top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computerized symbolic manipulation in mechanics / edited by E. Kreuzer
Computerized symbolic manipulation in mechanics / edited by E. Kreuzer
Pubbl/distr/stampa Wien [etc.] : Springer, copyr. 1994
Descrizione fisica 262 p. : ill. ; 24 cm
Disciplina 620.100285
Collana Courses and lectures / International centre for mechanical sciences
Soggetto topico Meccanica applicata - Modelli matematici
Sistemi meccanici - Analisi - Impiego degli elaboratori elettronici
ISBN 3-211-82616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000361710203316
Wien [etc.] : Springer, copyr. 1994
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Materials Informatics and Catalysts Informatics : An Introduction / / by Keisuke Takahashi, Lauren Takahashi
Materials Informatics and Catalysts Informatics : An Introduction / / by Keisuke Takahashi, Lauren Takahashi
Autore Takahashi Keisuke
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (301 pages)
Disciplina 620.100285
Altri autori (Persone) TakahashiLauren
Soggetto topico Materials science - Data processing
Cheminformatics
Catalysis
Chemistry - Data processing
Graph theory
Computational Materials Science
Computational Chemistry
Graph Theory
ISBN 981-9702-17-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. An Introduction to Materials Informatics and Catalysts Informatics -- Chapter 2. Developing an Informatics Work Environment -- Chapter 3. Programming -- Chapter 4. Programming and Python -- Chapter 5. Data and Materials and Catalysts Informatics -- Chapter 6. Data Visualization -- Chapter 7. Machine Learning -- Chapter 8. Supervised Machine Learning -- Chapter 9. Unsupervised Machine Learning and Beyond Machine Learning.
Record Nr. UNINA-9910847088503321
Takahashi Keisuke  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (573 p.)
Disciplina 620.100285
Altri autori (Persone) BreitkopfPiotr
CoelhoRajan Filomeno
Collana ISTE
Soggetto topico Engineering design
Engineering mathematics
ISBN 1-118-60015-0
1-118-60002-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Multidisciplinary Design Optimization in Computational Mechanics; Title Page; Copyright Page; Table of Contents; Foreword; Notes for Instructors; Acknowledgements; Chapter 1. Multilevel Multidisciplinary Optimization in Airplane Design; 1.1. Introduction; 1.2. Overview of the traditional airplane design process and expected MDO contributions; 1.3. First step toward MDO: local dimensioning by mathematical optimization; 1.4. Second step toward MDO: multilevel multidisciplinary dimensioning; 1.5. Elements of an MDO process; 1.6. Choice of optimizers; 1.6.1. Deterministic algorithms
1.6.2. Stochastic algorithms1.7. Coupling between levels; 1.7.1. Reduction of mathematical models; 1.7.2. Simplified physical models; 1.8. Post-processing; 1.8.1. Lagrange multipliers; 1.8.2. Pareto fronts; 1.8.3. Self-organizing maps; 1.9. Conclusion; Chapter 2. Response Surface Methodology and Reduced Order Models; 2.1. Introduction; 2.2. Introducing some more notations; 2.3. Linear regression; 2.3.1. Introduction to linear regression; 2.3.2. Leverage; 2.3.3. Generalized linear regression; 2.3.4. An implicit reduced order model: moving least-squares (MLS) method
2.3.5. Bias-variance trade-off2.4. Non-linear regression; 2.4.1. Neural networks as an example of non-linear models; 2.4.2. Another example of a non-linear model: parametrized RBFs; 2.4.3. Gradient algorithms; 2.4.4. Second-order methods; 2.5. Kriging interpolation; 2.5.1. Recall on Gaussian regression; 2.5.2. Basic principles of kriging algorithms; 2.5.3. Trend estimation; 2.5.4. Covariance estimation; 2.6. Non-parametric regression and kernel-based methods; 2.6.1. Introduction to non-parametric methods; 2.6.2. Parzen window regression; 2.6.3. Radial basis functions (RBFs)
2.6.4. EM estimation of a mixture2.6.5. How RBFs are used in this book; 2.7. Support vector regression; 2.7.1. Variational formulation of SVR; 2.7.2. Dual formulation of SVR; 2.7.3. Computation of SVR models; 2.7.4. Self-reproducing Hilbert space; 2.7.5. Regularizing properties of the kernel; 2.7.6. Margin selection and ν-regression; 2.7.7. Large databases and recursive learning; 2.8. Model selection; 2.8.1. Estimating generalization error; 2.8.2. Cross-validation methods; 2.8.3. Leverage methods; 2.9. Introduction to design of computer experiments (DoCE); 2.9.1. Classical techniques
2.9.2. Input space sampling2.9.3. Adaptive learning and sequential design; 2.10. Bibliography; Chapter 3. PDE Metamodeling using Principal Component Analysis; 3.1. Principal component analysis (PCA); 3.2. Truncation rank and projector error; 3.3. Application: POD reduction of velocity fields in an engine combustion chamber; 3.4. Reduced-basis methods, numerical analysis; 3.4.1. POD-Galerkin projection method; 3.4.2. Dual approach POD-Petrov-Galerkin; 3.5. Intrusive/non-intrusive aspects; 3.6. Double reduction in both space and parameter dimensions; 3.7. The weighted residual method
3.8. Non-linear problems
Record Nr. UNINA-9910141601803321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (573 p.)
Disciplina 620.100285
Altri autori (Persone) BreitkopfPiotr
CoelhoRajan Filomeno
Collana ISTE
Soggetto topico Engineering design
Engineering mathematics
ISBN 1-118-60015-0
1-118-60002-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Multidisciplinary Design Optimization in Computational Mechanics; Title Page; Copyright Page; Table of Contents; Foreword; Notes for Instructors; Acknowledgements; Chapter 1. Multilevel Multidisciplinary Optimization in Airplane Design; 1.1. Introduction; 1.2. Overview of the traditional airplane design process and expected MDO contributions; 1.3. First step toward MDO: local dimensioning by mathematical optimization; 1.4. Second step toward MDO: multilevel multidisciplinary dimensioning; 1.5. Elements of an MDO process; 1.6. Choice of optimizers; 1.6.1. Deterministic algorithms
1.6.2. Stochastic algorithms1.7. Coupling between levels; 1.7.1. Reduction of mathematical models; 1.7.2. Simplified physical models; 1.8. Post-processing; 1.8.1. Lagrange multipliers; 1.8.2. Pareto fronts; 1.8.3. Self-organizing maps; 1.9. Conclusion; Chapter 2. Response Surface Methodology and Reduced Order Models; 2.1. Introduction; 2.2. Introducing some more notations; 2.3. Linear regression; 2.3.1. Introduction to linear regression; 2.3.2. Leverage; 2.3.3. Generalized linear regression; 2.3.4. An implicit reduced order model: moving least-squares (MLS) method
2.3.5. Bias-variance trade-off2.4. Non-linear regression; 2.4.1. Neural networks as an example of non-linear models; 2.4.2. Another example of a non-linear model: parametrized RBFs; 2.4.3. Gradient algorithms; 2.4.4. Second-order methods; 2.5. Kriging interpolation; 2.5.1. Recall on Gaussian regression; 2.5.2. Basic principles of kriging algorithms; 2.5.3. Trend estimation; 2.5.4. Covariance estimation; 2.6. Non-parametric regression and kernel-based methods; 2.6.1. Introduction to non-parametric methods; 2.6.2. Parzen window regression; 2.6.3. Radial basis functions (RBFs)
2.6.4. EM estimation of a mixture2.6.5. How RBFs are used in this book; 2.7. Support vector regression; 2.7.1. Variational formulation of SVR; 2.7.2. Dual formulation of SVR; 2.7.3. Computation of SVR models; 2.7.4. Self-reproducing Hilbert space; 2.7.5. Regularizing properties of the kernel; 2.7.6. Margin selection and ν-regression; 2.7.7. Large databases and recursive learning; 2.8. Model selection; 2.8.1. Estimating generalization error; 2.8.2. Cross-validation methods; 2.8.3. Leverage methods; 2.9. Introduction to design of computer experiments (DoCE); 2.9.1. Classical techniques
2.9.2. Input space sampling2.9.3. Adaptive learning and sequential design; 2.10. Bibliography; Chapter 3. PDE Metamodeling using Principal Component Analysis; 3.1. Principal component analysis (PCA); 3.2. Truncation rank and projector error; 3.3. Application: POD reduction of velocity fields in an engine combustion chamber; 3.4. Reduced-basis methods, numerical analysis; 3.4.1. POD-Galerkin projection method; 3.4.2. Dual approach POD-Petrov-Galerkin; 3.5. Intrusive/non-intrusive aspects; 3.6. Double reduction in both space and parameter dimensions; 3.7. The weighted residual method
3.8. Non-linear problems
Record Nr. UNINA-9910830099103321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Numerical Approach to the Classical Laminate Theory of Composite Materials : The Composite Laminate Analysis Tool—CLAT v2.0 / / by Andreas Öchsner, Resam Makvandi
A Numerical Approach to the Classical Laminate Theory of Composite Materials : The Composite Laminate Analysis Tool—CLAT v2.0 / / by Andreas Öchsner, Resam Makvandi
Autore Öchsner Andreas
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (181 pages)
Disciplina 620.100285
Altri autori (Persone) MakvandiResam
Collana Advanced Structured Materials
Soggetto topico Materials science—Data processing
Continuum mechanics
Composite materials
Computational Materials Science
Continuum Mechanics
Composites
ISBN 9783031329753
3031329759
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Classical Laminate Theory -- 3. Composite Laminate Analysis Tool - CLAT -- 4. Application Examples -- 5. Source Codes.
Record Nr. UNINA-9910734849003321
Öchsner Andreas  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase Field Theory in Materials Physics : The Hodograph Equation / / by Peter Galenko
Phase Field Theory in Materials Physics : The Hodograph Equation / / by Peter Galenko
Autore Galenko Peter
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (240 pages)
Disciplina 620.100285
Soggetto topico Materials science - Data processing
Condensed matter
Metals
Thermodynamics
Mathematical physics
Computational Materials Science
Structure of Condensed Matter
Metals and Alloys
Phase Transitions and Multiphase Systems
Mathematical Methods in Physics
ISBN 9783031492785
3031492781
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Phase Interfaces -- Phase Field -- Gibbs Free Energy: Equilibrium and Dynamics -- Approach to Fast Transformations -- The Hodograph Equation -- Velocity-Dependent Herring Equation.
Record Nr. UNINA-9910835061003321
Galenko Peter  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui