top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Thermal Stress Analysis of Smart Materials and Structures / / by Zengtao Chen, Abdolhamid Akbarzadeh
Advanced Thermal Stress Analysis of Smart Materials and Structures / / by Zengtao Chen, Abdolhamid Akbarzadeh
Autore Chen Zengtao
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 304 p. 104 illus., 44 illus. in color.)
Disciplina 531
620.11296
Collana Structural Integrity
Soggetto topico Mechanics
Mechanics, Applied
Materials science
Mathematical models
Solid Mechanics
Characterization and Evaluation of Materials
Mathematical Modeling and Industrial Mathematics
ISBN 3-030-25201-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Heat conduction and moisture diffusion theories -- Basic Problems of Non-Fourier Heat Conduction -- Multiphysics of smart materials and structures -- Coupled thermal stresses in advanced and smart materials -- Thermal Fracture of Advanced Materials based on Fourier Heat Conduction -- Advanced thermal fracture analysis based on non-Fourier heat conduction models -- Future Perspectives.
Record Nr. UNINA-9910366578603321
Chen Zengtao  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Thermoelectric Materials for Energy Harvesting Applications / / edited by Saim Memon
Advanced Thermoelectric Materials for Energy Harvesting Applications / / edited by Saim Memon
Pubbl/distr/stampa London : , : IntechOpen, , 2019
Descrizione fisica 1 online resource (xi, 140 pages) : illustrations
Disciplina 620.11296
Soggetto topico Thermoelectric materials
Energy harvesting
Condensed matter
ISBN 1-78984-529-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910353349103321
London : , : IntechOpen, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Hard-to-Cut Materials : Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity / / Szymon Wojciechowski, Radosaw W. Maruda, Grzegorz Królczyk
Advances in Hard-to-Cut Materials : Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity / / Szymon Wojciechowski, Radosaw W. Maruda, Grzegorz Królczyk
Autore Wojciechowski Szymon
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2020
Descrizione fisica 1 online resource (222 pages)
Disciplina 620.11296
Soggetto topico Thermal conductivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advances in Hard-to-Cut Materials
Record Nr. UNINA-9910674050803321
Wojciechowski Szymon  
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinspired engineering of thermal materials / / editord by Tao Deng
Bioinspired engineering of thermal materials / / editord by Tao Deng
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2018
Descrizione fisica 1 online resource (248 pages) : illustrations (some color), photographs
Disciplina 620.11296
Soggetto topico Materials - Thermal properties
Materials - Biotechnology
ISBN 3-527-68761-0
3-527-68765-3
3-527-68759-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270892903321
Weinheim, Germany : , : Wiley-VCH, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinspired engineering of thermal materials / / editord by Tao Deng
Bioinspired engineering of thermal materials / / editord by Tao Deng
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2018
Descrizione fisica 1 online resource (248 pages) : illustrations (some color), photographs
Disciplina 620.11296
Soggetto topico Materials - Thermal properties
Materials - Biotechnology
ISBN 3-527-68761-0
3-527-68765-3
3-527-68759-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910814764503321
Weinheim, Germany : , : Wiley-VCH, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemistry, physics, and materials science of thermoelectric materials : beyond bismuth telluride
Chemistry, physics, and materials science of thermoelectric materials : beyond bismuth telluride
Autore New Thermoelectric Materials Workshop : <2002
Edizione [edited by M. G. Kanatzidis]
Pubbl/distr/stampa New York [etc.], : Kluwer Academic, : Plenum, 2003
Descrizione fisica X, 317 p. : ill. ; 26 cm
Disciplina 620.1
620.11296
Collana Fundamental materials research
Soggetto topico MATERIALI - PROPRIETA TERMICHE
ISBN 9780306477386
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-NAP0495560
New Thermoelectric Materials Workshop : <2002  
New York [etc.], : Kluwer Academic, : Plenum, 2003
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Convection with Local Thermal Non-Equilibrium and Microfluidic Effects / / by Brian Straughan
Convection with Local Thermal Non-Equilibrium and Microfluidic Effects / / by Brian Straughan
Autore Straughan Brian
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (318 p.)
Disciplina 620.11296
Collana Advances in Mechanics and Mathematics
Soggetto topico Differential equations
Mathematical physics
Fluid mechanics
Mathematics - Data processing
Differential Equations
Theoretical, Mathematical and Computational Physics
Engineering Fluid Dynamics
Computational Science and Engineering
ISBN 3-319-13530-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Thermal Convection with LTNE -- Rotating Convection with LTNE -- Double Diffusive Convection with LTNE -- Vertical Porous Convection with LTNE -- Penetrative Convection -- LTNE and Multi-layers -- Other Convection/Microfluidic Scenarios -- Convection with Slip Boundary Conditions -- Convection in a Porous Layer with Solid Partitions -- Convection with Produting Baffles -- Anisotropic Inertia Effect -- Bidispersive Porous Media -- Resonance in Thermal Convection -- Thermal Convection in Nanofluids -- References.
Record Nr. UNINA-9910299762103321
Straughan Brian  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design and Application of Intelligent Thermally Conductive Materials
Design and Application of Intelligent Thermally Conductive Materials
Autore Feng Wei
Edizione [1st ed.]
Pubbl/distr/stampa Chantilly : , : Elsevier, , 2025
Descrizione fisica 1 online resource (349 pages)
Disciplina 620.11296
ISBN 9780443404108
0443404100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Design and Application of Intelligent Thermally Conductive Materials -- Copyright -- Contents -- Preface -- Description of contents -- Chapter 1 Overview of thermal conductivity -- 1.1 Thermally conductive materials -- 1.2 Mechanism of thermal conductivity -- 1.3 Influencing factors -- 1.3.1 Thermally conductive fillers -- 1.3.1.1 Single filler -- 1.3.1.2 Composite filler -- 1.3.1.3 Orientation filler -- 1.3.1.4 Three-dimensional (3D) fillers -- 1.3.2 Thermally conductive substrates -- 1.3.2.1 Metal-based thermally conductive materials -- 1.3.2.2 Inorganic, nonmetallic-based thermally conductive materials -- 1.3.2.3 Polymer-based thermally conductive materials -- 1.3.3 Thermally conductive interfaces -- 1.3.3.1 Interface theory -- 1.3.3.2 Interface between filler and matrix -- 1.3.3.3 The contact interface between matrix and filler -- 1.3.3.4 The contact interface between the thermally conductive composite material and the device -- 1.4 Test methods -- 1.4.1 Homeostatic approach -- 1.4.1.1 Thermofluidic meter method -- 1.4.1.2 Plate method (hot plate method) -- 1.4.2 Dynamic approach -- 1.4.2.1 Hot wire method -- 1.4.2.2 Laser method -- 1.5 Research status and industry -- 1.6 Summary of this chapter -- References -- Chapter 2 Overview of intelligent thermally conductive materials -- 2.1 Concept of intelligent thermally conductive materials -- 2.2 Heat transfer mechanism of intelligent thermally conductive materials -- 2.2.1 Phonon conduction -- 2.2.2 Phonon conduction in intrinsic intelligent thermally conductive materials -- 2.2.3 Phonon conduction of embedded intelligent thermally conductive materials -- 2.3 Influencing factors -- 2.3.1 Ambient temperature -- 2.3.2 Volume morphology -- 2.3.3 External pressure -- 2.4 Classification of intelligent thermally conductive materials.
2.4.1 Metal-based intelligent thermally conductive materials -- 2.4.2 Nonmetallic carbon-based intelligent thermally conductive materials -- 2.4.3 Polymer-based intelligent thermally conductive materials -- 2.4.4 Phase-change intelligent thermally conductive materials -- 2.4.5 Thermal-induced shape memory intelligent materials -- 2.4.6 Thermochromic intelligent materials -- 2.4.7 High thermal conductivity intelligent thermal interface composite material -- 2.5 Summary of this chapter -- References -- Chapter 3 Designing for intelligent performance -- 3.1 Temperature perception -- 3.1.1 Shape memory polymer materials -- 3.1.1.1 Unidirectional shape memory -- 3.1.1.2 Bidirectional shape memory -- 3.1.2 Temperature-sensitive hydrogel material -- 3.1.3 Liquid crystal elastomer material -- 3.2 Intelligent thermally conductive control -- 3.2.1 Nanosuspension materials -- 3.2.2 Phase change materials -- 3.2.3 Atomic intercalation materials -- 3.2.4 Soft material -- 3.2.5 Materials regulated by specific external fields -- 3.3 Temperature-responsive thermal switch -- 3.3.1 Solid-liquid phase change thermal switch -- 3.3.1.1 Graphite/cetane composite materials -- 3.3.1.2 Carbon nanotubes and cetane composite materials -- 3.3.2 Soft matter switch -- 3.3.2.1 Nano polyethylene fiber -- 3.3.2.2 Poly ( N -isopropylacrylamide) hydrogel -- 3.3.3 Metal or inorganic thermal switches -- 3.3.3.1 VO 2 conductor-insulator phase transition -- 3.3.3.2 Liquid gallium-filled carbon nanotubes -- 3.4 Integration of multiple intelligent functions -- 3.4.1 Thermal management sensing materials -- 3.4.2 Thermal management-Infrared materials -- 3.4.3 Thermal management-Phase change materials -- 3.4.4 Thermal management-Self-healing materials -- 3.5 Summary of this chapter -- References -- Chapter 4 Design of intelligent thermally conductive materials.
