top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mechanical properties of ceramics [[electronic resource] /] / John B. Wachtman
Mechanical properties of ceramics [[electronic resource] /] / John B. Wachtman
Autore Wachtman J. B. <1928->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (497 p.)
Disciplina 620.1/40492
620.140492
Altri autori (Persone) CannonW. Roger
MatthewsonM. John
Soggetto topico Ceramic materials - Mechanical properties
Ceramic materials - Electric properties
ISBN 1-5231-1553-X
1-282-27995-5
9786612279959
0-470-45151-3
0-470-45150-5
Classificazione UQ 8500
ZM 6100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MECHANICAL PROPERTIES OF CERAMICS; CONTENTS; Preface; Acknowledgments; 1 Stress and Strain; 1.1 Introduction; 1.2 Tensor Notation for Stress; 1.3 Stress in Rotated Coordinate System; 1.4 Principal Stress; 1.4.1 Principal Stresses in Three Dimensions; 1.5 Stress Invariants; 1.6 Stress Deviator; 1.7 Strain; 1.8 True Stress and True Strain; 1.8.1 True Strain; 1.8.2 True Stress; Problems; 2 Types of Mechanical Behavior; 2.1 Introduction; 2.2 Elasticity and Brittle Fracture; 2.3 Permanent Deformation; 3 Elasticity; 3.1 Introduction; 3.2 Elasticity of Isotropic Bodies
3.3 Reduced Notation for Stresses, Strains, and Elastic Constants3.4 Effect of Symmetry on Elastic Constants; 3.5 Orientation Dependence of Elastic Moduli in Single Crystals and Composites; 3.6 Values of Polycrystalline Moduli in Terms of Single-Crystal Constants; 3.7 Variation of Elastic Constants with Lattice Parameter; 3.8 Variation of Elastic Constants with Temperature; 3.9 Elastic Properties of Porous Ceramics; 3.10 Stored Elastic Energy; Problems; 4 Strength of Defect-Free Solids; 4.1 Introduction; 4.2 Theoretical Strength in Tension; 4.3 Theoretical Strength in Shear; Problems
5 Linear Elastic Fracture Mechanics5.1 Introduction; 5.2 Stress Concentrations; 5.3 Griffith Theory of Fracture of a Brittle Solid; 5.4 Stress at Crack Tip: An Estimate; 5.5 Crack Shape in Brittle Solids; 5.6 Irwin Formulation of Fracture Mechanics: Stress Intensity Factor; 5.7 Irwin Formulation of Fracture Mechanics: Energy Release Rate; 5.7.1 Relationship between G and K(I); 5.8 Some Useful Stress Intensity Factors; 5.9 The J Integral; 5.10 Cracks with Internal Loading; 5.11 Failure under Multiaxial Stress; Problems; 6 Measurements of Elasticity, Strength, and Fracture Toughness
6.1 Introduction6.2 Tensile Tests; 6.3 Flexure Tests; 6.3.1 Three-Point Bending; 6.3.2 Four-Point Bending; 6.3.3 Fracture Toughness Measurement by Bending; 6.4 Double-Cantilever-Beam Test; 6.5 Double-Torsion Test; 6.6 Indentation Test; 6.6.1 Direct Method; 6.6.2 Indirect Method; 6.6.3 Modified Method; 6.6.4 Summary of the Three Methods; 6.6.5 ASTM Standard C 1421 Method; 6.7 Biaxial Flexure Testing; 6.8 Elastic Constant Determination Using Vibrational and Ultrasonic Methods; Problems; 7 Statistical Treatment of Strength; 7.1 Introduction; 7.2 Statistical Distributions
7.3 Strength Distribution Functions7.3.1 Gaussian, or Normal, Distribution; 7.3.2 Weibull Distribution; 7.3.3 Comparison of the Normal and Weibull Distributions; 7.4 Weakest Link Theory; 7.5 Determining Weibull Parameters; 7.6 Effect of Specimen Size; 7.7 Adaptation to Bend Testing; 7.8 Safety Factors; 7.9 Example of Safe Stress Calculation; 7.10 Proof Testing; 7.11 Use of Pooled Fracture Data in Linear Regression Determination of Weibull Parameters; 7.12 Method of Maximum Likelihood in Weibull Parameter Estimation; 7.13 Statistics of Failure under Multiaxial Stress
7.14 Effects of Slow Crack Propagation and R-Curve Behavior on Statistical Distributions of Strength
Record Nr. UNINA-9910139751103321
Wachtman J. B. <1928->  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical properties of ceramics [[electronic resource] /] / John B. Wachtman
Mechanical properties of ceramics [[electronic resource] /] / John B. Wachtman
Autore Wachtman J. B. <1928->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (497 p.)
Disciplina 620.1/40492
620.140492
Altri autori (Persone) CannonW. Roger
MatthewsonM. John
Soggetto topico Ceramic materials - Mechanical properties
Ceramic materials - Electric properties
ISBN 1-5231-1553-X
1-282-27995-5
9786612279959
0-470-45151-3
0-470-45150-5
Classificazione UQ 8500
ZM 6100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MECHANICAL PROPERTIES OF CERAMICS; CONTENTS; Preface; Acknowledgments; 1 Stress and Strain; 1.1 Introduction; 1.2 Tensor Notation for Stress; 1.3 Stress in Rotated Coordinate System; 1.4 Principal Stress; 1.4.1 Principal Stresses in Three Dimensions; 1.5 Stress Invariants; 1.6 Stress Deviator; 1.7 Strain; 1.8 True Stress and True Strain; 1.8.1 True Strain; 1.8.2 True Stress; Problems; 2 Types of Mechanical Behavior; 2.1 Introduction; 2.2 Elasticity and Brittle Fracture; 2.3 Permanent Deformation; 3 Elasticity; 3.1 Introduction; 3.2 Elasticity of Isotropic Bodies
3.3 Reduced Notation for Stresses, Strains, and Elastic Constants3.4 Effect of Symmetry on Elastic Constants; 3.5 Orientation Dependence of Elastic Moduli in Single Crystals and Composites; 3.6 Values of Polycrystalline Moduli in Terms of Single-Crystal Constants; 3.7 Variation of Elastic Constants with Lattice Parameter; 3.8 Variation of Elastic Constants with Temperature; 3.9 Elastic Properties of Porous Ceramics; 3.10 Stored Elastic Energy; Problems; 4 Strength of Defect-Free Solids; 4.1 Introduction; 4.2 Theoretical Strength in Tension; 4.3 Theoretical Strength in Shear; Problems
5 Linear Elastic Fracture Mechanics5.1 Introduction; 5.2 Stress Concentrations; 5.3 Griffith Theory of Fracture of a Brittle Solid; 5.4 Stress at Crack Tip: An Estimate; 5.5 Crack Shape in Brittle Solids; 5.6 Irwin Formulation of Fracture Mechanics: Stress Intensity Factor; 5.7 Irwin Formulation of Fracture Mechanics: Energy Release Rate; 5.7.1 Relationship between G and K(I); 5.8 Some Useful Stress Intensity Factors; 5.9 The J Integral; 5.10 Cracks with Internal Loading; 5.11 Failure under Multiaxial Stress; Problems; 6 Measurements of Elasticity, Strength, and Fracture Toughness
6.1 Introduction6.2 Tensile Tests; 6.3 Flexure Tests; 6.3.1 Three-Point Bending; 6.3.2 Four-Point Bending; 6.3.3 Fracture Toughness Measurement by Bending; 6.4 Double-Cantilever-Beam Test; 6.5 Double-Torsion Test; 6.6 Indentation Test; 6.6.1 Direct Method; 6.6.2 Indirect Method; 6.6.3 Modified Method; 6.6.4 Summary of the Three Methods; 6.6.5 ASTM Standard C 1421 Method; 6.7 Biaxial Flexure Testing; 6.8 Elastic Constant Determination Using Vibrational and Ultrasonic Methods; Problems; 7 Statistical Treatment of Strength; 7.1 Introduction; 7.2 Statistical Distributions
7.3 Strength Distribution Functions7.3.1 Gaussian, or Normal, Distribution; 7.3.2 Weibull Distribution; 7.3.3 Comparison of the Normal and Weibull Distributions; 7.4 Weakest Link Theory; 7.5 Determining Weibull Parameters; 7.6 Effect of Specimen Size; 7.7 Adaptation to Bend Testing; 7.8 Safety Factors; 7.9 Example of Safe Stress Calculation; 7.10 Proof Testing; 7.11 Use of Pooled Fracture Data in Linear Regression Determination of Weibull Parameters; 7.12 Method of Maximum Likelihood in Weibull Parameter Estimation; 7.13 Statistics of Failure under Multiaxial Stress
7.14 Effects of Slow Crack Propagation and R-Curve Behavior on Statistical Distributions of Strength
Record Nr. UNINA-9910830735703321
Wachtman J. B. <1928->  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mechanical properties of ceramics / / John B. Wachtman
Mechanical properties of ceramics / / John B. Wachtman
Autore Wachtman J. B. <1928->
Edizione [2nd ed. /]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (497 p.)
Disciplina 620.1/40492
620.140492
Altri autori (Persone) CannonW. Roger
MatthewsonM. John
Soggetto topico Ceramic materials - Mechanical properties
Ceramic materials - Electric properties
ISBN 1-5231-1553-X
1-282-27995-5
9786612279959
0-470-45151-3
0-470-45150-5
Classificazione UQ 8500
ZM 6100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MECHANICAL PROPERTIES OF CERAMICS; CONTENTS; Preface; Acknowledgments; 1 Stress and Strain; 1.1 Introduction; 1.2 Tensor Notation for Stress; 1.3 Stress in Rotated Coordinate System; 1.4 Principal Stress; 1.4.1 Principal Stresses in Three Dimensions; 1.5 Stress Invariants; 1.6 Stress Deviator; 1.7 Strain; 1.8 True Stress and True Strain; 1.8.1 True Strain; 1.8.2 True Stress; Problems; 2 Types of Mechanical Behavior; 2.1 Introduction; 2.2 Elasticity and Brittle Fracture; 2.3 Permanent Deformation; 3 Elasticity; 3.1 Introduction; 3.2 Elasticity of Isotropic Bodies
3.3 Reduced Notation for Stresses, Strains, and Elastic Constants3.4 Effect of Symmetry on Elastic Constants; 3.5 Orientation Dependence of Elastic Moduli in Single Crystals and Composites; 3.6 Values of Polycrystalline Moduli in Terms of Single-Crystal Constants; 3.7 Variation of Elastic Constants with Lattice Parameter; 3.8 Variation of Elastic Constants with Temperature; 3.9 Elastic Properties of Porous Ceramics; 3.10 Stored Elastic Energy; Problems; 4 Strength of Defect-Free Solids; 4.1 Introduction; 4.2 Theoretical Strength in Tension; 4.3 Theoretical Strength in Shear; Problems
5 Linear Elastic Fracture Mechanics5.1 Introduction; 5.2 Stress Concentrations; 5.3 Griffith Theory of Fracture of a Brittle Solid; 5.4 Stress at Crack Tip: An Estimate; 5.5 Crack Shape in Brittle Solids; 5.6 Irwin Formulation of Fracture Mechanics: Stress Intensity Factor; 5.7 Irwin Formulation of Fracture Mechanics: Energy Release Rate; 5.7.1 Relationship between G and K(I); 5.8 Some Useful Stress Intensity Factors; 5.9 The J Integral; 5.10 Cracks with Internal Loading; 5.11 Failure under Multiaxial Stress; Problems; 6 Measurements of Elasticity, Strength, and Fracture Toughness
6.1 Introduction6.2 Tensile Tests; 6.3 Flexure Tests; 6.3.1 Three-Point Bending; 6.3.2 Four-Point Bending; 6.3.3 Fracture Toughness Measurement by Bending; 6.4 Double-Cantilever-Beam Test; 6.5 Double-Torsion Test; 6.6 Indentation Test; 6.6.1 Direct Method; 6.6.2 Indirect Method; 6.6.3 Modified Method; 6.6.4 Summary of the Three Methods; 6.6.5 ASTM Standard C 1421 Method; 6.7 Biaxial Flexure Testing; 6.8 Elastic Constant Determination Using Vibrational and Ultrasonic Methods; Problems; 7 Statistical Treatment of Strength; 7.1 Introduction; 7.2 Statistical Distributions
7.3 Strength Distribution Functions7.3.1 Gaussian, or Normal, Distribution; 7.3.2 Weibull Distribution; 7.3.3 Comparison of the Normal and Weibull Distributions; 7.4 Weakest Link Theory; 7.5 Determining Weibull Parameters; 7.6 Effect of Specimen Size; 7.7 Adaptation to Bend Testing; 7.8 Safety Factors; 7.9 Example of Safe Stress Calculation; 7.10 Proof Testing; 7.11 Use of Pooled Fracture Data in Linear Regression Determination of Weibull Parameters; 7.12 Method of Maximum Likelihood in Weibull Parameter Estimation; 7.13 Statistics of Failure under Multiaxial Stress
7.14 Effects of Slow Crack Propagation and R-Curve Behavior on Statistical Distributions of Strength
Record Nr. UNINA-9910877449703321
Wachtman J. B. <1928->  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui