materials -- 2.4.7 High thermal conductivity intelligent thermal interface composite material -- 2.5 Summary of this chapter -- References -- Chapter 3 Designing for intelligent performance -- 3.1 Temperature perception -- 3.1.1 Shape memory polymer materials -- 3.1.1.1 Unidirectional shape memory -- 3.1.1.2 Bidirectional shape memory -- 3.1.2 Temperature-sensitive hydrogel material -- 3.1.3 Liquid crystal elastomer material -- 3.2 Intelligent thermally conductive control -- 3.2.1 Nanosuspension materials -- 3.2.2 Phase change materials -- 3.2.3 Atomic intercalation materials -- 3.2.4 Soft material -- 3.2.5 Materials regulated by specific external fields -- 3.3 Temperature-responsive thermal switch -- 3.3.1 Solid-liquid phase change thermal switch -- 3.3.1.1 Graphite/cetane composite materials -- 3.3.1.2 Carbon nanotubes and cetane composite materials -- 3.3.2 Soft matter switch -- 3.3.2.1 Nano polyethylene fiber -- 3.3.2.2 Poly ( N -isopropylacrylamide) hydrogel -- 3.3.3 Metal or inorganic thermal switches -- 3.3.3.1 VO 2 conductor-insulator phase transition -- 3.3.3.2 Liquid gallium-filled carbon nanotubes -- 3.4 Integration of multiple intelligent functions -- 3.4.1 Thermal management sensing materials -- 3.4.2 Thermal management-Infrared materials -- 3.4.3 Thermal management-Phase change materials -- 3.4.4 Thermal management-Self-healing materials -- 3.5 Summary of this chapter -- References -- Chapter 4 Design of intelligent thermally conductive materials. 4.1 Intelligent thermally conductive matrix material design -- 4.1.1 Polymer intelligent thermally conductive matrixes -- 4.1.1.1 Temperature-responsive polymer intelligent matrixes -- 4.1.1.2 Light-responsive polymer intelligent matrixes -- 4.1.1.3 Photochromic polymers -- 4.1.1.4 Electrically responsive polymer intelligent matrixes -- 4.1.1.5 Photothermal-responsive polymer intelligent matrixes -- 4.1.2 Metal intelligent thermally conductive substrates -- 4.1.2.1 Memory metal intelligent substrates -- 4.1.2.2 Thermally responsive metal intelligent substrates -- 4.1.3 Inorganic nonmetallic intelligent thermally conductive matrixes -- 4.1.3.1 Zirconia toughened ceramics -- 4.1.3.2 Dexterous ceramics -- 4.1.3.3 Piezoelectric biomimetic ceramics -- 4.1.3.4 Intelligent cement -- 4.2 Design of intelligent thermally conductive fillers -- 4.2.1 Metal-based thermally conductive fillers -- 4.2.1.1 Solid metal fillers -- Copper -- Silver nanowires -- Aluminum and its oxides -- 4.2.1.2 Liquid metals -- 4.2.2 Carbon-based thermally conductive fillers -- 4.2.2.1 Graphene -- 4.2.2.2 Carbon nanotubes -- 4.2.2.3 Randomly oriented carbon nanotubes -- 4.2.2.4 Directional arrangement of carbon nanoarrays -- 4.2.2.5 Carbon sponges -- 4.2.2.6 Graphite -- 4.2.3 Inorganic thermally conductive fillers -- 4.2.3.1 Boron nitride -- 4.2.3.2 Boron nitride nanosheets (BNNs) -- 4.2.3.3 Boron nitride nanotubes (BNNTs) -- 4.2.3.4 Silicon carbide -- 4.2.3.5 Aluminum nitride -- 4.2.3.6 Boron arsenide -- 4.2.4 Intelligent thermally conductive fillers -- 4.2.4.1 Azobenzene -- 4.2.4.2 Upconversion nanoparticles -- 4.2.4.3 Thermochromic molecules -- Inorganic thermochromic materials -- Organic thermochromic molecules -- 4.3 Intelligent thermally conductive material composite technology -- 4.3.1 Network construction -- 4.3.1.1 Three-dimensional graphene continuous framework. 4.3.1.2 Continuous framework of three-dimensional carbon nanotubes -- 4.3.1.3 Three-dimensional boron nitride continuous framework -- 4.3.1.4 3D metal continuous network -- 4.3.2 Interface modificationa -- 4.3.3 Composite technology -- 4.3.3.1 Blending -- 4.3.3.2 Vacuum-assisted filtration -- 4.3.3.3 Template method -- 4.3.3.4 Equipment-assisted assembly technology -- 4.4 Chapter summary -- References -- Chapter 5 Application of intelligent thermally conductive materials -- 5.1 Intelligent temperature control -- 5.1.1 Intelligent textiles for clothing -- 5.1.1.1 High-grade textiles for regulating thermal radiation properties -- 5.1.1.2 High-grade textiles for regulating heat conduction properties -- 5.1.1.3 Advanced textiles for regulating heat convection properties -- 5.1.2 Temperature intelligent sensing -- 5.1.2.1 Temperature intelligent sensing -- 5.1.2.2 Temperature sensing and control -- 5.2 Temperature intelligent response -- 5.2.1 Intelligent robots -- 5.2.2 Thermal response -- 5.2.3 Other applications -- 5.2.3.1 Thermal interface material (TIM) -- 5.2.3.2 Phase change materials (PCMs) -- 5.2.3.3 Personal thermal management materials -- 5.2.3.4 Intelligent thermally control materials -- 5.2.3.5 Electronic cooling materials -- 5.3 Intelligent temperature switches -- 5.3.1 Azo switches -- 5.3.2 Adaptive switch -- 5.3.2.1 Luminaire cooling equipment -- 5.3.2.2 Blockchain server cooling device -- 5.3.2.3 Thermal expansion and cold contraction automatic steering solar power equipment -- 5.3.2.4 Domestic fire extinguisher using heat expansion and cold contraction -- 5.3.2.5 Induction cooker overflow protection -- 5.3.2.6 Heat expansion and cold contraction cooling device for vehicle hard disk video recorders -- 5.3.2.7 Heat dissipation devices for power cabinets -- 5.4 Other applications -- 5.4.1 Flexible thermal conductive materials. 5.4.2 Fire warning materials -- 5.4.3 Sensing temperature control device -- 5.4.4 Dynamic color application -- 5.4.5 Intelligent packaging technology -- 5.4.6 Steam plugging material -- 5.4.7 Shape memory intelligent devices -- 5.4.8 Bionic robots -- 5.4.9 Battery safety technology -- 5.4.10 Green building -- 5.5 Chapter summary -- References -- Chapter 6 Application of intelligent thermally conductive materials in advanced chips -- 6.1 Current development status of chip cooling -- 6.1.1 Active cooling -- 6.1.1.1 Liquid cooling -- Microchannel liquid cooling -- Liquid spray cooling -- Liquid jet cooling -- 6.1.1.2 Microvapor compression refrigeration -- 6.1.1.3 Thermoelectric refrigeration -- 6.1.2 Passive cooling -- 6.1.2.1 Heat pipe cooling -- 6.1.2.2 Phase change heat storage and dissipation -- 6.2 Design of thermal conductive materials for chips -- 6.2.1 Chiplet technology challenges and thermal conductive material design -- 6.2.1.1 Technical challenges -- 6.2.1.2 Advanced packaging and practice in Chiplet -- 6.2.2 MCM packaging -- 6.2.3 2.5D packaging and thermally conductive material design -- 6.2.3.1 RDL interposer -- 6.2.3.2 Si interposer -- 6.2.3.3 Conceptual design -- 6.2.4 3D packaging and thermally conductive material design -- 6.2.5 Electric thermal coupling problem and heat dissipation solution -- 6.2.5.1 Electrothermal coupling problem -- 6.2.5.2 Cooling solution -- 6.3 Development status -- 6.3.1 Air cooling and heat dissipation -- 6.3.2 Liquid cooling -- 6.3.3 LED lighting -- 6.3.4 Laser devices -- 6.4 Future development trends of chip cooling materials -- 6.5 Chapter summary -- References -- Chapter 7 Conclusion and prospects -- 7.1 Technical bottleneck of intelligent thermally conductive materials -- 7.1.1 Intelligent material process design -- 7.1.1.1 Nanoparticle suspension. 7.1.1.2 Atomic intercalation materials. |
| Record Nr. | UNINA-9911054525603321 |
Feng Wei
|
||
| Chantilly : , : Elsevier, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design for Thermal Stresses [[electronic resource]]
| Design for Thermal Stresses [[electronic resource]] |
| Autore | Barron Randall F |
| Pubbl/distr/stampa | Hoboken, : Wiley, 2011 |
| Descrizione fisica | 1 online resource (530 p.) |
| Disciplina |
620.11296
621.402 |
| Altri autori (Persone) | BarronBrian R |
| Soggetto topico |
Science -- Dynamics
Science -- Mechanics Science -- Thermodynamics SCIENCE / Mechanics / Dynamics / Thermodynamics Thermal stresses Civil & Environmental Engineering Engineering & Applied Sciences Civil Engineering |
| ISBN |
1-5231-2346-X
1-283-26815-9 9786613268150 1-118-09316-X 1-118-09318-6 1-118-09430-1 |
| Classificazione | SCI065000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Design for Thermalstresses; Contents; Preface; Nomenclature; 1 Introduction; 1.1 Definition of Thermal Stress; 1.2 Thermal-Mechanical Design; 1.3 Factor of Safety in Design; 1.4 Thermal Expansion Coefficient; 1.5 Young's Modulus; 1.6 Poisson's Ratio; 1.7 Other Elastic Moduli; 1.8 Thermal Diffusivity; 1.9 Thermal Shock Parameters; 1.10 Historical Note; Problems; References; 2 Thermal Stresses in Bars; 2.1 Stress and Strain; 2.2 Bar between Two Supports; 2.3 Bars in Parallel; 2.4 Bars with Partial Removal of Constraints; 2.5 Nonuniform Temperature Distribution; 2.6 Historical Note; Problems
References3 Thermal Bending; 3.1 Limits on the Analysis; 3.2 Stress Relationships; 3.3 Displacement Relations; 3.4 General Thermal Bending Relations; 3.5 Shear Stresses; 3.6 Beam Bending Examples; 3.7 Thermal Bowing of Pipes; 3.8 Historical Note; Problems; References; 4 Thermal Stresses in Trusses and Frames; 4.1 Elastic Energy Method; 4.2 Unit-Load Method; 4.3 Trusses with External Constraints; 4.4 Trusses with Internal Constraints; 4.5 The Finite Element Method; 4.6 Elastic Energy in Bending; 4.7 Pipe Thermal Expansion Loops; 4.8 Pipe Bends; 4.9 Elastic Energy in Torsion 4.10 Historical NoteProblems; References; 5.1 Introduction; 5.2 Strain Relationships; 5.3 Stress Relationships; 5.4 Stress-Strain Relations; 5.5 Temperature Field Equation; 5.6 Reduction of the Governing Equations; 5.7 Historical Note; Problems; References; 6 Plane Stress; 6.1 Introduction; 6.2 Stress Resultants; 6.3 Circular Plate with a Hot Spot; 6.4 Two-Dimensional Problems; 6.5 Plate with a Circular Hole; 6.6 Historical Note; Problems; References; 7 Bending Thermal Stresses in Plates; 7.1 Introduction; 7.2 Governing Relations for Bending of Rectangular Plates 7.3 Boundary Conditions for Plate Bending7.4 Bending of Simply-Supported Rectangular Plates; 7.5 Rectangular Plates with Two-Dimensional Temperature Distributions; 7.6 Axisymmetric Bending of Circular Plates; 7.7 Axisymmetric Thermal Bending Examples; 7.8 Circular Plates with a Two-Dimensional Temperature Distribution; 7.9 Historical Note; Problems; References; 8 Thermal Stresses in Shells; 8.1 Introduction; 8.2 Cylindrical Shells with Axisymmetric Loading; 8.3 Cooldown of Ring-Stiffened Cylindrical Vessels; 8.4 Cylindrical Vessels with Axial Temperature Variation; 8.5 Short Cylinders 8.6 Axisymmetric Loading of Spherical Shells8.7 Approximate Analysis of Spherical Shells under Axisymmetric Loading; 8.8 Historical Note; Problems; References; 9 Thick-Walled Cylinders and Spheres; 9.1 Introduction; 9.2 Governing Equations for Plane Strain; 9.3 Hollow Cylinder with Steady-State Heat Transfer; 9.4 Solid Cylinder; 9.5 Thick-Walled Spherical Vessels; 9.6 Solid Spheres; 9.7 Historical Note; Problems; References; 10 Thermoelastic Stability; 10.1 Introduction; 10.2 Thermal Buckling of Columns; 10.3 General Formulation for Beam Columns; 10.4 Postbuckling Behavior of Columns 10.5 Lateral Thermal Buckling of Beams |
| Record Nr. | UNINA-9910139586503321 |
Barron Randall F
|
||
| Hoboken, : Wiley, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electronic and transport properties of novel thermoelectrics : a first-pronciple study / Daniel Ioan Bilc
| Electronic and transport properties of novel thermoelectrics : a first-pronciple study / Daniel Ioan Bilc |
| Autore | Bilc, Daniel Ioan <1973- > |
| Pubbl/distr/stampa | Saarbrücken, : VDM Verlag Dr. Müller, 2009 |
| Descrizione fisica | IX, 88 p. : ill. ; 22 cm |
| Disciplina |
620.1
620.11296 |
| Soggetto topico | MATERIALI - PROPRIETA TERMICHE |
| ISBN | 9783639169591 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-NAP0495575 |
Bilc, Daniel Ioan <1973- >
|
||
| Saarbrücken, : VDM Verlag Dr. Müller, 2009 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||