top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Ab initio Quantum Monte Carlo Tutorial : Going beyond DFT / / by Ryo Maezono
Ab initio Quantum Monte Carlo Tutorial : Going beyond DFT / / by Ryo Maezono
Autore Maezono Ryo
Edizione [1st ed. 2026.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2026
Descrizione fisica 1 online resource (486 pages)
Disciplina 620.100285
Collana Chemistry and Materials Science Series
Soggetto topico Materials science - Data processing
Chemistry - Data processing
Quantum chemistry
Materials
Chemistry
Computer simulation
Computational Materials Science
Computational Chemistry
Quantum Chemistry
Computational Design Of Materials
ISBN 981-9541-34-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Running a calculation first -- 3. Diffusion Monte Carlo method -- 4. Variational optimization of many-body wavefunctions -- 5. Generating trial nodes with a DFT package -- 6. Review of procedures and molecular system calculations -- 7. Theory of diffusion Monte Carlo method -- 8. Further topics on underlying theory -- 9. Practical topics -- 10. Essence of many-body electronic correlation theory -- 11. Appendix A: Terminal Setting (For Macintosh) -- 12. Appendix B: Terminal Environment Setup (Windows Version) -- 13. Appendix C: Derivation of the diffusion equation from random walk -- 14. Appendix D: Supplementary remarks on mathematical topics -- 15. Appendix E: Supplementary notes on electronic structure theory.-16. Appendix F: Notes on density functional theory -- 17. Appendix G: Tools used in many-body perturbation theory -- 18. Appendix H: Overview of many-body perturbation theory.-Index.
Record Nr. UNINA-9911061733803321
Maezono Ryo  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2026
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computerized symbolic manipulation in mechanics / edited by E. Kreuzer
Computerized symbolic manipulation in mechanics / edited by E. Kreuzer
Pubbl/distr/stampa Wien [etc.] : Springer, copyr. 1994
Descrizione fisica 262 p. : ill. ; 24 cm
Disciplina 620.100285
Collana Courses and lectures / International centre for mechanical sciences
Soggetto topico Meccanica applicata - Modelli matematici
Sistemi meccanici - Analisi - Impiego degli elaboratori elettronici
ISBN 3-211-82616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000361710203316
Wien [etc.] : Springer, copyr. 1994
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Current Trends and Open Problems in Computational Mechanics / / edited by Fadi Aldakheel, Blaž Hudobivnik, Meisam Soleimani, Henning Wessels, Christian Weißenfels, Michele Marino
Current Trends and Open Problems in Computational Mechanics / / edited by Fadi Aldakheel, Blaž Hudobivnik, Meisam Soleimani, Henning Wessels, Christian Weißenfels, Michele Marino
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (587 pages)
Disciplina 620.10015118
620.100285
Collana Engineering Series
Soggetto topico Mechanics, Applied
Solids
Mathematics - Data processing
Solid Mechanics
Computational Science and Engineering
ISBN 3-030-87312-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Multiphysics computation of thermomechanical fatigue in electronics under electrical loading -- Chapter 2: Phase-field modeling of fatigue crack propagation in brittle materials -- Chapter 3: A non-intrusive global/local cycle-jumping techniques: application to visco-plastic structures -- Chapter 4: VEM approach for homogenization of fibre-reinforced composites with curvilinear inclusions -- Chapter 5: Free Bloch wave propagation in periodic Cauchy materials: analytical and computational strategies -- Chapter 6: Divergence free VEM for the Stokes problem with no internal degrees of freedom -- Chapter 7: Strategy for Preventing Membrane Locking through Reparametrization -- Chapter 8: Model-free fracture mechanics and fatigue -- Chapter 9: Node based non-invasive form finding revisited - the challenge of remeshing -- Chapter 10: Micropolar modelling of periodic Cauchy materials based on asymptotic homogenization -- Chapter 11: Experimental and numerical investigation of granules as crash-absorber in ship building -- Chapter 12: On Hydraulic Fracturing in Fully and Partially Saturated Brittle Porous Material -- Chapter13: Efficient two-scale modeling of porous media using numerical model reduction with fully computable error bounds -- Chapter 14: Perspectives on the master-master contact formulation -- Chapter 15: Remarks on the History of Glacier Research and the Flow Law of Ice -- Chapter 16: Anisotropic Failure Criteria in Relation to Crack Phase-Field Modeling at Finite Strains.
Record Nr. UNINA-9910552732303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials Informatics and Catalysts Informatics : An Introduction / / by Keisuke Takahashi, Lauren Takahashi
Materials Informatics and Catalysts Informatics : An Introduction / / by Keisuke Takahashi, Lauren Takahashi
Autore Takahashi Keisuke
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (301 pages)
Disciplina 620.100285
Altri autori (Persone) TakahashiLauren
Soggetto topico Materials science - Data processing
Cheminformatics
Catalysis
Chemistry - Data processing
Graph theory
Computational Materials Science
Computational Chemistry
Graph Theory
ISBN 981-9702-17-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. An Introduction to Materials Informatics and Catalysts Informatics -- Chapter 2. Developing an Informatics Work Environment -- Chapter 3. Programming -- Chapter 4. Programming and Python -- Chapter 5. Data and Materials and Catalysts Informatics -- Chapter 6. Data Visualization -- Chapter 7. Machine Learning -- Chapter 8. Supervised Machine Learning -- Chapter 9. Unsupervised Machine Learning and Beyond Machine Learning.
Record Nr. UNINA-9910847088503321
Takahashi Keisuke  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (573 p.)
Disciplina 620.100285
Altri autori (Persone) BreitkopfPiotr
CoelhoRajan Filomeno
Collana ISTE
Soggetto topico Engineering design
Engineering mathematics
ISBN 1-118-60015-0
1-118-60002-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Multidisciplinary Design Optimization in Computational Mechanics; Title Page; Copyright Page; Table of Contents; Foreword; Notes for Instructors; Acknowledgements; Chapter 1. Multilevel Multidisciplinary Optimization in Airplane Design; 1.1. Introduction; 1.2. Overview of the traditional airplane design process and expected MDO contributions; 1.3. First step toward MDO: local dimensioning by mathematical optimization; 1.4. Second step toward MDO: multilevel multidisciplinary dimensioning; 1.5. Elements of an MDO process; 1.6. Choice of optimizers; 1.6.1. Deterministic algorithms
1.6.2. Stochastic algorithms1.7. Coupling between levels; 1.7.1. Reduction of mathematical models; 1.7.2. Simplified physical models; 1.8. Post-processing; 1.8.1. Lagrange multipliers; 1.8.2. Pareto fronts; 1.8.3. Self-organizing maps; 1.9. Conclusion; Chapter 2. Response Surface Methodology and Reduced Order Models; 2.1. Introduction; 2.2. Introducing some more notations; 2.3. Linear regression; 2.3.1. Introduction to linear regression; 2.3.2. Leverage; 2.3.3. Generalized linear regression; 2.3.4. An implicit reduced order model: moving least-squares (MLS) method
2.3.5. Bias-variance trade-off2.4. Non-linear regression; 2.4.1. Neural networks as an example of non-linear models; 2.4.2. Another example of a non-linear model: parametrized RBFs; 2.4.3. Gradient algorithms; 2.4.4. Second-order methods; 2.5. Kriging interpolation; 2.5.1. Recall on Gaussian regression; 2.5.2. Basic principles of kriging algorithms; 2.5.3. Trend estimation; 2.5.4. Covariance estimation; 2.6. Non-parametric regression and kernel-based methods; 2.6.1. Introduction to non-parametric methods; 2.6.2. Parzen window regression; 2.6.3. Radial basis functions (RBFs)
2.6.4. EM estimation of a mixture2.6.5. How RBFs are used in this book; 2.7. Support vector regression; 2.7.1. Variational formulation of SVR; 2.7.2. Dual formulation of SVR; 2.7.3. Computation of SVR models; 2.7.4. Self-reproducing Hilbert space; 2.7.5. Regularizing properties of the kernel; 2.7.6. Margin selection and ν-regression; 2.7.7. Large databases and recursive learning; 2.8. Model selection; 2.8.1. Estimating generalization error; 2.8.2. Cross-validation methods; 2.8.3. Leverage methods; 2.9. Introduction to design of computer experiments (DoCE); 2.9.1. Classical techniques
2.9.2. Input space sampling2.9.3. Adaptive learning and sequential design; 2.10. Bibliography; Chapter 3. PDE Metamodeling using Principal Component Analysis; 3.1. Principal component analysis (PCA); 3.2. Truncation rank and projector error; 3.3. Application: POD reduction of velocity fields in an engine combustion chamber; 3.4. Reduced-basis methods, numerical analysis; 3.4.1. POD-Galerkin projection method; 3.4.2. Dual approach POD-Petrov-Galerkin; 3.5. Intrusive/non-intrusive aspects; 3.6. Double reduction in both space and parameter dimensions; 3.7. The weighted residual method
3.8. Non-linear problems
Record Nr. UNINA-9910141601803321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Multidisciplinary design optimization in computational mechanics [[electronic resource] /] / edited by Piotr Breitkopf, Rajan Filomeno Coelho
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (573 p.)
Disciplina 620.100285
Altri autori (Persone) BreitkopfPiotr
CoelhoRajan Filomeno
Collana ISTE
Soggetto topico Engineering design
Engineering mathematics
ISBN 1-118-60015-0
1-118-60002-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Multidisciplinary Design Optimization in Computational Mechanics; Title Page; Copyright Page; Table of Contents; Foreword; Notes for Instructors; Acknowledgements; Chapter 1. Multilevel Multidisciplinary Optimization in Airplane Design; 1.1. Introduction; 1.2. Overview of the traditional airplane design process and expected MDO contributions; 1.3. First step toward MDO: local dimensioning by mathematical optimization; 1.4. Second step toward MDO: multilevel multidisciplinary dimensioning; 1.5. Elements of an MDO process; 1.6. Choice of optimizers; 1.6.1. Deterministic algorithms
1.6.2. Stochastic algorithms1.7. Coupling between levels; 1.7.1. Reduction of mathematical models; 1.7.2. Simplified physical models; 1.8. Post-processing; 1.8.1. Lagrange multipliers; 1.8.2. Pareto fronts; 1.8.3. Self-organizing maps; 1.9. Conclusion; Chapter 2. Response Surface Methodology and Reduced Order Models; 2.1. Introduction; 2.2. Introducing some more notations; 2.3. Linear regression; 2.3.1. Introduction to linear regression; 2.3.2. Leverage; 2.3.3. Generalized linear regression; 2.3.4. An implicit reduced order model: moving least-squares (MLS) method
2.3.5. Bias-variance trade-off2.4. Non-linear regression; 2.4.1. Neural networks as an example of non-linear models; 2.4.2. Another example of a non-linear model: parametrized RBFs; 2.4.3. Gradient algorithms; 2.4.4. Second-order methods; 2.5. Kriging interpolation; 2.5.1. Recall on Gaussian regression; 2.5.2. Basic principles of kriging algorithms; 2.5.3. Trend estimation; 2.5.4. Covariance estimation; 2.6. Non-parametric regression and kernel-based methods; 2.6.1. Introduction to non-parametric methods; 2.6.2. Parzen window regression; 2.6.3. Radial basis functions (RBFs)
2.6.4. EM estimation of a mixture2.6.5. How RBFs are used in this book; 2.7. Support vector regression; 2.7.1. Variational formulation of SVR; 2.7.2. Dual formulation of SVR; 2.7.3. Computation of SVR models; 2.7.4. Self-reproducing Hilbert space; 2.7.5. Regularizing properties of the kernel; 2.7.6. Margin selection and ν-regression; 2.7.7. Large databases and recursive learning; 2.8. Model selection; 2.8.1. Estimating generalization error; 2.8.2. Cross-validation methods; 2.8.3. Leverage methods; 2.9. Introduction to design of computer experiments (DoCE); 2.9.1. Classical techniques
2.9.2. Input space sampling2.9.3. Adaptive learning and sequential design; 2.10. Bibliography; Chapter 3. PDE Metamodeling using Principal Component Analysis; 3.1. Principal component analysis (PCA); 3.2. Truncation rank and projector error; 3.3. Application: POD reduction of velocity fields in an engine combustion chamber; 3.4. Reduced-basis methods, numerical analysis; 3.4.1. POD-Galerkin projection method; 3.4.2. Dual approach POD-Petrov-Galerkin; 3.5. Intrusive/non-intrusive aspects; 3.6. Double reduction in both space and parameter dimensions; 3.7. The weighted residual method
3.8. Non-linear problems
Record Nr. UNINA-9910830099103321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Numerical Approach to the Classical Laminate Theory of Composite Materials : The Composite Laminate Analysis Tool—CLAT v2.0 / / by Andreas Öchsner, Resam Makvandi
A Numerical Approach to the Classical Laminate Theory of Composite Materials : The Composite Laminate Analysis Tool—CLAT v2.0 / / by Andreas Öchsner, Resam Makvandi
Autore Öchsner Andreas
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (181 pages)
Disciplina 620.100285
Altri autori (Persone) MakvandiResam
Collana Advanced Structured Materials
Soggetto topico Materials science - Data processing
Continuum mechanics
Composite materials
Computational Materials Science
Continuum Mechanics
Composites
ISBN 9783031329753
3031329759
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Classical Laminate Theory -- 3. Composite Laminate Analysis Tool - CLAT -- 4. Application Examples -- 5. Source Codes.
Record Nr. UNINA-9910734849003321
Öchsner Andreas  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase Field Theory in Materials Physics : The Hodograph Equation / / by Peter Galenko
Phase Field Theory in Materials Physics : The Hodograph Equation / / by Peter Galenko
Autore Galenko Peter
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (240 pages)
Disciplina 620.100285
Soggetto topico Materials science - Data processing
Condensed matter
Metals
Thermodynamics
Mathematical physics
Computational Materials Science
Structure of Condensed Matter
Metals and Alloys
Phase Transitions and Multiphase Systems
Mathematical Methods in Physics
ISBN 9783031492785
3031492781
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Phase Interfaces -- Phase Field -- Gibbs Free Energy: Equilibrium and Dynamics -- Approach to Fast Transformations -- The Hodograph Equation -- Velocity-Dependent Herring Equation.
Record Nr. UNINA-9910835061003321
Galenko Peter  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Materials Engineering : Data-Driven Approaches and Multiscale Modelling / / edited by Ali Ahmadian, Sambhrant Srivastava, Ashok Kumar Yadav, Vijay Kumar, Pramod Kumar Srivastava
Smart Materials Engineering : Data-Driven Approaches and Multiscale Modelling / / edited by Ali Ahmadian, Sambhrant Srivastava, Ashok Kumar Yadav, Vijay Kumar, Pramod Kumar Srivastava
Autore Ahmadian Ali
Edizione [1st ed. 2026.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026
Descrizione fisica 1 online resource (301 pages)
Disciplina 620.100285
Altri autori (Persone) Ahmadian
Collana Physics and Astronomy Series
Soggetto topico Materials science - Data processing
Artificial intelligence
Nanotechnology
Materials
Bionics
Sustainability
Computational Materials Science
Artificial Intelligence
Bioinspired Materials
ISBN 3-032-09540-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine Learning’s Emergence in Predictive and Prescriptive Materials Design Modeling -- Recent Advances in Nano-Hybrid Composite Systems: Toward Smart and Sustainable Functional Materials -- Smart Material Design: Integrating Data-Driven Optimization and Complexity Analysis for Next-Generation Materials -- Eco-Innovative Fiber Composites: Utilization of Industrial and Agricultural Waste for Sustainable Structures -- Green Revolution in Composites: A Review on Bio-Based and Agricultural Waste-Derived Composite Materials -- Fuzzy Logic-based Energy-Efficient Trust Evaluation Scheme in Sensor Assisted Industry 4.0 -- AI-Driven Terrain Segmentation and Material Interaction Modeling for Extraterrestrial Landings -- Experimental Trial-and-Error Optimization of Microwave-Assisted Fabrication Parameters for Hybrid Laminates: Development and Characterization for Smart Structural Applications -- Recent Research Challenges while Applying Machine Learning in Materials Science -- Emerging Challenges and Future Directions in Multiscale Modelling for Integration of Biology and Materials Design -- Machine Learning in Materials Science: Current Challenges and Future Outlook.
Record Nr. UNINA-9911049105403321
Ahmadian Ali  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui