The Biological and Clinical Aspects of Merkel Cell Carcinoma / / edited by Virve Koljonen, Weng-Onn Lui and Jürgen Becker |
Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 |
Descrizione fisica | 1 online resource |
Disciplina | 616.99461 |
Soggetto topico |
Life (Biology)
Life sciences Carcinoma, Renal Cell |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910734354803321 |
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Clear Cell Renal Cell Carcinoma 2021-2022 / / Claudia Manini and José I. López |
Autore | Manini Claudia |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022 |
Descrizione fisica | 1 online resource (342 pages) |
Disciplina | 616.99461 |
Soggetto topico |
Biomedical materials
Carcinoma, Renal Cell |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910674386903321 |
Manini Claudia | ||
Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Emerging research and treatments in renal cell carcinoma / / edited by Robert J. Amato |
Pubbl/distr/stampa | Rijeka, Croatia : , : IntechOpen, , [2012] |
Descrizione fisica | 1 online resource (454 pages) : illustrations |
Disciplina | 616.99461 |
Soggetto topico | Renal cell carcinoma |
ISBN | 953-51-6803-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910317650703321 |
Rijeka, Croatia : , : IntechOpen, , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A Guide to Management of Urological Cancers / / edited by Prabhjot Singh, Brusabhanu Nayak, Sridhar Panaiyadiyan |
Autore | Singh Prabhjot |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 616.99461 |
Altri autori (Persone) |
NayakBrusabhanu
PanaiyadiyanSridhar |
Soggetto topico |
Oncology
Urology Genitourinary organs - Surgery Urological Surgery |
ISBN | 981-9923-41-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Diagnosis and clinical staging -- Management -- Pathological staging -- Adjuvant treatment and follow-up -- Diagnosis and clinical staging -- Management -- Pathological staging -- Adjuvant treatment and follow-up. |
Record Nr. | UNINA-9910747593003321 |
Singh Prabhjot | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Innovations in nephrology : breakthrough technologies in kidney disease care / / edited by Geraldo Bezerra da Silva and Masaomi Nangaku |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (538 pages) |
Disciplina | 616.99461 |
Soggetto topico |
Nephrology
Kidneys - Displacement |
ISBN | 3-031-11570-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910624377403321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Kidney and kidney tumor segmentation : MICCAI 2021 Challenge, KiTS 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, proceedings / / edited by Nicholas Heller, [and five others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (173 pages) |
Disciplina | 616.99461 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Electronic data processing
Punched card systems |
ISBN | 3-030-98385-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- Automated Kidney Tumor Segmentation with Convolution and Transformer Network -- 1 Introduction -- 2 Related Work -- 2.1 Medical Image Segmentation -- 2.2 Self-attention Mechanism -- 3 Methods -- 3.1 Network Architecture -- 3.2 Loss Function -- 3.3 Pre- and post- processing -- 3.4 Implementation Details -- 4 Results -- 4.1 Dataset -- 4.2 Metrics -- 4.3 Results on KITS21 Training Set -- 4.4 Results on KITS21 Test Set -- 5 Discussion and Conclusion -- References -- Extraction of Kidney Anatomy Based on a 3D U-ResNet with Overlap-Tile Strategy -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 2.4 Postprocessing -- 3 Results -- 4 Discussion and Conclusion -- References -- Modified nnU-Net for the MICCAI KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- 2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Automated Machine Learning Algorithm for Kidney, Kidney Tumor, Kidney Cyst Segmentation in Computed Tomography Scans -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Network Architecture -- 2.4 Network Training -- 3 Results -- 4 Discussion and Conclusion -- References -- Three Uses of One Neural Network: Automatic Segmentation of Kidney Tumor and Cysts Based on 3D U-Net -- 1 Introduction -- 2 Methods -- 2.1 Network Architecture -- 2.2 Segmentation from Low-Resolution CT -- 2.3 Fine Segmentation of Kidney -- 2.4 Segmentation of Tumor and Cysts -- 2.5 Training Protocols -- 3 Results.
4 Discussion and Conclusion -- References -- Less is More: Contrast Attention Assisted U-Net for Kidney, Tumor and Cyst Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Network Architecture -- 3 Results -- 4 Discussion and Conclusion -- References -- A Coarse-to-Fine Framework for the 2021 Kidney and Kidney Tumor Segmentation Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 3.1 Metric -- 3.2 Results and Discussions -- 4 Conclusion -- References -- Kidney and Kidney Tumor Segmentation Using a Two-Stage Cascade Framework -- 1 Introduction -- 2 Methods -- 2.1 Kidney-Net -- 2.2 Masses-Net -- 2.3 Loss Function -- 3 Experiment -- 3.1 Datasets -- 3.2 Pre-processing and Post-processing -- 3.3 Training and Implementation Details -- 3.4 Metrics -- 4 Results and Discussion -- 5 Conclusion -- References -- Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT Images -- 1 Introduction -- 2 Method -- 2.1 Architecture -- 2.2 Squeeze-and-Excitation Module -- 2.3 Deep Supervision -- 2.4 Loss Function -- 3 Experiments -- 3.1 Datasets -- 3.2 Metrics -- 3.3 Pre- and Post-processing -- 3.4 Implementation Details -- 4 Result -- 5 Discussion and Conclusion -- References -- A Two-Stage Cascaded Deep Neural Network with Multi-decoding Paths for Kidney Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Kidney Localization Network -- 2.2 Multi-decoding Segmentation Network -- 2.3 Global Context Fusion Block -- 2.4 Regional Constraint Loss Function -- 3 Experimental Results -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Conclusion -- References -- Mixup Augmentation for Kidney and Kidney Tumor Segmentation -- 1 Introduction -- 2 Methods. 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion -- References -- Automatic Segmentation in Abdominal CT Imaging for the KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans -- 1 Introduction -- 2 nnU-Net Determined Details -- 2.1 3D U-Net Network Architecture -- 2.2 3D U-Net Cascade Network Architecture -- 2.3 Preprocessing -- 2.4 Training Details -- 3 Method -- 3.1 Training and Validation Data -- 3.2 Pretraining -- 3.3 Annotations -- 3.4 Regularized Loss -- 3.5 Postprocessing -- 3.6 Final Submission -- 4 Results -- 4.1 Single-Stage, High-Resolution 3D U-Net -- 4.2 3D U-Net Cascade -- 4.3 Model Ensemble -- 4.4 Postprocessing -- 4.5 Test Set Results -- 5 Discussion and Conclusions -- References -- Contrast-Enhanced CT Renal Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- A Cascaded 3D Segmentation Model for Renal Enhanced CT Images -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on CT -- 1 Introduction -- 2 Materials and Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Baseline 3D U-Net -- 2.4 Cognizant Sampling Leveraging Clinical Characteristics -- 2.5 Statistical Evaluation -- 3 Results -- 4 Discussion and Conclusion -- References. A Coarse-to-Fine 3D U-Net Network for Semantic Segmentation of Kidney CT Scans -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Data Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- 3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Network Architecture -- 2.4 Loss Function -- 2.5 Optimization Strategy -- 2.6 Validation -- 2.7 Post-processing -- 3 Results -- 4 Discussion and Conclusion -- References -- Kidney and Kidney Tumor Segmentation Using Spatial and Channel Attention Enhanced U-Net -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Data Augmentations -- 2.4 Proposed Method -- 2.5 Residual U-Net for Comparison -- 2.6 Implementation and Training -- 2.7 Inference Procedure -- 3 Results -- 4 Conclusion -- References -- Transfer Learning for KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Author Index. |
Record Nr. | UNISA-996464542303316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Kidney and kidney tumor segmentation : MICCAI 2021 Challenge, KiTS 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, proceedings / / edited by Nicholas Heller, [and five others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (173 pages) |
Disciplina | 616.99461 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Electronic data processing
Punched card systems |
ISBN | 3-030-98385-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- Automated Kidney Tumor Segmentation with Convolution and Transformer Network -- 1 Introduction -- 2 Related Work -- 2.1 Medical Image Segmentation -- 2.2 Self-attention Mechanism -- 3 Methods -- 3.1 Network Architecture -- 3.2 Loss Function -- 3.3 Pre- and post- processing -- 3.4 Implementation Details -- 4 Results -- 4.1 Dataset -- 4.2 Metrics -- 4.3 Results on KITS21 Training Set -- 4.4 Results on KITS21 Test Set -- 5 Discussion and Conclusion -- References -- Extraction of Kidney Anatomy Based on a 3D U-ResNet with Overlap-Tile Strategy -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 2.4 Postprocessing -- 3 Results -- 4 Discussion and Conclusion -- References -- Modified nnU-Net for the MICCAI KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- 2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Automated Machine Learning Algorithm for Kidney, Kidney Tumor, Kidney Cyst Segmentation in Computed Tomography Scans -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Network Architecture -- 2.4 Network Training -- 3 Results -- 4 Discussion and Conclusion -- References -- Three Uses of One Neural Network: Automatic Segmentation of Kidney Tumor and Cysts Based on 3D U-Net -- 1 Introduction -- 2 Methods -- 2.1 Network Architecture -- 2.2 Segmentation from Low-Resolution CT -- 2.3 Fine Segmentation of Kidney -- 2.4 Segmentation of Tumor and Cysts -- 2.5 Training Protocols -- 3 Results.
4 Discussion and Conclusion -- References -- Less is More: Contrast Attention Assisted U-Net for Kidney, Tumor and Cyst Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Network Architecture -- 3 Results -- 4 Discussion and Conclusion -- References -- A Coarse-to-Fine Framework for the 2021 Kidney and Kidney Tumor Segmentation Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 3.1 Metric -- 3.2 Results and Discussions -- 4 Conclusion -- References -- Kidney and Kidney Tumor Segmentation Using a Two-Stage Cascade Framework -- 1 Introduction -- 2 Methods -- 2.1 Kidney-Net -- 2.2 Masses-Net -- 2.3 Loss Function -- 3 Experiment -- 3.1 Datasets -- 3.2 Pre-processing and Post-processing -- 3.3 Training and Implementation Details -- 3.4 Metrics -- 4 Results and Discussion -- 5 Conclusion -- References -- Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT Images -- 1 Introduction -- 2 Method -- 2.1 Architecture -- 2.2 Squeeze-and-Excitation Module -- 2.3 Deep Supervision -- 2.4 Loss Function -- 3 Experiments -- 3.1 Datasets -- 3.2 Metrics -- 3.3 Pre- and Post-processing -- 3.4 Implementation Details -- 4 Result -- 5 Discussion and Conclusion -- References -- A Two-Stage Cascaded Deep Neural Network with Multi-decoding Paths for Kidney Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Kidney Localization Network -- 2.2 Multi-decoding Segmentation Network -- 2.3 Global Context Fusion Block -- 2.4 Regional Constraint Loss Function -- 3 Experimental Results -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Conclusion -- References -- Mixup Augmentation for Kidney and Kidney Tumor Segmentation -- 1 Introduction -- 2 Methods. 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion -- References -- Automatic Segmentation in Abdominal CT Imaging for the KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans -- 1 Introduction -- 2 nnU-Net Determined Details -- 2.1 3D U-Net Network Architecture -- 2.2 3D U-Net Cascade Network Architecture -- 2.3 Preprocessing -- 2.4 Training Details -- 3 Method -- 3.1 Training and Validation Data -- 3.2 Pretraining -- 3.3 Annotations -- 3.4 Regularized Loss -- 3.5 Postprocessing -- 3.6 Final Submission -- 4 Results -- 4.1 Single-Stage, High-Resolution 3D U-Net -- 4.2 3D U-Net Cascade -- 4.3 Model Ensemble -- 4.4 Postprocessing -- 4.5 Test Set Results -- 5 Discussion and Conclusions -- References -- Contrast-Enhanced CT Renal Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- A Cascaded 3D Segmentation Model for Renal Enhanced CT Images -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on CT -- 1 Introduction -- 2 Materials and Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Baseline 3D U-Net -- 2.4 Cognizant Sampling Leveraging Clinical Characteristics -- 2.5 Statistical Evaluation -- 3 Results -- 4 Discussion and Conclusion -- References. A Coarse-to-Fine 3D U-Net Network for Semantic Segmentation of Kidney CT Scans -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Data Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- 3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Network Architecture -- 2.4 Loss Function -- 2.5 Optimization Strategy -- 2.6 Validation -- 2.7 Post-processing -- 3 Results -- 4 Discussion and Conclusion -- References -- Kidney and Kidney Tumor Segmentation Using Spatial and Channel Attention Enhanced U-Net -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Data Augmentations -- 2.4 Proposed Method -- 2.5 Residual U-Net for Comparison -- 2.6 Implementation and Training -- 2.7 Inference Procedure -- 3 Results -- 4 Conclusion -- References -- Transfer Learning for KiTS21 Challenge -- 1 Introduction -- 2 Methods -- 2.1 Training and Validation Data -- 2.2 Preprocessing -- 2.3 Proposed Method -- 3 Results -- 4 Discussion and Conclusion -- References -- Author Index. |
Record Nr. | UNINA-9910556885903321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Kidney cancer : recent advances in surgical and molecular pathology / / edited by Mukul K. Divatia, Ayhan Ozcan, Charles C. Guo, Jae Y. Ro |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (xi, 445 pages) |
Disciplina |
616.07
616.99461 |
Soggetto topico |
Kidneys - Cancer - Molecular aspects
Surgical oncology Interventional radiology Pathology Urology Surgical Oncology Interventional Radiology |
ISBN | 3-030-28333-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Surgical Considerations in Renal Tumors -- Renal Cell Carcinoma: The Oncologist’s Point of View -- Normal Anatomy and Histology of the Kidney: Importance for Kidney Tumors -- Benign Renal Epithelial / Epithelial and Stromal Tumors -- Major Subtypes of Renal Cell Carcinoma -- New and Emerging Subtypes of Renal Cell Carcinoma -- Renal Mass Biopsy -- Mesenchymal Kidney Tumors -- Pediatric Renal Tumors: Diagnostic Updates -- Neuroendocrine Kidney Tumors -- Hereditary Syndromes Associated with Kidney Tumors -- Lymphoid Neoplasms of the Kidney -- Tumors of the Renal Pelvis -- Non-Neoplastic Changes in Nephrectomy Specimens for Tumors -- Application of Immunohistochemistry in Diagnosis of Renal Cell Neoplasms -- Cytology of Kidney Tumors -- Diagnostic Imaging in Renal Tumors. Molecular Pathology of Kidney Tumors -- Targeted Treatment of Renal Cell Carcinoma -- Specimen Handling: Radical and Partial Nephrectomy Specimens -- Staging and Reporting of Renal Cell Carcinomas. |
Record Nr. | UNINA-9910369953603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Management of urological cancers in older people / / Jean-Pierre Droz, Riccardo A. Audisio, editors ; Riccardo A. Audisio, series editor |
Autore | Droz Jean-Pierre |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | London, : Springer, 2013 |
Descrizione fisica | 1 online resource (366 p.) |
Disciplina |
616.9946
616.99461 |
Altri autori (Persone) | AudisioRiccardo A |
Collana | Management of cancer in older people |
Soggetto topico |
Genitourinary organs - Cancer
Geriatric oncology |
ISBN | 0-85729-999-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Background and epidemiology -- pt. 2. Prostate cancer : general considerations -- pt. 3. Prostate cancer : localized disease -- pt. 4. Prostate cancer : metastatic disease -- pt. 5. Bladder cancer -- pt. 6. Renal cancer -- pt. 7. Rare cancers. |
Record Nr. | UNINA-9910438019603321 |
Droz Jean-Pierre | ||
London, : Springer, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Principles and Practice of Urooncology : Radiotherapy, Surgery and Systemic Therapy / / edited by Gokhan Ozyigit, Ugur Selek |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (445 pages) : illustrations (some color) |
Disciplina | 616.99461 |
Soggetto topico |
Radiotherapy
Oncology Urology Oncology |
ISBN | 3-319-56114-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Selection criteria based on Radiation Oncology perspective for definitive treatment approaches in urological cancers -- Radiological imaging in urological cancers -- The role of functional imaging in urological cancers -- Surgery in renal cell cancer -- Systemic therapies in renal cell cancer -- The role of radiotherapy in renal cell cancer -- Screening of prostate cancer: Pros and Cons -- Risk groupings in prostate cancer -- Active surveillance in low risk cancer: Pros and Cons -- Alternative focal therapies in low-risk prostate cancer: HiFU and Cryotherapy -- Robotic surgery in prostate cancer -- Radical retropubic prostatectomy in low-high risk prostate cancer -- Guidelines for the delineation of primary tumor target volume in prostate cancer -- Guidelines for the delineation of lymphatic target volumes in prostate cancer -- Modern radiotherapy techniques in prostate cancers -- Protontherapy for prostate cancer -- Brachytherapy for prostate cancer -- Stereotactic body radiotherapy for prostate cancer -- The role of hormonal therapies and radiotherapy in prostate cancer -- The role of hormonal therapies after surgery -- PSA after radiotherapy: Biochemical failure and PSA bounce -- Adjuvant and Salvage Radiotherapy in prostate cancer -- Reirradiation in prostate cancer -- Systemic chemotherapies in the management of prostate cancer -- Translational research and immunotherapy in prostate cancer -- Surgery in superficial and invasive bladder cancer -- Target volume delineation guidelines in bladder cancer -- Bladder preservation therapies in bladder cancer -- Systemic chemotherapies in bladder cancers -- Translational research and immunotherapy in bladder cancer -- Radiolabelled targeted therapies in urological tumors -- Radiation induced toxicity and related management strategies on urological malignancies -- Quality assurance of modern radiotherapy techniques in urological malignancies. |
Record Nr. | UNINA-9910254489703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|