4.1 Intelligent thermally conductive matrix material design -- 4.1.1 Polymer intelligent thermally conductive matrixes -- 4.1.1.1 Temperature-responsive polymer intelligent matrixes -- 4.1.1.2 Light-responsive polymer intelligent matrixes -- 4.1.1.3 Photochromic polymers -- 4.1.1.4 Electrically responsive polymer intelligent matrixes -- 4.1.1.5 Photothermal-responsive polymer intelligent matrixes -- 4.1.2 Metal intelligent thermally conductive substrates -- 4.1.2.1 Memory metal intelligent substrates -- 4.1.2.2 Thermally responsive metal intelligent substrates -- 4.1.3 Inorganic nonmetallic intelligent thermally conductive matrixes -- 4.1.3.1 Zirconia toughened ceramics -- 4.1.3.2 Dexterous ceramics -- 4.1.3.3 Piezoelectric biomimetic ceramics -- 4.1.3.4 Intelligent cement -- 4.2 Design of intelligent thermally conductive fillers -- 4.2.1 Metal-based thermally conductive fillers -- 4.2.1.1 Solid metal fillers -- Copper -- Silver nanowires -- Aluminum and its oxides -- 4.2.1.2 Liquid metals -- 4.2.2 Carbon-based thermally conductive fillers -- 4.2.2.1 Graphene -- 4.2.2.2 Carbon nanotubes -- 4.2.2.3 Randomly oriented carbon nanotubes -- 4.2.2.4 Directional arrangement of carbon nanoarrays -- 4.2.2.5 Carbon sponges -- 4.2.2.6 Graphite -- 4.2.3 Inorganic thermally conductive fillers -- 4.2.3.1 Boron nitride -- 4.2.3.2 Boron nitride nanosheets (BNNs) -- 4.2.3.3 Boron nitride nanotubes (BNNTs) -- 4.2.3.4 Silicon carbide -- 4.2.3.5 Aluminum nitride -- 4.2.3.6 Boron arsenide -- 4.2.4 Intelligent thermally conductive fillers -- 4.2.4.1 Azobenzene -- 4.2.4.2 Upconversion nanoparticles -- 4.2.4.3 Thermochromic molecules -- Inorganic thermochromic materials -- Organic thermochromic molecules -- 4.3 Intelligent thermally conductive material composite technology -- 4.3.1 Network construction -- 4.3.1.1 Three-dimensional graphene continuous framework.
4.3.1.2 Continuous framework of three-dimensional carbon nanotubes -- 4.3.1.3 Three-dimensional boron nitride continuous framework -- 4.3.1.4 3D metal continuous network -- 4.3.2 Interface modificationa -- 4.3.3 Composite technology -- 4.3.3.1 Blending -- 4.3.3.2 Vacuum-assisted filtration -- 4.3.3.3 Template method -- 4.3.3.4 Equipment-assisted assembly technology -- 4.4 Chapter summary -- References -- Chapter 5 Application of intelligent thermally conductive materials -- 5.1 Intelligent temperature control -- 5.1.1 Intelligent textiles for clothing -- 5.1.1.1 High-grade textiles for regulating thermal radiation properties -- 5.1.1.2 High-grade textiles for regulating heat conduction properties -- 5.1.1.3 Advanced textiles for regulating heat convection properties -- 5.1.2 Temperature intelligent sensing -- 5.1.2.1 Temperature intelligent sensing -- 5.1.2.2 Temperature sensing and control -- 5.2 Temperature intelligent response -- 5.2.1 Intelligent robots -- 5.2.2 Thermal response -- 5.2.3 Other applications -- 5.2.3.1 Thermal interface material (TIM) -- 5.2.3.2 Phase change materials (PCMs) -- 5.2.3.3 Personal thermal management materials -- 5.2.3.4 Intelligent thermally control materials -- 5.2.3.5 Electronic cooling materials -- 5.3 Intelligent temperature switches -- 5.3.1 Azo switches -- 5.3.2 Adaptive switch -- 5.3.2.1 Luminaire cooling equipment -- 5.3.2.2 Blockchain server cooling device -- 5.3.2.3 Thermal expansion and cold contraction automatic steering solar power equipment -- 5.3.2.4 Domestic fire extinguisher using heat expansion and cold contraction -- 5.3.2.5 Induction cooker overflow protection -- 5.3.2.6 Heat expansion and cold contraction cooling device for vehicle hard disk video recorders -- 5.3.2.7 Heat dissipation devices for power cabinets -- 5.4 Other applications -- 5.4.1 Flexible thermal conductive materials.
5.4.2 Fire warning materials -- 5.4.3 Sensing temperature control device -- 5.4.4 Dynamic color application -- 5.4.5 Intelligent packaging technology -- 5.4.6 Steam plugging material -- 5.4.7 Shape memory intelligent devices -- 5.4.8 Bionic robots -- 5.4.9 Battery safety technology -- 5.4.10 Green building -- 5.5 Chapter summary -- References -- Chapter 6 Application of intelligent thermally conductive materials in advanced chips -- 6.1 Current development status of chip cooling -- 6.1.1 Active cooling -- 6.1.1.1 Liquid cooling -- Microchannel liquid cooling -- Liquid spray cooling -- Liquid jet cooling -- 6.1.1.2 Microvapor compression refrigeration -- 6.1.1.3 Thermoelectric refrigeration -- 6.1.2 Passive cooling -- 6.1.2.1 Heat pipe cooling -- 6.1.2.2 Phase change heat storage and dissipation -- 6.2 Design of thermal conductive materials for chips -- 6.2.1 Chiplet technology challenges and thermal conductive material design -- 6.2.1.1 Technical challenges -- 6.2.1.2 Advanced packaging and practice in Chiplet -- 6.2.2 MCM packaging -- 6.2.3 2.5D packaging and thermally conductive material design -- 6.2.3.1 RDL interposer -- 6.2.3.2 Si interposer -- 6.2.3.3 Conceptual design -- 6.2.4 3D packaging and thermally conductive material design -- 6.2.5 Electric thermal coupling problem and heat dissipation solution -- 6.2.5.1 Electrothermal coupling problem -- 6.2.5.2 Cooling solution -- 6.3 Development status -- 6.3.1 Air cooling and heat dissipation -- 6.3.2 Liquid cooling -- 6.3.3 LED lighting -- 6.3.4 Laser devices -- 6.4 Future development trends of chip cooling materials -- 6.5 Chapter summary -- References -- Chapter 7 Conclusion and prospects -- 7.1 Technical bottleneck of intelligent thermally conductive materials -- 7.1.1 Intelligent material process design -- 7.1.1.1 Nanoparticle suspension.
7.1.1.2 Atomic intercalation materials.
Record Nr. UNINA-9911054525603321
Feng Wei  
Chantilly : , : Elsevier, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design for Thermal Stresses [[electronic resource]]
Design for Thermal Stresses [[electronic resource]]
Autore Barron Randall F
Pubbl/distr/stampa Hoboken, : Wiley, 2011
Descrizione fisica 1 online resource (530 p.)
Disciplina 620.11296
621.402
Altri autori (Persone) BarronBrian R
Soggetto topico Science -- Dynamics
Science -- Mechanics
Science -- Thermodynamics
SCIENCE / Mechanics / Dynamics / Thermodynamics
Thermal stresses
Civil & Environmental Engineering
Engineering & Applied Sciences
Civil Engineering
ISBN 1-5231-2346-X
1-283-26815-9
9786613268150
1-118-09316-X
1-118-09318-6
1-118-09430-1
Classificazione SCI065000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Design for Thermalstresses; Contents; Preface; Nomenclature; 1 Introduction; 1.1 Definition of Thermal Stress; 1.2 Thermal-Mechanical Design; 1.3 Factor of Safety in Design; 1.4 Thermal Expansion Coefficient; 1.5 Young's Modulus; 1.6 Poisson's Ratio; 1.7 Other Elastic Moduli; 1.8 Thermal Diffusivity; 1.9 Thermal Shock Parameters; 1.10 Historical Note; Problems; References; 2 Thermal Stresses in Bars; 2.1 Stress and Strain; 2.2 Bar between Two Supports; 2.3 Bars in Parallel; 2.4 Bars with Partial Removal of Constraints; 2.5 Nonuniform Temperature Distribution; 2.6 Historical Note; Problems
References3 Thermal Bending; 3.1 Limits on the Analysis; 3.2 Stress Relationships; 3.3 Displacement Relations; 3.4 General Thermal Bending Relations; 3.5 Shear Stresses; 3.6 Beam Bending Examples; 3.7 Thermal Bowing of Pipes; 3.8 Historical Note; Problems; References; 4 Thermal Stresses in Trusses and Frames; 4.1 Elastic Energy Method; 4.2 Unit-Load Method; 4.3 Trusses with External Constraints; 4.4 Trusses with Internal Constraints; 4.5 The Finite Element Method; 4.6 Elastic Energy in Bending; 4.7 Pipe Thermal Expansion Loops; 4.8 Pipe Bends; 4.9 Elastic Energy in Torsion
4.10 Historical NoteProblems; References; 5.1 Introduction; 5.2 Strain Relationships; 5.3 Stress Relationships; 5.4 Stress-Strain Relations; 5.5 Temperature Field Equation; 5.6 Reduction of the Governing Equations; 5.7 Historical Note; Problems; References; 6 Plane Stress; 6.1 Introduction; 6.2 Stress Resultants; 6.3 Circular Plate with a Hot Spot; 6.4 Two-Dimensional Problems; 6.5 Plate with a Circular Hole; 6.6 Historical Note; Problems; References; 7 Bending Thermal Stresses in Plates; 7.1 Introduction; 7.2 Governing Relations for Bending of Rectangular Plates
7.3 Boundary Conditions for Plate Bending7.4 Bending of Simply-Supported Rectangular Plates; 7.5 Rectangular Plates with Two-Dimensional Temperature Distributions; 7.6 Axisymmetric Bending of Circular Plates; 7.7 Axisymmetric Thermal Bending Examples; 7.8 Circular Plates with a Two-Dimensional Temperature Distribution; 7.9 Historical Note; Problems; References; 8 Thermal Stresses in Shells; 8.1 Introduction; 8.2 Cylindrical Shells with Axisymmetric Loading; 8.3 Cooldown of Ring-Stiffened Cylindrical Vessels; 8.4 Cylindrical Vessels with Axial Temperature Variation; 8.5 Short Cylinders
8.6 Axisymmetric Loading of Spherical Shells8.7 Approximate Analysis of Spherical Shells under Axisymmetric Loading; 8.8 Historical Note; Problems; References; 9 Thick-Walled Cylinders and Spheres; 9.1 Introduction; 9.2 Governing Equations for Plane Strain; 9.3 Hollow Cylinder with Steady-State Heat Transfer; 9.4 Solid Cylinder; 9.5 Thick-Walled Spherical Vessels; 9.6 Solid Spheres; 9.7 Historical Note; Problems; References; 10 Thermoelastic Stability; 10.1 Introduction; 10.2 Thermal Buckling of Columns; 10.3 General Formulation for Beam Columns; 10.4 Postbuckling Behavior of Columns
10.5 Lateral Thermal Buckling of Beams
Record Nr. UNINA-9910139586503321
Barron Randall F  
Hoboken, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic and transport properties of novel thermoelectrics : a first-pronciple study / Daniel Ioan Bilc
Electronic and transport properties of novel thermoelectrics : a first-pronciple study / Daniel Ioan Bilc
Autore Bilc, Daniel Ioan <1973- >
Pubbl/distr/stampa Saarbrücken, : VDM Verlag Dr. Müller, 2009
Descrizione fisica IX, 88 p. : ill. ; 22 cm
Disciplina 620.1
620.11296
Soggetto topico MATERIALI - PROPRIETA TERMICHE
ISBN 9783639169591
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-NAP0495575
Bilc, Daniel Ioan <1973- >  
Saarbrücken, : VDM Verlag Dr. Müller, 2009
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui