DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2007 |
Descrizione fisica | 1 online resource (394 p.) |
Disciplina | 620.015118 |
Altri autori (Persone) |
PlackoDominique
KunduT (Tribikram) |
Soggetto topico |
Distributed point source method (Numerical analysis)
Engineering mathematics Ultrasonic waves - Mathematical models Electromagnetic devices - Design and construction - Mathematics Electrostatics - Mathematics Electromagnetism - Mathematical models Magnetism - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-90115-2
9786610901159 0-470-14240-5 0-470-14239-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q 1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape 2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface 2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach 2.7 Electric Field in a Multilayered Medium |
Record Nr. | UNINA-9910143404303321 |
Hoboken, N.J., : Wiley-Interscience, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2007 |
Descrizione fisica | 1 online resource (394 p.) |
Disciplina | 620.015118 |
Altri autori (Persone) |
PlackoDominique
KunduT (Tribikram) |
Soggetto topico |
Distributed point source method (Numerical analysis)
Engineering mathematics Ultrasonic waves - Mathematical models Electromagnetic devices - Design and construction - Mathematics Electrostatics - Mathematics Electromagnetism - Mathematical models Magnetism - Mathematical models |
ISBN |
1-280-90115-2
9786610901159 0-470-14240-5 0-470-14239-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q 1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape 2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface 2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach 2.7 Electric Field in a Multilayered Medium |
Record Nr. | UNINA-9910829906203321 |
Hoboken, N.J., : Wiley-Interscience, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|