top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910133643703321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910830441203321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910840864303321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computer Algebra and Materials Physics [[electronic resource] ] : A Practical Guidebook to Group Theoretical Computations in Materials Science / / by Akihito Kikuchi
Computer Algebra and Materials Physics [[electronic resource] ] : A Practical Guidebook to Group Theoretical Computations in Materials Science / / by Akihito Kikuchi
Autore Kikuchi Akihito
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (212 pages)
Disciplina 620.11015118
Collana Springer Series in Materials Science
Soggetto topico Materials science
Mathematical physics
Engineering—Materials
Chemistry, Physical and theoretical
Atoms
Physics
Solid state physics
Characterization and Evaluation of Materials
Theoretical, Mathematical and Computational Physics
Materials Engineering
Theoretical and Computational Chemistry
Atomic, Molecular, Optical and Plasma Physics
Solid State Physics
ISBN 3-319-94226-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Dedication -- Preface -- Introduction -- Computation of Group Theoretical Properties Using "GAP" -- Some Preliminaries -- Application 1: Identification of Wave Functions to Irreducible Representations -- Application 2: A Systematic Way of the Material Designing -- Technical Details -- Symmetry in C60 -- Analysis of Vibrational Mode in C60 -- Final Remarks -- Appendices A-J.
Record Nr. UNINA-9910298585003321
Kikuchi Akihito  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Direct Methods [[electronic resource] ] : Methodological Progress and Engineering Applications / / edited by Aurora Angela Pisano, Konstantinos Vassilios Spiliopoulos, Dieter Weichert
Direct Methods [[electronic resource] ] : Methodological Progress and Engineering Applications / / edited by Aurora Angela Pisano, Konstantinos Vassilios Spiliopoulos, Dieter Weichert
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XII, 247 p. 156 illus., 109 illus. in color.)
Disciplina 620.11015118
Collana Lecture Notes in Applied and Computational Mechanics
Soggetto topico Mechanics
Mechanics, Applied
Nanotechnology
Computer mathematics
Solid Mechanics
Computational Science and Engineering
ISBN 3-030-48834-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluation of human bones bearing capacity with the Limit Analysis Theory -- The linear matching method and its software tool for creep fatigue damage assessment -- Limit analysis of complex 3D steel structures using second-order cone Programming -- Limit fire analysis of 3D framed structures based on time-dependent yield surfaces -- Limit analysis of dry masonry block structures with non-associative Coulomb friction -- Homogenization of ductile porous materials by Limit and Shakedown Analysis -- Recent updates of the Residual Stress Decomposition Method for Shakedown Analysis -- Stress compensation method for shakedown analysis and its engineering applications -- On cyclic steady states and elastic shakedown in diffusion-induced plasticity -- Numerical method for quasi-static and dynamic elastoplastic problems by symplectic Brezis-Ekeland-Nayroles non-incremental principle -- Shakedown limits of slab track substructures and their implications for design -- Investigations of Shakedown in the Presence of Ambient Creep using Direct Methods for High Strength Steel under Multiaxial Loadings.
Record Nr. UNINA-9910484703603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Direct Methods for Limit State of Materials and Structures [[electronic resource] ] : Advanced Computational Algorithms and Material Modelling / / edited by Giovanni Garcea, Dieter Weichert
Direct Methods for Limit State of Materials and Structures [[electronic resource] ] : Advanced Computational Algorithms and Material Modelling / / edited by Giovanni Garcea, Dieter Weichert
Autore Garcea Giovanni
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (295 pages)
Disciplina 620.11015118
Altri autori (Persone) WeichertDieter
Collana Lecture Notes in Applied and Computational Mechanics
Soggetto topico Mechanics, Applied
Solids
Nanotechnology
Mathematics - Data processing
Solid Mechanics
Computational Science and Engineering
ISBN 3-031-29122-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Direct methods: History, present and future -- A unified shakedown limit equation for pavements and railways under repeated traffic loads -- Elastic-plastic optimisation of a cable-rib satellite antenna -- An introduction to the probabilistic linear matching method framework for structural integrity assessment under uncertain design conditions -- Peak load prediction of human bone proximal femur: sensitivity to tissues strength and geometry -- Graded damage solutions in one dimension -- Fatigue strength prediction of high silicon alloyed nodular cast iron by shakedown analysis -- A macroscopic fatigue criterion for ductile porous materials with Drucker-Prager dilatant matrix basing on the shakedown theory -- A direct method for cyclic crystal plasticity with application to high-cycle fatigue -- Masonry domes under complex loading conditions: A shell-based static limit analysis approach -- Robust optimization applied to uncertain limit analysis -- Advances of the RSDM-S: robusteness and convergence issues -- Mixed fiber elements and incremental-iterative algorithm for shakedown and limit fire analysis of 3D frames.
Record Nr. UNINA-9910742482303321
Garcea Giovanni  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Autore Jebahi Mohamed
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Descrizione fisica 1 online resource (198 p.)
Disciplina 620.11015118
Collana Numerical Methods in Engineering Series
Soggetto topico Materials - Mathematical models
Discrete element method
ISBN 1-119-10275-8
1-119-10304-5
1-119-10291-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Introduction; I.1. Toward discrete element modeling of continuous materials; I.2. Scope and objective; I.3. Organization; 1: State of the Art: Discrete Element Modeling; 1.1. Introduction; 1.2. Classification of discrete methods; 1.2.1. Quantum mechanical methods; 1.2.2. Atomistic methods; 1.2.3. Mesoscopic discrete methods; 1.2.3.1. Lattice methods; 1.2.3.2. Smooth contact particle methods; 1.2.3.3. Non-smooth contact particle models; 1.2.3.4. Hybrid lattice-particle models
1.3. Discrete element method for continuous materials1.4. Discrete-continuum transition: macroscopic variables; 1.4.1. Stress tensor for discrete systems; 1.4.2. Strain tensor for discrete systems; 1.4.2.1. Equivalent continuum strains; 1.4.2.2. Best-fit strains; 1.4.2.3. Satake strain; 1.5. Conclusion; 2: Discrete Element Modeling of Mechanical Behavior of Continuous Materials; 2.1. Introduction; 2.2. Explicit dynamic algorithm; 2.3. Construction of the discrete domain; 2.3.1. The cooker compaction algorithm; 2.3.1.1. Stopping criterion of compaction process; 2.3.1.2. Filling process
2.3.1.3. Overlapping removing2.3.2. Geometrical characterization of the discrete domain; 2.3.2.1. Geometrical isotropy and granulometry; 2.3.2.2. Average coordination number; 2.3.2.3. Discrete domain fineness; 2.4. Mechanical behavior modeling; 2.4.1. Cohesive beam model; 2.4.1.1. Analytical model; 2.4.1.2. Strain energy computation; 2.4.2. Calibration of the cohesive beam static parameters; 2.4.2.1. Quasistatic tensile test description; 2.4.2.1.1. From discrete to continuous geometry; 2.4.2.1.2. Loading; 2.4.2.1.3. EM and νM computation; 2.4.2.2. Parametric study
2.4.2.2.1. Microscopic Poisson's ratio influence2.4.2.2.2. Microscopic Young's modulus influence; 2.4.2.2.3. Microscopic radius ratio influence; 2.4.2.3. Calibration method for static parameters; 2.4.2.4. Convergence study; 2.4.2.5. Validation; 2.4.3. Calibration of the cohesive beam dynamic parameters; 2.4.3.1. Calibration method for dynamic parameters; 2.4.3.2. Validation; 2.5. Conclusion; 3: Discrete Element Modeling of Thermal Behavior of Continuous Materials; 3.1. Introduction; 3.2. General description of the method; 3.2.1. Characterization of field variable variation in discrete domain
3.2.2. Application to heat conduction3.3. Thermal conduction in 3D ordered discrete domains; 3.4. Thermal conduction in 3D disordered discrete domains; 3.4.1. Determination of local parameters for each discrete element; 3.4.2. Calculation of discrete element transmission surface; 3.4.3. Calculation of local volume fraction; 3.4.4. Interactions between each discrete element and its neighbors; 3.5. Validation; 3.5.1. Cylindrical beam in contact with a hot plane; 3.5.2. Dynamically heated sheet; 3.6. Conclusion; 4: Discrete Element Modeling of Brittle Fracture; 4.1. Introduction
4.2. Fracture model based on the cohesive beam bonds
Record Nr. UNINA-9910132269503321
Jebahi Mohamed  
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Autore Jebahi Mohamed
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Descrizione fisica 1 online resource (198 p.)
