The finite element method in engineering [[electronic resource] /] / Singiresu S. Rao |
Autore | Rao S. S |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 |
Descrizione fisica | 1 online resource (685 p.) |
Disciplina | 620.001/51825 |
Soggetto topico |
Finite element method
Engineering mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-96441-3
9786610964413 0-08-047050-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; The Finite Element Method in Engineering; Copyright Page; Contents; Preface; Principal Notation; PART 1: INTRODUCTION; Chapter 1. Overview of Finite Element Method; 1.1 Basic Concept; 1.2 Historical Background; 1.3 General Applicability of the Method; 1.4 Engineering Applications of the Finite Element Method; 1.5 General Description of the Finite Element Method; 1.6 Comparison of Finite Element Method with Other Methods of Analysis; 1.7 Finite Element Program Packages; References; Problems; PART 2: BASIC PROCEDURE; Chapter 2. Discretization of the Domain; 2.1 Introduction
2.2 Basic Element Shapes2.3 Discretization Process; 2.4 Node Numbering Scheme; 2.5 Automatic Mesh Generation; References; Problems; Chapter 3. Interpolation Models; 3.1 Introduction; 3.2 Polynomial Form of Interpolation Functions; 3.3 Simplex, Complex, and Multiplex Elements; 3.4 Interpolation Polynomial in Terms of Nodal Degrees of Freedom; 3.5 Selection of the Order of the Interpolation Polynomial; 3.6 Convergence Requirements; 3.7 Linear Interpolation Polynomials in Terms of Global Coordinates; 3.8 Interpolation Polynomials for Vector Quantities 3.9 Linear Interpolation Polynomials in Terms of Local CoordinatesReferences; Problems; Chapter 4. Higher Order and Isoparametric Elements; 4.1 Introduction; 4.2 Higher Order One-Dimensional Elements; 4.3 Higher Order Elements in Terms of Natural Coordinates; 4.4 Higher Order Elements in Terms of Classical Interpolation Polynomials; 4.5 One-Dimensional Elements Using Classical Interpolation Polynomials; 4.6 Two-Dimensional (Rectangular) Elements Using Classical Interpolation Polynomials; 4.7 Continuity Conditions; 4.8 Comparative Study of Elements; 4.9 Isoparametric Elements 4.10 Numerical IntegrationReferences; Problems; Chapter 5. Derivation of Element Matrices and Vectors; 5.1 Introduction; 5.2 Direct Approach; 5.3 Variational Approach; 5.4 Solution of Equilibrium Problems Using Variational (Rayleigh-Ritz) Method; 5.5 Solution of Eigenvalue Problems Using Variational (Rayleigh-Ritz) Method; 5.6 Solution of Propagation Problems Using Variational (Rayleigh-Ritz) Method; 5.7 Equivalence of Finite Element and Variational (Rayleigh-Ritz) Methods; 5.8 Derivation of Finite Element Equations Using Variational (Rayleigh-Ritz) Approach; 5.9 Weighted Residual Approach 5.10 Solution of Eigenvalue Problems Using Weighted Residual Method5.11 Solution of Propagation Problems Using Weighted Residual Method; 5.12 Derivation of Finite Element Equations Using Weighted Residual (Galerkin) Approach; 5.13 Derivation of Finite Element Equations Using Weighted Residual (Least Squares) Approach; References; Problems; Chapter 6. Assembly of Element Matrices and Vectors and Derivation of System Equations; 6.1 Coordinate Transformation; 6.2 Assemblage of Element Equations; 6.3 Computer Implementation of the Assembly Procedure; 6.4 Incorporation of Boundary Conditions 6.5 Incorporation of Boundary Conditions in the Computer Program |
Record Nr. | UNINA-9910457299503321 |
Rao S. S | ||
Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The finite element method in engineering [[electronic resource] /] / Singiresu S. Rao |
Autore | Rao Singiresu S. <1944-> |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 |
Descrizione fisica | 1 online resource (685 p.) |
Disciplina | 620.001/51825 |
Soggetto topico |
Finite element method
Engineering mathematics |
ISBN |
1-280-96441-3
9786610964413 0-08-047050-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; The Finite Element Method in Engineering; Copyright Page; Contents; Preface; Principal Notation; PART 1: INTRODUCTION; Chapter 1. Overview of Finite Element Method; 1.1 Basic Concept; 1.2 Historical Background; 1.3 General Applicability of the Method; 1.4 Engineering Applications of the Finite Element Method; 1.5 General Description of the Finite Element Method; 1.6 Comparison of Finite Element Method with Other Methods of Analysis; 1.7 Finite Element Program Packages; References; Problems; PART 2: BASIC PROCEDURE; Chapter 2. Discretization of the Domain; 2.1 Introduction
2.2 Basic Element Shapes2.3 Discretization Process; 2.4 Node Numbering Scheme; 2.5 Automatic Mesh Generation; References; Problems; Chapter 3. Interpolation Models; 3.1 Introduction; 3.2 Polynomial Form of Interpolation Functions; 3.3 Simplex, Complex, and Multiplex Elements; 3.4 Interpolation Polynomial in Terms of Nodal Degrees of Freedom; 3.5 Selection of the Order of the Interpolation Polynomial; 3.6 Convergence Requirements; 3.7 Linear Interpolation Polynomials in Terms of Global Coordinates; 3.8 Interpolation Polynomials for Vector Quantities 3.9 Linear Interpolation Polynomials in Terms of Local CoordinatesReferences; Problems; Chapter 4. Higher Order and Isoparametric Elements; 4.1 Introduction; 4.2 Higher Order One-Dimensional Elements; 4.3 Higher Order Elements in Terms of Natural Coordinates; 4.4 Higher Order Elements in Terms of Classical Interpolation Polynomials; 4.5 One-Dimensional Elements Using Classical Interpolation Polynomials; 4.6 Two-Dimensional (Rectangular) Elements Using Classical Interpolation Polynomials; 4.7 Continuity Conditions; 4.8 Comparative Study of Elements; 4.9 Isoparametric Elements 4.10 Numerical IntegrationReferences; Problems; Chapter 5. Derivation of Element Matrices and Vectors; 5.1 Introduction; 5.2 Direct Approach; 5.3 Variational Approach; 5.4 Solution of Equilibrium Problems Using Variational (Rayleigh-Ritz) Method; 5.5 Solution of Eigenvalue Problems Using Variational (Rayleigh-Ritz) Method; 5.6 Solution of Propagation Problems Using Variational (Rayleigh-Ritz) Method; 5.7 Equivalence of Finite Element and Variational (Rayleigh-Ritz) Methods; 5.8 Derivation of Finite Element Equations Using Variational (Rayleigh-Ritz) Approach; 5.9 Weighted Residual Approach 5.10 Solution of Eigenvalue Problems Using Weighted Residual Method5.11 Solution of Propagation Problems Using Weighted Residual Method; 5.12 Derivation of Finite Element Equations Using Weighted Residual (Galerkin) Approach; 5.13 Derivation of Finite Element Equations Using Weighted Residual (Least Squares) Approach; References; Problems; Chapter 6. Assembly of Element Matrices and Vectors and Derivation of System Equations; 6.1 Coordinate Transformation; 6.2 Assemblage of Element Equations; 6.3 Computer Implementation of the Assembly Procedure; 6.4 Incorporation of Boundary Conditions 6.5 Incorporation of Boundary Conditions in the Computer Program |
Record Nr. | UNINA-9910784361103321 |
Rao Singiresu S. <1944-> | ||
Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The finite element method in engineering / / Singiresu S. Rao |
Autore | Rao S. S |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 |
Descrizione fisica | 1 online resource (685 p.) |
Disciplina | 620.001/51825 |
Soggetto topico |
Finite element method
Engineering mathematics |
ISBN |
1-280-96441-3
9786610964413 0-08-047050-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; The Finite Element Method in Engineering; Copyright Page; Contents; Preface; Principal Notation; PART 1: INTRODUCTION; Chapter 1. Overview of Finite Element Method; 1.1 Basic Concept; 1.2 Historical Background; 1.3 General Applicability of the Method; 1.4 Engineering Applications of the Finite Element Method; 1.5 General Description of the Finite Element Method; 1.6 Comparison of Finite Element Method with Other Methods of Analysis; 1.7 Finite Element Program Packages; References; Problems; PART 2: BASIC PROCEDURE; Chapter 2. Discretization of the Domain; 2.1 Introduction
2.2 Basic Element Shapes2.3 Discretization Process; 2.4 Node Numbering Scheme; 2.5 Automatic Mesh Generation; References; Problems; Chapter 3. Interpolation Models; 3.1 Introduction; 3.2 Polynomial Form of Interpolation Functions; 3.3 Simplex, Complex, and Multiplex Elements; 3.4 Interpolation Polynomial in Terms of Nodal Degrees of Freedom; 3.5 Selection of the Order of the Interpolation Polynomial; 3.6 Convergence Requirements; 3.7 Linear Interpolation Polynomials in Terms of Global Coordinates; 3.8 Interpolation Polynomials for Vector Quantities 3.9 Linear Interpolation Polynomials in Terms of Local CoordinatesReferences; Problems; Chapter 4. Higher Order and Isoparametric Elements; 4.1 Introduction; 4.2 Higher Order One-Dimensional Elements; 4.3 Higher Order Elements in Terms of Natural Coordinates; 4.4 Higher Order Elements in Terms of Classical Interpolation Polynomials; 4.5 One-Dimensional Elements Using Classical Interpolation Polynomials; 4.6 Two-Dimensional (Rectangular) Elements Using Classical Interpolation Polynomials; 4.7 Continuity Conditions; 4.8 Comparative Study of Elements; 4.9 Isoparametric Elements 4.10 Numerical IntegrationReferences; Problems; Chapter 5. Derivation of Element Matrices and Vectors; 5.1 Introduction; 5.2 Direct Approach; 5.3 Variational Approach; 5.4 Solution of Equilibrium Problems Using Variational (Rayleigh-Ritz) Method; 5.5 Solution of Eigenvalue Problems Using Variational (Rayleigh-Ritz) Method; 5.6 Solution of Propagation Problems Using Variational (Rayleigh-Ritz) Method; 5.7 Equivalence of Finite Element and Variational (Rayleigh-Ritz) Methods; 5.8 Derivation of Finite Element Equations Using Variational (Rayleigh-Ritz) Approach; 5.9 Weighted Residual Approach 5.10 Solution of Eigenvalue Problems Using Weighted Residual Method5.11 Solution of Propagation Problems Using Weighted Residual Method; 5.12 Derivation of Finite Element Equations Using Weighted Residual (Galerkin) Approach; 5.13 Derivation of Finite Element Equations Using Weighted Residual (Least Squares) Approach; References; Problems; Chapter 6. Assembly of Element Matrices and Vectors and Derivation of System Equations; 6.1 Coordinate Transformation; 6.2 Assemblage of Element Equations; 6.3 Computer Implementation of the Assembly Procedure; 6.4 Incorporation of Boundary Conditions 6.5 Incorporation of Boundary Conditions in the Computer Program |
Record Nr. | UNINA-9910816332203321 |
Rao S. S | ||
Amsterdam ; ; Boston, MA, : Elsevier/Butterworth Heinemann, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite elements [[electronic resource] ] : computational engineering sciences / / A.J. Baker |
Autore | Baker A. J. <1936-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (289 p.) |
Disciplina |
620.001/51825
620.00151825 |
Soggetto topico | Finite element method |
ISBN |
1-283-57411-X
9786613886569 1-118-36989-0 1-118-36992-0 1-118-36991-2 1-118-37992-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Finite Elements: Computational Engineering Sciences; Contents; Preface; About the Author; Notations; 1 The Computational Engineering Sciences: an introduction; 1.1 Engineering Simulation; 1.2 A Problem-Solving Environment; 1.3 Weak Formulation Essence; 1.4 Decisions on Forming WSN; 1.5 Discrete WSh Implementations; 1.6 Chapter Summary; References; 2 Problem Statements: in the engineering sciences; 2.1 Engineering Simulation; 2.2 Continuum Mechanics Viewpoint; 2.3 Continuum Conservation Principle Forms; 2.4 Constitutive Closure for Conservation Principle PDEs
2.5 Engineering Science Continuum MechanicsReferences; 3 Some Introductory Material: PDEs, BCs, solutions, discrete concepts; 3.1 Example Linear Heat Conduction Solutions; 3.2 Multidimensional PDEs, Separation of Variables; 3.3 Mathematical Foundation Essence for GWSN; 3.4 A Legacy FD Construction; 3.5 An FD Approximate Solution; 3.6 Lagrange Interpolation Polynomials; 3.7 Chapter Summary; Exercises; References; 4 Heat Conduction: an FE weak statement tutorial; 4.1 A Steady Heat Conduction Example; 4.2 Weak Form Approximation, Error Extremization 5.6 Global Theory, Asymptotic Error Estimate5.7 Nonsmooth Data, Theory Generalization; 5.8 Temperature-Dependent Conductivity, Nonlinearity; 5.9 Static Condensation, p-Elements; 5.10 Chapter Summary; Exercises; Computer Labs; References; 6 Engineering Sciences, n = 1: GWSh {Nk(ζα)} implementations in the computational engineering sciences; 6.1 Introduction; 6.2 The Euler-Bernoulli Beam Equation; 6.3 Euler-Bernoulli Beam Theory GWSh Reformulation; 6.4 Timoshenko Beam Theory; 6.5 Mechanical Vibrations of a Beam; 6.6 Fluid Mechanics, Potential Flow; 6.7 Electromagnetic Plane Wave Propagation 6.8 Convection-Radiation Finned Cylinder Heat Transfer6.9 Chapter Summary; Exercises; Computer Labs; References; 7 Steady Heat Transfer, n > 1: n = 2, 3 GWSh for D E+ BCs, FE bases, convergence, error mechanisms; 7.1 Introduction; 7.2 Multidimensional FE Bases and DOF; 7.3 Multidimensional FE Operations for {Nk(ζ α)}; 7.4 The NCk = 1,2 Basis FE Matrix Library; 7.5 NC Basis {WS}e Template, Accuracy, Convergence; 7.6 The Tensor Product Basis Element Family; 7.7 Gauss Numerical Quadrature, k = 1 TP Basis Library; 7.8 Convection-Radiation BC GWSh Implementation 7.9 Linear Basis GWSh Template Unification |
Record Nr. | UNINA-9910139087803321 |
Baker A. J. <1936-> | ||
Hoboken, N.J., : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite elements [[electronic resource] ] : computational engineering sciences / / A.J. Baker |
Autore | Baker A. J. <1936-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (289 p.) |
Disciplina |
620.001/51825
620.00151825 |
Soggetto topico | Finite element method |
ISBN |
1-283-57411-X
9786613886569 1-118-36989-0 1-118-36992-0 1-118-36991-2 1-118-37992-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Finite Elements: Computational Engineering Sciences; Contents; Preface; About the Author; Notations; 1 The Computational Engineering Sciences: an introduction; 1.1 Engineering Simulation; 1.2 A Problem-Solving Environment; 1.3 Weak Formulation Essence; 1.4 Decisions on Forming WSN; 1.5 Discrete WSh Implementations; 1.6 Chapter Summary; References; 2 Problem Statements: in the engineering sciences; 2.1 Engineering Simulation; 2.2 Continuum Mechanics Viewpoint; 2.3 Continuum Conservation Principle Forms; 2.4 Constitutive Closure for Conservation Principle PDEs
2.5 Engineering Science Continuum MechanicsReferences; 3 Some Introductory Material: PDEs, BCs, solutions, discrete concepts; 3.1 Example Linear Heat Conduction Solutions; 3.2 Multidimensional PDEs, Separation of Variables; 3.3 Mathematical Foundation Essence for GWSN; 3.4 A Legacy FD Construction; 3.5 An FD Approximate Solution; 3.6 Lagrange Interpolation Polynomials; 3.7 Chapter Summary; Exercises; References; 4 Heat Conduction: an FE weak statement tutorial; 4.1 A Steady Heat Conduction Example; 4.2 Weak Form Approximation, Error Extremization 5.6 Global Theory, Asymptotic Error Estimate5.7 Nonsmooth Data, Theory Generalization; 5.8 Temperature-Dependent Conductivity, Nonlinearity; 5.9 Static Condensation, p-Elements; 5.10 Chapter Summary; Exercises; Computer Labs; References; 6 Engineering Sciences, n = 1: GWSh {Nk(ζα)} implementations in the computational engineering sciences; 6.1 Introduction; 6.2 The Euler-Bernoulli Beam Equation; 6.3 Euler-Bernoulli Beam Theory GWSh Reformulation; 6.4 Timoshenko Beam Theory; 6.5 Mechanical Vibrations of a Beam; 6.6 Fluid Mechanics, Potential Flow; 6.7 Electromagnetic Plane Wave Propagation 6.8 Convection-Radiation Finned Cylinder Heat Transfer6.9 Chapter Summary; Exercises; Computer Labs; References; 7 Steady Heat Transfer, n > 1: n = 2, 3 GWSh for D E+ BCs, FE bases, convergence, error mechanisms; 7.1 Introduction; 7.2 Multidimensional FE Bases and DOF; 7.3 Multidimensional FE Operations for {Nk(ζ α)}; 7.4 The NCk = 1,2 Basis FE Matrix Library; 7.5 NC Basis {WS}e Template, Accuracy, Convergence; 7.6 The Tensor Product Basis Element Family; 7.7 Gauss Numerical Quadrature, k = 1 TP Basis Library; 7.8 Convection-Radiation BC GWSh Implementation 7.9 Linear Basis GWSh Template Unification |
Record Nr. | UNINA-9910831177703321 |
Baker A. J. <1936-> | ||
Hoboken, N.J., : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite elements : computational engineering sciences / / A.J. Baker |
Autore | Baker A. J. <1936-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (289 p.) |
Disciplina | 620.001/51825 |
Soggetto topico | Finite element method |
ISBN |
1-283-57411-X
9786613886569 1-118-36989-0 1-118-36992-0 1-118-36991-2 1-118-37992-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Finite Elements: Computational Engineering Sciences; Contents; Preface; About the Author; Notations; 1 The Computational Engineering Sciences: an introduction; 1.1 Engineering Simulation; 1.2 A Problem-Solving Environment; 1.3 Weak Formulation Essence; 1.4 Decisions on Forming WSN; 1.5 Discrete WSh Implementations; 1.6 Chapter Summary; References; 2 Problem Statements: in the engineering sciences; 2.1 Engineering Simulation; 2.2 Continuum Mechanics Viewpoint; 2.3 Continuum Conservation Principle Forms; 2.4 Constitutive Closure for Conservation Principle PDEs
2.5 Engineering Science Continuum MechanicsReferences; 3 Some Introductory Material: PDEs, BCs, solutions, discrete concepts; 3.1 Example Linear Heat Conduction Solutions; 3.2 Multidimensional PDEs, Separation of Variables; 3.3 Mathematical Foundation Essence for GWSN; 3.4 A Legacy FD Construction; 3.5 An FD Approximate Solution; 3.6 Lagrange Interpolation Polynomials; 3.7 Chapter Summary; Exercises; References; 4 Heat Conduction: an FE weak statement tutorial; 4.1 A Steady Heat Conduction Example; 4.2 Weak Form Approximation, Error Extremization 5.6 Global Theory, Asymptotic Error Estimate5.7 Nonsmooth Data, Theory Generalization; 5.8 Temperature-Dependent Conductivity, Nonlinearity; 5.9 Static Condensation, p-Elements; 5.10 Chapter Summary; Exercises; Computer Labs; References; 6 Engineering Sciences, n = 1: GWSh {Nk(ζα)} implementations in the computational engineering sciences; 6.1 Introduction; 6.2 The Euler-Bernoulli Beam Equation; 6.3 Euler-Bernoulli Beam Theory GWSh Reformulation; 6.4 Timoshenko Beam Theory; 6.5 Mechanical Vibrations of a Beam; 6.6 Fluid Mechanics, Potential Flow; 6.7 Electromagnetic Plane Wave Propagation 6.8 Convection-Radiation Finned Cylinder Heat Transfer6.9 Chapter Summary; Exercises; Computer Labs; References; 7 Steady Heat Transfer, n > 1: n = 2, 3 GWSh for D E+ BCs, FE bases, convergence, error mechanisms; 7.1 Introduction; 7.2 Multidimensional FE Bases and DOF; 7.3 Multidimensional FE Operations for {Nk(ζ α)}; 7.4 The NCk = 1,2 Basis FE Matrix Library; 7.5 NC Basis {WS}e Template, Accuracy, Convergence; 7.6 The Tensor Product Basis Element Family; 7.7 Gauss Numerical Quadrature, k = 1 TP Basis Library; 7.8 Convection-Radiation BC GWSh Implementation 7.9 Linear Basis GWSh Template Unification |
Record Nr. | UNINA-9910877819303321 |
Baker A. J. <1936-> | ||
Hoboken, N.J., : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to finite element analysis [[electronic resource] ] : formulation, verification and validation / / Barna Szabo, Ivo Babuska |
Autore | Szabo B. A (Barna Aladar), <1935-> |
Pubbl/distr/stampa | Chichester, West Sussex, : Wiley, 2011 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina |
620.001/51825
620.00151825 |
Altri autori (Persone) | BabuškaIvo |
Collana | Wiley series in computational mechanics |
Soggetto topico |
Finite element method
Numerical analysis |
ISBN |
1-283-40554-7
9786613405548 1-119-99348-2 1-119-99382-2 1-119-99383-0 |
Classificazione | TEC006000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Introduction to FiniteElement Analysis; Contents; About the Authors; Series Preface; Preface; 1 Introduction; 1.1 Numerical simulation; 1.1.1 Conceptualization; 1.1.2 Validation; 1.1.3 Discretization; 1.1.4 Verification; 1.1.5 Decision-making; 1.2 Why is numerical accuracy important?; 1.2.1 Application of design rules; 1.2.2 Formulation of design rules; 1.3 Chapter summary; 2 An outline of the finite element method; 2.1 Mathematical models in one dimension; 2.1.1 The elastic bar; 2.1.2 Conceptualization; 2.1.3 Validation; 2.1.4 The scalar elliptic boundary value problem in one dimension
2.2 Approximate solution2.2.1 Basis functions; 2.3 Generalized formulation in one dimension; 2.3.1 Essential boundary conditions; 2.3.2 Neumann boundary conditions; 2.3.3 Robin boundary conditions; 2.4 Finite element approximations; 2.4.1 Error measures and norms; 2.4.2 The error of approximation in the energy norm; 2.5 FEM in one dimension; 2.5.1 The standard element2.5.1 The standard element; 2.5.2 The standard polynomial space; 2.5.3 Finite element spaces; 2.5.4 Computation of the coefficient matrices; 2.5.5 Computation of the right hand side vector; 2.5.6 Assembly 2.5.7 Treatment of the essential boundary conditions2.5.8 Solution; 2.5.9 Post-solution operations; 2.6 Properties of the generalized formulation; 2.6.1 Uniqueness; 2.6.2 Potential energy; 2.6.3 Error in the energy norm; 2.6.4 Continuity; 2.6.5 Convergence in the energy norm; 2.7 Error estimation based on extrapolation; 2.7.1 The root-mean-square measure of stress; 2.8 Extraction methods; 2.9 Laboratory exercises; 2.10 Chapter summary; 3 Formulation of mathematical models; 3.1 Notation; 3.2 Heat conduction; 3.2.1 The differential equation; 3.2.2 Boundary and initial conditions 3.2.3 Symmetry, antisymmetry and periodicity3.2.4 Dimensional reduction; 3.3 The scalar elliptic boundary value problem; 3.4 Linear elasticity; 3.4.1 The Navier equations; 3.4.2 Boundary and initial conditions; 3.4.3 Symmetry, antisymmetry and periodicity; 3.4.4 Dimensional reduction; 3.5 Incompressible elastic materials; 3.6 Stokes' flow; 3.7 The hierarchic view of mathematical models; 3.8 Chapter summary; 4 Generalized formulations; 4.1 The scalar elliptic problem; 4.1.1 Continuity; 4.1.2 Existence; 4.1.3 Approximation by the finite element method; 4.2 The principle of virtual work 4.3 Elastostatic problems4.3.1 Uniqueness; 4.3.2 The principle of minimum potential energy; 4.4 Elastodynamic models; 4.4.1 Undamped free vibration; 4.5 Incompressible materials; 4.5.1 The saddle point problem; 4.5.2 Poisson's ratio locking; 4.5.3 Solvability; 4.6 Chapter summary; 5 Finite element spaces; 5.1 Standard elements in two dimensions; 5.2 Standard polynomial spaces; 5.2.1 Trunk spaces; 5.2.2 Product spaces; 5.3 Shape functions; 5.3.1 Lagrange shape functions; 5.3.2 Hierarchic shape functions; 5.4 Mapping functions in two dimensions; 5.4.1 Isoparametric mapping 5.4.2 Mapping by the blending function method |
Record Nr. | UNINA-9910130879203321 |
Szabo B. A (Barna Aladar), <1935-> | ||
Chichester, West Sussex, : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to finite element analysis : formulation, verification and validation / / Barna Szabo, Ivo Babuska |
Autore | Szabo B. A (Barna Aladar), <1935-> |
Pubbl/distr/stampa | Chichester, West Sussex, : Wiley, 2011 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 620.001/51825 |
Altri autori (Persone) | BabuskaIvo |
Collana | Wiley series in computational mechanics |
Soggetto topico |
Finite element method
Numerical analysis |
ISBN |
1-283-40554-7
9786613405548 1-119-99348-2 1-119-99382-2 1-119-99383-0 |
Classificazione | TEC006000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Introduction to FiniteElement Analysis; Contents; About the Authors; Series Preface; Preface; 1 Introduction; 1.1 Numerical simulation; 1.1.1 Conceptualization; 1.1.2 Validation; 1.1.3 Discretization; 1.1.4 Verification; 1.1.5 Decision-making; 1.2 Why is numerical accuracy important?; 1.2.1 Application of design rules; 1.2.2 Formulation of design rules; 1.3 Chapter summary; 2 An outline of the finite element method; 2.1 Mathematical models in one dimension; 2.1.1 The elastic bar; 2.1.2 Conceptualization; 2.1.3 Validation; 2.1.4 The scalar elliptic boundary value problem in one dimension
2.2 Approximate solution2.2.1 Basis functions; 2.3 Generalized formulation in one dimension; 2.3.1 Essential boundary conditions; 2.3.2 Neumann boundary conditions; 2.3.3 Robin boundary conditions; 2.4 Finite element approximations; 2.4.1 Error measures and norms; 2.4.2 The error of approximation in the energy norm; 2.5 FEM in one dimension; 2.5.1 The standard element2.5.1 The standard element; 2.5.2 The standard polynomial space; 2.5.3 Finite element spaces; 2.5.4 Computation of the coefficient matrices; 2.5.5 Computation of the right hand side vector; 2.5.6 Assembly 2.5.7 Treatment of the essential boundary conditions2.5.8 Solution; 2.5.9 Post-solution operations; 2.6 Properties of the generalized formulation; 2.6.1 Uniqueness; 2.6.2 Potential energy; 2.6.3 Error in the energy norm; 2.6.4 Continuity; 2.6.5 Convergence in the energy norm; 2.7 Error estimation based on extrapolation; 2.7.1 The root-mean-square measure of stress; 2.8 Extraction methods; 2.9 Laboratory exercises; 2.10 Chapter summary; 3 Formulation of mathematical models; 3.1 Notation; 3.2 Heat conduction; 3.2.1 The differential equation; 3.2.2 Boundary and initial conditions 3.2.3 Symmetry, antisymmetry and periodicity3.2.4 Dimensional reduction; 3.3 The scalar elliptic boundary value problem; 3.4 Linear elasticity; 3.4.1 The Navier equations; 3.4.2 Boundary and initial conditions; 3.4.3 Symmetry, antisymmetry and periodicity; 3.4.4 Dimensional reduction; 3.5 Incompressible elastic materials; 3.6 Stokes' flow; 3.7 The hierarchic view of mathematical models; 3.8 Chapter summary; 4 Generalized formulations; 4.1 The scalar elliptic problem; 4.1.1 Continuity; 4.1.2 Existence; 4.1.3 Approximation by the finite element method; 4.2 The principle of virtual work 4.3 Elastostatic problems4.3.1 Uniqueness; 4.3.2 The principle of minimum potential energy; 4.4 Elastodynamic models; 4.4.1 Undamped free vibration; 4.5 Incompressible materials; 4.5.1 The saddle point problem; 4.5.2 Poisson's ratio locking; 4.5.3 Solvability; 4.6 Chapter summary; 5 Finite element spaces; 5.1 Standard elements in two dimensions; 5.2 Standard polynomial spaces; 5.2.1 Trunk spaces; 5.2.2 Product spaces; 5.3 Shape functions; 5.3.1 Lagrange shape functions; 5.3.2 Hierarchic shape functions; 5.4 Mapping functions in two dimensions; 5.4.1 Isoparametric mapping 5.4.2 Mapping by the blending function method |
Record Nr. | UNINA-9910821005403321 |
Szabo B. A (Barna Aladar), <1935-> | ||
Chichester, West Sussex, : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to finite elements in engineering / / Tirupathi R. Chandrupatla, Ashok D. Belegundu ; international contributions by T. Ramesh, Chaitali Ray |
Autore | Chandrupatla Tirupathi R. <1944-> |
Edizione | [Fourth edition.] |
Pubbl/distr/stampa | Upper Saddle River : , : Pearson, , [2012] |
Descrizione fisica | 1 online resource (517 pages) : illustrations |
Disciplina | 620.001/51825 |
Collana | Always learning |
Soggetto topico |
Finite element method
Engineering mathematics |
ISBN | 1-292-01402-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- PREFACE -- ABOUT THE AUTHORS -- Contents -- 1 FUNDAMENTAL CONCEPTS -- 1.1 Introduction -- 1.2 Historical Background -- 1.3 Outline of Presentation -- 1.4 Stresses and Equilibrium -- 1.5 Boundary Conditions -- 1.6 Strain-Displacement Relations -- 1.7 Stress-Strain Relations -- Special Cases -- 1.8 Temperature Effects -- 1.9 Potential Energy and Equilibrium: The Rayleigh-Ritz Method -- Potential Energy,∏ -- Rayleigh-Ritz Method -- 1.10 Galerkin's Method -- 1.11 Saint Venant's Principle -- 1.12 Von Mises Stress -- 1.13 Principle of Superposition -- 1.14 Computer Programs -- 1.15 Conclusion -- Historical References -- Problems -- 2 MATRIX ALGEBRA AND GAUSSIAN ELIMINATION -- 2.1 Matrix Algebra -- Row and Column Vectors -- Addition and Subtraction -- Multiplication by a Scalar -- Matrix Multiplication -- Transposition -- Differentiation and Integration -- Square Matrix -- Diagonal Matrix -- Identity Matrix -- Symmetric Matrix -- Upper Triangular Matrix -- Determinant of a Matrix -- Matrix Inversion -- Eigenvalues and Eigenvectors -- Positive Definite Matrix -- Cholesky Decomposition -- 2.2 Gaussian Elimination -- General Algorithm for Gaussian Elimination -- Symmetric Matrix -- Symmetric Banded Matrices -- Solution with Multiple Right Sides -- Gaussian Elimination with Column Reduction -- Skyline Solution -- Frontal Solution -- 2.3 Conjugate Gradient Method for Equation Solving -- Conjugate Gradient Algorithm -- Input Data/Output -- Problems -- Program Listings -- 3 ONE-DIMENSIONAL PROBLEMS -- 3.1 Introduction -- 3.2 Finite Element Modeling -- Element Division -- Numbering Scheme -- 3.3 Shape Functions and Local Coordinates -- 3.4 The Potential-Energy Approach -- Element Stiffness Matrix -- Force Terms -- 3.5 The Galerkin Approach -- Element Stiffness -- Force Terms -- 3.6 Assembly of the Global Stiffness Matrix and Load Vector.
3.7 Properties of K -- 3.8 The Finite Element Equations: Treatment of Boundary Conditions -- Types of Boundary Conditions -- Elimination Approach -- Penalty Approach -- Multipoint Constraints -- 3.9 Quadratic Shape Functions -- 3.10 Temperature Effects -- 3.11 Problem Modeling and Boundary Conditions -- Problem in Equilibrium -- Symmetry -- Two Elements with Same End Displacements -- Problem with a Closing Gap -- Input Data/Output -- Problems -- Program Listing -- 4 TRUSSES -- 4.1 Introduction -- 4.2 Plane Trusses -- Local and Global Coordinate Systems -- Formulas for Calculating l and m -- Element Stiffness Matrix -- Stress Calculations -- Temperature Effects -- 4.3 Three-Dimensional Trusses -- 4.4 Assembly of Global Stiffness Matrix for the Banded and Skyline Solutions -- Assembly for Banded Solution -- Skyline Assembly -- 4.5 Problem Modeling and Boundary Conditions -- Inclined Support in Two Dimensions -- Inclined Support in Three Dimensions-Line Constraint -- Inclined Support in Three Dimensions-Plane Constraint -- Symmetry and Antisymmetry -- Input Data/Output -- Problems -- Program Listing -- 5 BEAMS AND FRAMES -- 5.1 Introduction -- Potential-Energy Approach -- Galerkin Approach -- 5.2 Finite Element Formulation -- Element Stiffness-Direct Approach -- 5.3 Load Vector -- 5.4 Boundary Considerations -- 5.5 Shear Force and Bending Moment -- 5.6 Beams on Elastic Supports -- 5.7 Plane Frames -- 5.8 Three-Dimensional Frames -- 5.9 Problem Modeling and Boundary Conditions -- 5.10 Some Comments -- Input Data/Output -- Problems -- Program Listings -- 6 TWO-DIMENSIONAL PROBLEMS USING CONSTANT STRAIN TRIANGLES -- 6.1 Introduction -- 6.2 Finite Element Modeling -- 6.3 Constant Strain Triangle (CST) -- Isoparametric Representation -- Potential-Energy Approach -- Element Stiffness -- Force Terms -- Integration Formula on a Triangle -- Galerkin Approach. Stress Calculations -- Temperature Effects -- 6.4 Problem Modeling and Boundary Conditions -- Some General Comments on Dividing into Elements -- 6.5 Patch Test and Convergence -- Patch Test -- 6.6 Orthotropic Materials -- Temperature Effects -- Input Data/Output -- Problems -- Program Listing -- 7 AXISYMMETRIC SOLIDS SUBJECTED TO AXISYMMETRIC LOADING -- 7.1 Introduction -- 7.2 Axisymmetric Formulation -- 7.3 Finite Element Modeling: Triangular Element -- Potential Energy Approach -- Body Force Term -- Rotating Flywheel -- Surface Traction -- Galerkin Approach -- Stress Calculations -- Temperature Effects -- 7.4 Problem Modeling and Boundary Conditions -- Cylinder Subjected to Internal Pressure -- Infinite Cylinder -- Press Fit on a Rigid Shaft -- Press Fit on an Elastic Shaft -- Belleville Spring -- Thermal Stress Problem -- Input Data/Output -- Problems -- Program Listing -- 8 TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS AND NUMERICAL INTEGRATION -- 8.1 Introduction -- 8.2 The Four-Node Quadrilateral -- Shape Functions -- Element Stiffness Matrix -- Element Force Vectors -- 8.3 Numerical Integration -- Two-Dimensional Integrals -- Stiffness Integration -- Stress Calculations -- 8.4 Higher Order Elements -- Nine-Node Quadrilateral -- Eight-Node Quadrilateral -- Six-Node Triangle -- Integration on a Triangle-Symmetric Points -- Integration on a Triangle-Degenerate Quadrilateral -- 8.5 Four-Node Quadrilateral for Axisymmetric Problems -- 8.6 Conjugate Gradient Implementation of the Quadrilateral Element -- 8.7 Concluding Remarks and Convergence -- 8.8 References for Convergence -- Input Data/Output -- Problems -- Program Listings -- 9 THREE-DIMENSIONAL PROBLEMS IN STRESS ANALYSIS -- 9.1 Introduction -- 9.2 Finite Element Formulation -- Element Stiffness -- Force Terms -- 9.3 Stress Calculations -- 9.4 Mesh Preparation. 9.5 Hexahedral Elements and Higher Order Elements -- 9.6 Problem Modeling -- 9.7 Frontal Method for Finite Element Matrices -- Connectivity and Prefront Routine -- Element Assembly and Consideration of Specified dof -- Elimination of Completed dof -- Backsubstitution -- Consideration of Multipoint Constraints -- Input Data/Output -- Problems -- Program Listings -- 10 SCALAR FIELD PROBLEMS -- 10.1 Introduction -- 10.2 Steady-State Heat Transfer -- One-Dimensional Heat Conduction -- One-Dimensional Heat Transfer in Thin Fins -- Two-Dimensional Steady-State Heat Conduction -- Two-Dimensional Fins -- Preprocessing for Program HEAT2D -- 10.3 Torsion -- Triangular Element -- Galerkin Approach[sup(2)] -- 10.4 Potential Flow, Seepage, Electric and Magnetic Fields, and Fluid Flow in Ducts -- Potential Flow -- Seepage -- Electrical and Magnetic Field Problems -- Fluid Flow in Ducts -- Acoustics -- Boundary Conditions -- One-Dimensional Acoustics -- One-Dimensional Axial Vibrations -- Two-Dimensional Acoustics -- 10.5 Conclusion -- Input Data/Output -- Problems -- Program Listings -- 11 DYNAMIC CONSIDERATIONS -- 11.1 Introduction -- 11.2 Formulation -- Solid Body with Distributed Mass -- 11.3 Element Mass Matrices -- 11.4 Evaluation of Eigenvalues and Eigenvectors -- Properties of Eigenvectors -- Eigenvalue-Eigenvector Evaluation -- Inverse Iteration Method -- Generalized Jacobi Method -- Tridiagonalization and Implicit Shift Approach -- Bringing Generalized Problem to Standard Form -- Tridiagonalization -- Implicit Symmetric QR Step with Wilkinson Shift for Diagonalization[sup(2)] -- 11.5 Interfacing with Previous Finite Element Programs and a Program for Determining Critical Speeds of Shafts -- 11.6 Guyan Reduction -- 11.7 Rigid Body Modes -- 11.8 Conclusion -- Input Data/Output -- Problems -- Program Listings -- 12 PREPROCESSING AND POSTPROCESSING. 12.1 Introduction -- 12.2 Mesh Generation -- Region and Block Representation -- Block Corner Nodes, Sides, and Subdivisions -- 12.3 Postprocessing -- Deformed Configuration and Mode Shape -- Contour Plotting -- Nodal Values from Known Constant Element Values for a Triangle -- Least-Squares Fit for a Four-Noded Quadrilateral -- 12.4 Conclusion -- Input Data/Output -- Problems -- Program Listings -- APPENDIX Proof of dA = det Jdξ dη -- BIBLIOGRAPHY -- ANSWERS TO SELECTED PROBLEMS -- INDEX. |
Record Nr. | UNINA-9910153151703321 |
Chandrupatla Tirupathi R. <1944-> | ||
Upper Saddle River : , : Pearson, , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mesh generation [[electronic resource] ] : application to finite elements / / Pascal Jean Frey, Paul-Louis George |
Autore | Frey Pascal Jean |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (850 p.) |
Disciplina |
620.001/51825
620.00151825 |
Altri autori (Persone) | GeorgePaul L |
Collana | ISTE |
Soggetto topico |
Finite element method
Numerical grid generation (Numerical analysis) Triangulation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-68783-2
9786612687839 0-470-61116-2 0-470-39379-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mesh Generation; Contents; Introduction; Symbols and Notations; 1 General Definitions; 1.1 Covering-up and triangulation; 1.2 Mesh. mesh element. finite element mesh; 1.3 Mesh data structures; 1.4 Control space and neighborhood space; 1.5 Mesh quality and mesh optimality; 2 Basic Structures and Algorithms; 2.1 Why use data structures?; 2.2 Elementary structures; 2.3 Basic notions about complexity; 2.4 Sorting and searching; 2.5 One-dimensional data structures; 2.6 Two and three-dimensional data structures; 2.7 Topological data structures; 2.8 Robustness; 2.9 Optimality of an implementation
2.10 Examples of generic algorithms3 A Comprehensive Survey of Mesh Generation Methods; 3.1 Classes of methods; 3.2 Structured mesh generators; 3.2.1 Algebraic interpolation methods; 3.2.2 PDE-based methods; 3.2.3 Multiblock method; 3.2.4 Product method (topology-based method); 3.3 Unstructured mesh generators; 3.3.1 Spatial decomposition methods; 3.3.2 Advancing-front method; 3.3.3 Delaunay technique; 3.3.4 Tentative comparison of the three classical methods; 3.3.5 Other methods; 3.4 Surface meshing; 3.4.1 Mesh generation via a parametric space; 3.4.2 Implicit surface triangulation 3.4.3 Direct surface meshing3.4.4 Surface remeshing; 3.5 Mesh adaptation; 3.6 Parallel unstructured meshing; 4 Algebraic, PDE and Multiblock Methods; 4.1 Algebraic methods; 4.1.1 Trivial mapping functions; 4.1.2 Quadrilateral or triangular analogy; 4.1.3 Surface meshing; 4.1.4 Hexahedral, pentahedral or tetrahedral analogy; 4.1.5 Other algebraic methods and alternative methods; 4.2 PDE-based methods; 4.2.1 Basic ideas; 4.2.2 Surface meshing and complex shapes; 4.3 Multiblock method; 4.3.1 Basic ideas; 4.3.2 Partitioning the domain; 4.3.3 Computational issues and application examples 5 Quadtree-octree Based Methods5.1 Overview of spatial decomposition methods; 5.2 Classical tree-based mesh generation; 5.3 Governed tree-based method; 5.4 Other approaches; 5.5 Extensions; 6 Advancing-front Technique for Mesh Generation; 6.1 A classical advancing-front technique; 6.2 Governed advancing-front method; 6.3 Application examples; 6.4 Combined approaches; 6.5 Extensions; 7 Delaunay-based Mesh Generation Methods; 7.1 VoronoЈі diagram and Delaunay triangulation; 7.2 Constrained triangulation; 7.2.1 Maintaining a constrained entity; 7.2.2 Enforcing a constraint 7.3 Classical Delaunay meshing7.3.1 Simplified Delaunay type triangulation method; 7.3.2 Boundary integrity and domain identification; 7.3.3 Field point creation; 7.3.4 Optimization; 7.3.5 Practical issues; 7.3.6 Application examples; 7.4 Other methods; 7.4.1 Point insertion methods; 7.4.2 Field point creation; 7.4.3 Boundary enforcement; 7.5 Isotropic governed Delaunay meshing; 7.6 Extensions; 7.6.1 Weighted Delaunay triangulation; 7.6.2 Anisotropic Delaunay meshing; 7.6.3 Surface meshing; 8 Other Types of Mesh Generation Methods; 8.1 Product method; 8.2 Grid or pattern-based methods 8.3 Optimization-based method |
Record Nr. | UNINA-9910139624903321 |
Frey Pascal Jean | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|