Disciplina 620.11015118
Collana Numerical Methods in Engineering Series
Soggetto topico Materials - Mathematical models
Discrete element method
ISBN 1-119-10275-8
1-119-10304-5
1-119-10291-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Introduction; I.1. Toward discrete element modeling of continuous materials; I.2. Scope and objective; I.3. Organization; 1: State of the Art: Discrete Element Modeling; 1.1. Introduction; 1.2. Classification of discrete methods; 1.2.1. Quantum mechanical methods; 1.2.2. Atomistic methods; 1.2.3. Mesoscopic discrete methods; 1.2.3.1. Lattice methods; 1.2.3.2. Smooth contact particle methods; 1.2.3.3. Non-smooth contact particle models; 1.2.3.4. Hybrid lattice-particle models
1.3. Discrete element method for continuous materials1.4. Discrete-continuum transition: macroscopic variables; 1.4.1. Stress tensor for discrete systems; 1.4.2. Strain tensor for discrete systems; 1.4.2.1. Equivalent continuum strains; 1.4.2.2. Best-fit strains; 1.4.2.3. Satake strain; 1.5. Conclusion; 2: Discrete Element Modeling of Mechanical Behavior of Continuous Materials; 2.1. Introduction; 2.2. Explicit dynamic algorithm; 2.3. Construction of the discrete domain; 2.3.1. The cooker compaction algorithm; 2.3.1.1. Stopping criterion of compaction process; 2.3.1.2. Filling process
2.3.1.3. Overlapping removing2.3.2. Geometrical characterization of the discrete domain; 2.3.2.1. Geometrical isotropy and granulometry; 2.3.2.2. Average coordination number; 2.3.2.3. Discrete domain fineness; 2.4. Mechanical behavior modeling; 2.4.1. Cohesive beam model; 2.4.1.1. Analytical model; 2.4.1.2. Strain energy computation; 2.4.2. Calibration of the cohesive beam static parameters; 2.4.2.1. Quasistatic tensile test description; 2.4.2.1.1. From discrete to continuous geometry; 2.4.2.1.2. Loading; 2.4.2.1.3. EM and νM computation; 2.4.2.2. Parametric study
2.4.2.2.1. Microscopic Poisson's ratio influence2.4.2.2.2. Microscopic Young's modulus influence; 2.4.2.2.3. Microscopic radius ratio influence; 2.4.2.3. Calibration method for static parameters; 2.4.2.4. Convergence study; 2.4.2.5. Validation; 2.4.3. Calibration of the cohesive beam dynamic parameters; 2.4.3.1. Calibration method for dynamic parameters; 2.4.3.2. Validation; 2.5. Conclusion; 3: Discrete Element Modeling of Thermal Behavior of Continuous Materials; 3.1. Introduction; 3.2. General description of the method; 3.2.1. Characterization of field variable variation in discrete domain
3.2.2. Application to heat conduction3.3. Thermal conduction in 3D ordered discrete domains; 3.4. Thermal conduction in 3D disordered discrete domains; 3.4.1. Determination of local parameters for each discrete element; 3.4.2. Calculation of discrete element transmission surface; 3.4.3. Calculation of local volume fraction; 3.4.4. Interactions between each discrete element and its neighbors; 3.5. Validation; 3.5.1. Cylindrical beam in contact with a hot plane; 3.5.2. Dynamically heated sheet; 3.6. Conclusion; 4: Discrete Element Modeling of Brittle Fracture; 4.1. Introduction
4.2. Fracture model based on the cohesive beam bonds
Record Nr. UNINA-9910823353003321
Jebahi Mohamed  
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of materials behavior models . Volume 1 Deformations of materials [[electronic resource] /] / editor Jean Lemaitre
Handbook of materials behavior models . Volume 1 Deformations of materials [[electronic resource] /] / editor Jean Lemaitre
Pubbl/distr/stampa San Diego, CA, : Academic, c2001
Descrizione fisica 1 online resource (1231 p.)
Disciplina 620.1/1/015118 21
620.11015118
620.112
Altri autori (Persone) LemaîtreJ <1934-> (Jean)
Soggetto topico Materials
Materials - Simulation methods
Soggetto genere / forma Electronic books.
ISBN 1-281-04671-X
9786611046712
0-08-053363-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Handbook of Materials Behavior Models; Copyright Page; Contents; Chapter 1. Background on mechanics of materials; 1.1 Background on modeling; 1.2 Materials and process selection; 1.3 Size effect on structural strength; Chapter 2. Elasticity, viscoelasticity; 2.1 Introduction to elasticity and viscoelasticity; 2.2 Background on nonlinear elasticity; 2.3 Elasticity of porous materials; 2.4 Elastomer models; 2.5 Background on viscoelasticity; 2.6 A nonlinear viscoelastic model based on fluctuating modes; 2.7 Linear viscoelasticity with damage; Chapter 3. Yield limit
3.1 Introduction to yield limits3.2 Background on isotropic criteria; 3.3 Yield loci based on crystallographic texture; 3.4 Anisotropic yield conditions; 3.5 Distortional model of plastic hardening; 3.6 A generalized limit criterion with application to strength, yielding, and damage of isotropic materials; 3.7 Yield conditions in beams, plates, and shells; Chapter 4. Plasticity; 4.1 Introduction to plasticity; 4.2 Elastoplasticity of metallic polycrystals by the self-consistent model; 4.3 Anisotropic elastoplastic model based on crystallographic texture
4.4 Cyclic plasticity model with nonlinear isotropic and kinematic hardening: No LIKH model4.5 Multisurface hardening model for monotonic and cyclic response of metals; 4.6 Kinematic hardening rule with critical state of dynamic recovery; 4.7 Kinematic hardening rule for biaxial ratcheting; 4.8 Plasticity in large deformations; 4.9 Plasticity of polymers; 4.10 Rational phenomenology in dynamic plasticity; 4.11 Conditions for localization in plasticity and rate-independent materials; 4.12 An introduction to gradient plasticity; Chapter 5. Viscoplasticity; 5.1 Introduction to viscoplasticity
5.2 A phenomenological anisotropic creep model for cubic single crystals5.3 Crystalline viscoplasticity applied to single crystals; 5.4 Averaging of viscoplastic polycrystalline materials with the tangent self-consistent model; 5.5 Fraction models for inelastic deformation; 5.6 Inelastic compressible and incompressible, isotropic, small-strain viscoplasticity theory based on overstress (VBO); 5.7 An outline of the Bodner-Partom (BP) unified constitutive equations for elastic-viscoplastic behavior; 5.8 Unified model of cyclic viscoplasticity based on the nonlinear kinematic hardening rule
5.9 A model of nonproportional cyclic viscoplasticity5.10 Rate-dependent elastoplastic constitutive relations; 5.11 Physically based rate- and temperature-dependent constitutive models for metals; 5.12 Elastic-viscoplastic deformation of polymers; Chapter 6. Continuous damage; 6.1 Introduction to continuous damage; 6.2 Damage-equivalent stress-fracture criterion; 6.3 Micromechanically inspired continuous models of brittle damage; 6.4 Anisotropic damage; 6.5 Modified Gurson model; 6.6 The Rousselier model for porous metal plasticity and ductile fracture; 6.7 Model of anisotropic creep damage
6.8 Multiaxial fatigue damage criteria
Record Nr. UNINA-9910458132503321
San Diego, CA, : Academic, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of materials behavior models . Volume 1 Deformations of materials [[electronic resource] /] / editor Jean Lemaitre
Handbook of materials behavior models . Volume 1 Deformations of materials [[electronic resource] /] / editor Jean Lemaitre
Pubbl/distr/stampa San Diego, CA, : Academic, c2001
Descrizione fisica 1 online resource (1231 p.)
Disciplina 620.1/1/015118 21
620.11015118
620.112
Altri autori (Persone) LemaîtreJ <1934-> (Jean)
Soggetto topico Materials
Materials - Simulation methods
ISBN 1-281-04671-X
9786611046712
0-08-053363-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Handbook of Materials Behavior Models; Copyright Page; Contents; Chapter 1. Background on mechanics of materials; 1.1 Background on modeling; 1.2 Materials and process selection; 1.3 Size effect on structural strength; Chapter 2. Elasticity, viscoelasticity; 2.1 Introduction to elasticity and viscoelasticity; 2.2 Background on nonlinear elasticity; 2.3 Elasticity of porous materials; 2.4 Elastomer models; 2.5 Background on viscoelasticity; 2.6 A nonlinear viscoelastic model based on fluctuating modes; 2.7 Linear viscoelasticity with damage; Chapter 3. Yield limit
3.1 Introduction to yield limits3.2 Background on isotropic criteria; 3.3 Yield loci based on crystallographic texture; 3.4 Anisotropic yield conditions; 3.5 Distortional model of plastic hardening; 3.6 A generalized limit criterion with application to strength, yielding, and damage of isotropic materials; 3.7 Yield conditions in beams, plates, and shells; Chapter 4. Plasticity; 4.1 Introduction to plasticity; 4.2 Elastoplasticity of metallic polycrystals by the self-consistent model; 4.3 Anisotropic elastoplastic model based on crystallographic texture
4.4 Cyclic plasticity model with nonlinear isotropic and kinematic hardening: No LIKH model4.5 Multisurface hardening model for monotonic and cyclic response of metals; 4.6 Kinematic hardening rule with critical state of dynamic recovery; 4.7 Kinematic hardening rule for biaxial ratcheting; 4.8 Plasticity in large deformations; 4.9 Plasticity of polymers; 4.10 Rational phenomenology in dynamic plasticity; 4.11 Conditions for localization in plasticity and rate-independent materials; 4.12 An introduction to gradient plasticity; Chapter 5. Viscoplasticity; 5.1 Introduction to viscoplasticity
5.2 A phenomenological anisotropic creep model for cubic single crystals5.3 Crystalline viscoplasticity applied to single crystals; 5.4 Averaging of viscoplastic polycrystalline materials with the tangent self-consistent model; 5.5 Fraction models for inelastic deformation; 5.6 Inelastic compressible and incompressible, isotropic, small-strain viscoplasticity theory based on overstress (VBO); 5.7 An outline of the Bodner-Partom (BP) unified constitutive equations for elastic-viscoplastic behavior; 5.8 Unified model of cyclic viscoplasticity based on the nonlinear kinematic hardening rule
5.9 A model of nonproportional cyclic viscoplasticity5.10 Rate-dependent elastoplastic constitutive relations; 5.11 Physically based rate- and temperature-dependent constitutive models for metals; 5.12 Elastic-viscoplastic deformation of polymers; Chapter 6. Continuous damage; 6.1 Introduction to continuous damage; 6.2 Damage-equivalent stress-fracture criterion; 6.3 Micromechanically inspired continuous models of brittle damage; 6.4 Anisotropic damage; 6.5 Modified Gurson model; 6.6 The Rousselier model for porous metal plasticity and ductile fracture; 6.7 Model of anisotropic creep damage
6.8 Multiaxial fatigue damage criteria
Record Nr. UNINA-9910784561903321
San Diego, CA, : Academic, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui