top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Brain tumors / / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Brain tumors / / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Autore Greenberg Harry <1946->
Edizione [1st ed.]
Pubbl/distr/stampa New York ; , : Oxford University Press, , 2023
Descrizione fisica 1 online resource (367 p.)
Disciplina 616.99281
Collana Contemporary neurology series
Oxford scholarship online
Soggetto topico Brain - Tumors
ISBN 0-19-770583-9
1-280-83124-3
9786610831241
0-19-802965-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; 1. BRAIN TUMOR CLASSIFICATION, GRADING, AND EPIDEMIOLOGY; 2. BRAIN TUMOR BIOLOGY; 3. TUMOR IMAGING AND RESPONSE; 4. SURGERY FOR BRAIN TUMORS; 5. RADIATION THERAPY FOR BRAIN TUMORS: CURRENT PRACTICE; 6. RADIATION THERAPY FOR BRAIN TUMORS: RECENT ADVANCES AND EXPERIMENTAL METHODS; 7. BRAIN TUMOR CHEMOTHERAPY AND IMMUNOTHERAPY; 8. MALIGNANT ASTROCYTOMA; 9. PILOCYTIC ASTROCYTOMA, LOW-GRADE ASTROCYTOMA, AND OTHER ""BENIGN"" NEUROEPITHELIAL NEOPLASMS; 10. OLIGODENDROGLIOMA AND OLIGO-ASTROCYTOMA; 11. POSTERIOR FOSSA TUMORS; 12. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA
13. PITUITARY AND PINEAL REGION TUMORS14. EXTRA-AXIAL BRAIN TUMORS; 15. BRAIN METASTASES; INDEX
Record Nr. UNINA-9910972479803321
Greenberg Harry <1946->  
New York ; , : Oxford University Press, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brain tumors [[electronic resource] /] / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Brain tumors [[electronic resource] /] / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Autore Greenberg Harry <1946->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (367 p.)
Disciplina 616.99281
Altri autori (Persone) ChandlerWilliam F
SandlerHoward M <1956-> (Howard Mark)
Collana Contemporary neurology series
Soggetto topico Brain - Tumors
Oncology
Soggetto genere / forma Electronic books.
ISBN 1-280-83124-3
9786610831241
0-19-802965-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; 1. BRAIN TUMOR CLASSIFICATION, GRADING, AND EPIDEMIOLOGY; 2. BRAIN TUMOR BIOLOGY; 3. TUMOR IMAGING AND RESPONSE; 4. SURGERY FOR BRAIN TUMORS; 5. RADIATION THERAPY FOR BRAIN TUMORS: CURRENT PRACTICE; 6. RADIATION THERAPY FOR BRAIN TUMORS: RECENT ADVANCES AND EXPERIMENTAL METHODS; 7. BRAIN TUMOR CHEMOTHERAPY AND IMMUNOTHERAPY; 8. MALIGNANT ASTROCYTOMA; 9. PILOCYTIC ASTROCYTOMA, LOW-GRADE ASTROCYTOMA, AND OTHER ""BENIGN"" NEUROEPITHELIAL NEOPLASMS; 10. OLIGODENDROGLIOMA AND OLIGO-ASTROCYTOMA; 11. POSTERIOR FOSSA TUMORS; 12. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA
13. PITUITARY AND PINEAL REGION TUMORS14. EXTRA-AXIAL BRAIN TUMORS; 15. BRAIN METASTASES; INDEX
Record Nr. UNINA-9910454093203321
Greenberg Harry <1946->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brain tumors [[electronic resource] /] / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Brain tumors [[electronic resource] /] / Harry S. Greenberg, William F. Chandler, Howard M. Sandler
Autore Greenberg Harry <1946->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (367 p.)
Disciplina 616.99281
Altri autori (Persone) ChandlerWilliam F
SandlerHoward M <1956-> (Howard Mark)
Collana Contemporary neurology series
Soggetto topico Brain - Tumors
Oncology
ISBN 0-19-770583-9
1-280-83124-3
9786610831241
0-19-802965-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; 1. BRAIN TUMOR CLASSIFICATION, GRADING, AND EPIDEMIOLOGY; 2. BRAIN TUMOR BIOLOGY; 3. TUMOR IMAGING AND RESPONSE; 4. SURGERY FOR BRAIN TUMORS; 5. RADIATION THERAPY FOR BRAIN TUMORS: CURRENT PRACTICE; 6. RADIATION THERAPY FOR BRAIN TUMORS: RECENT ADVANCES AND EXPERIMENTAL METHODS; 7. BRAIN TUMOR CHEMOTHERAPY AND IMMUNOTHERAPY; 8. MALIGNANT ASTROCYTOMA; 9. PILOCYTIC ASTROCYTOMA, LOW-GRADE ASTROCYTOMA, AND OTHER ""BENIGN"" NEUROEPITHELIAL NEOPLASMS; 10. OLIGODENDROGLIOMA AND OLIGO-ASTROCYTOMA; 11. POSTERIOR FOSSA TUMORS; 12. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA
13. PITUITARY AND PINEAL REGION TUMORS14. EXTRA-AXIAL BRAIN TUMORS; 15. BRAIN METASTASES; INDEX
Record Nr. UNINA-9910782473503321
Greenberg Harry <1946->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries : 6th International Workshop, BrainLes 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, revised selected papers, part II / / Alessandro Crimi, Spyridon Bakas (editors)
Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries : 6th International Workshop, BrainLes 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, revised selected papers, part II / / Alessandro Crimi, Spyridon Bakas (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (539 pages)
Disciplina 616.99281
Collana Lecture Notes in Computer Science
Soggetto topico Brain - Tumors
Brain - Wounds and injuries
Cerebrovascular disease
ISBN 3-030-72087-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Brain Tumor Segmentation -- Lightweight U-Nets for Brain Tumor Segmentation -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Data Pre-processing -- 3.2 Our Deep Network Architecture -- 4 Experimental Study -- 4.1 Setup -- 4.2 The Results -- 5 Conclusions -- References -- Efficient Brain Tumour Segmentation Using Co-registered Data and Ensembles of Specialised Learners -- 1 Introduction -- 2 Related Work -- 2.1 BraTS: Challenge and Data Set -- 2.2 Related Literature -- 3 Methodology -- 3.1 Data Pre-processing -- 3.2 Model Architecture -- 4 Empirical Evaluation -- 4.1 Results -- 4.2 Performance Comparison -- 4.3 Analysis -- 4.4 Impact and Implications of Loss Functions -- 4.5 Performance Evaluation -- 5 Discussion -- 6 Conclusions and Future Work -- References -- Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Segmentation -- 2.3 Survival Prediction -- 3 Results -- 3.1 Segmentation Task -- 3.2 Survival Prediction -- 4 Conclusion -- References -- Trialing U-Net Training Modifications for Segmenting Gliomas Using Open Source Deep Learning Framework -- 1 Introduction -- 2 Methods -- 2.1 Data -- 2.2 Model Architecture -- 2.3 Augmentation -- 2.4 Training -- 3 Experiments -- 3.1 Effects of Thresholding -- 3.2 Contours, Permutations, and Grouped Labels -- 3.3 Ensembles -- 3.4 Test Set -- 4 Results -- 4.1 Effects of Thresholding -- 4.2 Contours, Permutations, and Grouped Labels -- 4.3 Ensembles -- 4.4 Test Set Results -- 5 Discussion -- 6 Conclusion -- References -- HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation -- 1 Introduction -- 2 Proposed Method -- 3 Implementation Details -- 3.1 Dataset -- 3.2 Experiments -- 3.3 Evaluation Metrics -- 3.4 Results.
4 Conclusion -- References -- H2NF-Net for Brain Tumor Segmentation Using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task -- 1 Introduction -- 2 Dataset -- 3 Method -- 3.1 Single HNF-Net -- 3.2 Cascaded HNF-Net -- 4 Experiments and Results -- 4.1 Implementation Details -- 4.2 Results on the BraTS 2020 Challenge Dataset -- 5 Conclusion -- References -- 2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Attention U-Net with Dimension-Hybridized Fast Data Density Functional Theory for Automatic Brain Tumor Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Normalization and Augmentation -- 2.2 Feature Pre-extraction Using Fast Data Density Functional Theory -- 2.3 Encoder, Decoder, and Attention Block -- 2.4 Optimization -- 3 Results -- 4 Conclusion -- References -- MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Preprocessing -- 2.2 Network Architecture -- 2.3 Loss -- 2.4 Optimization -- 3 Experiments and Results -- 4 Conclusion -- References -- Glioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processing -- 1 Introduction -- 1.1 Related Work -- 2 Data -- 3 Methods -- 3.1 Preprocessing -- 3.2 Model -- 3.3 Loss Function -- 3.4 Training -- 3.5 Post Processing -- 4 Performance Evaluation -- 5 Conclusion -- References -- nnU-Net for Brain Tumor Segmentation -- 1 Introduction -- 2 Method -- 2.1 Rankings Should Be Used for Model Selection -- 2.2 nnU-Net Baseline -- 2.3 BraTS-Specific Optimizations -- 2.4 Further nnU-Net Modifications -- 3 Results -- 3.1 Aggregated Scores -- 3.2 Internal BraTS-Like Ranking -- 3.3 Qualitative Results -- 3.4 Test Set Results -- 4 Discussion -- References.
A Deep Random Forest Approach for Multimodal Brain Tumor Segmentation -- 1 Introduction -- 2 Proposed Architecture -- 3 Experimental Results -- 3.1 Dataset -- 3.2 Preprocessing -- 3.3 Feature Generation -- 3.4 Implementation Details -- 3.5 Performance -- 4 Conclusion -- References -- Brain Tumor Segmentation and Associated Uncertainty Evaluation Using Multi-sequences MRI Mixture Data Preprocessing -- 1 Introduction -- 2 Datasets Description -- 2.1 BraTS Dataset -- 2.2 Siberian Brain Tumor Dataset -- 3 Methods -- 4 Results -- 5 Conclusions -- References -- A Deep Supervision CNN Network for Brain Tumor Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Main Network -- 3.2 Deep Supervision Method -- 3.3 Loss Functions -- 4 Experiments -- 4.1 Pre-processing -- 4.2 Post-processing -- 4.3 Training Details -- 5 Results -- 6 Conclusion -- References -- Multi-threshold Attention U-Net (MTAU) Based Model for Multimodal Brain Tumor Segmentation in MRI Scans -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Model Architecture -- 3 Figures of Merit -- 3.1 Dice Coefficient (DSC) -- 3.2 Sensitivity (SN) -- 3.3 Specificity (SP) -- 3.4 Hausdorff Distance (h) -- 4 Results and Discussions -- 5 Conclusions -- References -- Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Deep Layer Aggregation -- 2.2 Loss Function -- 3 Experimental Setup -- 3.1 Data -- 3.2 Pre-processing and Data Augmentation -- 3.3 Settings and Model Training -- 3.4 Post-processing -- 4 Results -- 5 Conclusion -- References -- Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fusion -- 1 Introduction -- 2 Proposed Methodology -- 2.1 Segmentation Task -- 2.2 Survival Prediction Task -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 4 Results.
5 Conclusion -- References -- Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for Brain Tumor Segmentation: BraTS 2020 Challenge -- 1 Introduction -- 2 Method: Varying the Three Main Ingredients of the Optimization of Deep Neural Networks -- 2.1 Changing the Per-Sample Loss Function: The Generalized Wasserstein Dice Loss ch18fidon2017generalised -- 2.2 Changing the Optimization Problem: Distributionally Robust Optimization ch18fidon2020sgd -- 2.3 Changing the Optimizer: Ranger ch18liu2019variance,ch18zhang2019lookahead -- 2.4 Deep Neural Networks Ensembling -- 3 Experiments and Results -- 3.1 Data and Implementation Details -- 3.2 Models Description -- 3.3 Mean Segmentation Performance -- 3.4 Robustness Performance -- 4 Conclusion -- References -- 3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction -- 1 Introduction -- 1.1 Literature Review: BraTS 2019 -- 2 Dataset -- 3 Proposed Method -- 3.1 Task 1: Tumor Segmentation -- 3.2 Task 2: Overall Survival Prediction -- 4 Implementation Details -- 4.1 Pre-processing -- 4.2 Training -- 4.3 Post-processing -- 5 Results -- 5.1 Segmentation -- 5.2 OS Prediction -- 6 Conclusion -- References -- Segmentation, Survival Prediction, and Uncertainty Estimation of Gliomas from Multimodal 3D MRI Using Selective Kernel Networks -- 1 Introduction -- 2 Methods -- 2.1 Preprocessing -- 2.2 Network Architecture -- 2.3 Loss Function -- 2.4 Optimization -- 2.5 Inference -- 2.6 Postprocessing -- 2.7 Overall Survival Prediction -- 2.8 Uncertainty Estimation -- 3 Results -- 3.1 Validation Set -- 3.2 Testing Set -- 4 Discussion and Conclusion -- References -- 3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing and Post-processing -- 2.3 Segmentation Pipeline.
2.4 Survival Prediction Pipeline -- 2.5 Training -- 2.6 Uncertainty Estimation -- 3 Experiments and Results -- 3.1 Segmentation Performance -- 3.2 Survival Prediction -- 3.3 Evaluation of Uncertainty Measures in Segmentation -- 4 Discussion -- 5 Conclusions -- References -- Brain Tumour Segmentation Using Probabilistic U-Net -- 1 Introduction -- 2 Data -- 2.1 Preprocessing -- 3 Architecture -- 3.1 Probabilistic UNet -- 3.2 Attention -- 4 Training Details -- 5 Visualization and Analysis -- 5.1 Probabilistic UNet -- 5.2 Attention Maps -- 6 Results -- 7 Discussion and Future Scope -- 8 Conclusion -- References -- Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Data Standardization -- 3.2 Our U-Net-Based Architecture -- 3.3 Post-processing -- 3.4 Regularization Strategies -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Training Process -- 4.3 The Results -- 5 Conclusion -- References -- A Deep Supervised U-Attention Net for Pixel-Wise Brain Tumor Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Evaluation Metrics -- 2.3 Loss Function -- 3 Experiments -- 3.1 Dataset Description -- 3.2 Data Pre-processing -- 3.3 Data Augmentation -- 3.4 Label Distribution -- 3.5 Training Procedure -- 4 Results -- 5 Conclusion -- References -- A Two-Stage Atrous Convolution Neural Network for Brain Tumor Segmentation and Survival Prediction -- 1 Introduction -- 2 Data -- 3 The Segmentation Algorithm -- 3.1 Brief Description of the Model -- 3.2 Details of the First Stage -- 3.3 Details of the Second Stage -- 3.4 Preprocessing -- 3.5 Training Details -- 3.6 Inference -- 3.7 Results -- 4 Overall Survival Prediction -- 4.1 Feature Extraction -- 4.2 Results -- 5 Conclusion -- References -- TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data -- 1 Introduction.
2 Methods.
Record Nr. UNISA-996464433103316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Brainlesion . Part I : glioma, multiple sclerosis, stroke and traumatic brain injuries : 6th International Workshop, BrainLes 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, revised selected papers / / Alessandro Crimi, Spyridon Bakas (editors)
Brainlesion . Part I : glioma, multiple sclerosis, stroke and traumatic brain injuries : 6th International Workshop, BrainLes 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, revised selected papers / / Alessandro Crimi, Spyridon Bakas (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (544 pages)
Disciplina 616.99281
Collana Lecture Notes in Computer Science
Soggetto topico Brain - Tumors
ISBN 3-030-72084-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Invited Papers -- Glioma Diagnosis and Classification: Illuminating the Gold Standard -- 1 Features of Infiltrating Gliomas -- 1.1 Introduction -- 1.2 The Importance of IDH Mutations in Infiltrating Gliomas -- 1.3 Diagnostic Format -- 1.4 Refining Diagnoses and Improving Patient Care -- References -- Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods -- 1 Introduction -- 2 Review of Methods -- 2.1 Data Pre-processing -- 2.2 Data Representation -- 2.3 Data Preparation -- 2.4 Network Architecture -- 2.5 Multiple Modalities, Timepoints, Views and Scales -- 2.6 Loss Functions and Regularization -- 2.7 Implementation -- 2.8 Prediction and Post-processing -- 2.9 Transfer Learning and Domain Adaptation -- 2.10 Methods for Subtypes of MS Lesions -- 3 Comparison of Experiments and Results -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Results -- 4 Conclusion -- References -- Computational Diagnostics of GBM Tumors in the Era of Radiomics and Radiogenomics -- 1 Introduction -- 2 Patient Prognosis -- 3 Intratumor Heterogeneity and Tumor Recurrence -- 4 Radiogenomics -- 5 Current Challenges and Future Directions -- 6 Conclusion -- References -- Brain Lesion Image Analysis -- Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks -- 1 Introduction -- 2 Method -- 2.1 Tumor Segmentation Network -- 2.2 Tumor Region Recovery Network -- 3 Results -- 3.1 Data and Experimental Setting -- 3.2 Evaluation of Image Recovery -- 3.3 Evaluation of Image Registration -- 4 Conclusion -- References -- Convolutional Neural Network with Asymmetric Encoding and Decoding Structure for Brain Vessel Segmentation on Computed Tomographic Angiography -- 1 Introduction.
2 Data Acquisition and Preprocessing -- 3 Method -- 3.1 Asymmetric Encoding and Decoding-Based Convolutional Neural Net -- 3.2 Centerline Loss Construction -- 3.3 Network Training -- 4 Results -- 5 Conclusions -- References -- Volume Preserving Brain Lesion Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Background: Existing Inequality Volume Constraints -- 2.2 Volume Constraints for Fully Supervised Settings -- 2.3 Implementation Details -- 3 Results -- 3.1 Dataset -- 3.2 Evaluation -- 4 Discussion -- 5 Conclusion -- References -- Microstructural Modulations in the Hippocampus Allow to Characterizing Relapsing-Remitting Versus Primary Progressive Multiple Sclerosis -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Participants and MRI Acquisition -- 2.2 Signal Modelling and Microstructural Indices -- 2.3 Image Preprocessing -- 2.4 Features Extraction -- 2.5 Statistical Analysis -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology -- 1 Introduction -- 2 Methods -- 2.1 Global Perception Inference -- 2.2 Context-Aware Patch Swapping -- 2.3 Feature-to-Image Translator -- 2.4 Quasi-Symmetry Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- Multivariate Analysis is Sufficient for Lesion-Behaviour Mapping -- 1 Introduction -- 2 Multivariate Methods Considered -- 3 Causal Analysis of the Problem -- 4 Experiments -- 5 Discussion -- 5.1 Outlook -- 5.2 Future Work -- References -- Label-Efficient Multi-task Segmentation Using Contrastive Learning -- 1 Introduction -- 2 Methods -- 2.1 Encoder-Decoder Network with Regularization Branches -- 3 Experiments and Results -- 4 Discussion and Conclusion -- References -- Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation -- 1 Introduction.
2 Methodology -- 2.1 Baseline Longitudinal Network -- 2.2 Multitask Learning with Deformable Registration -- 3 Experiment Setup -- 3.1 Datasets and Preprocessing -- 3.2 Implementation Details -- 3.3 Evaluation Metrics -- 3.4 Method Comparisons -- 4 Results and Discussion -- 5 Conclusion -- References -- MMSSD: Multi-scale and Multi-level Single Shot Detector for Brain Metastases Detection -- 1 Introduction -- 2 Methodology -- 2.1 Multi-scale Feature Maps for BM Detection -- 2.2 Multi-level Feature Fusion Modules -- 3 Experiments and Results -- 3.1 Dataset and Data Processing -- 3.2 Training -- 3.3 Experiment Results -- 3.4 Discussion -- 4 Conclusion -- References -- Unsupervised 3D Brain Anomaly Detection -- 1 Introduction -- 2 Methods -- 3 Results and Discussion -- 4 Conclusion -- References -- Assessing Lesion Segmentation Bias of Neural Networks on Motion Corrupted Brain MRI -- 1 Introduction -- 2 Methods -- 3 Experiments -- 4 Results and Discussion -- 5 Conclusion and Future Work -- References -- Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression -- 1 Introduction -- 2 Methods -- 2.1 Data -- 2.2 Pre-processing -- 2.3 Network Topology -- 2.4 Experimental Design -- 2.5 Evaluation Metric -- 3 Results -- 4 Discussion -- References -- Bayesian Skip Net: Building on Prior Information for the Prediction and Segmentation of Stroke Lesions -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Data Pre-processing -- 2.3 Network Architecture -- 2.4 Experimental Setup -- 3 Results -- 4 Discussion and Conclusion -- References -- Brain Tumor Segmentation -- Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images -- 1 Introduction -- 2 Method -- 2.1 Backbone Architecture for Segmentation -- 2.2 Dual Residual Block -- 2.3 Dual-Path Attention (DPA) Block for Tumor Segmentation -- 2.4 Loss Function.
3 Experiments -- 3.1 Datasets Detail -- 3.2 Preprocessing Methods -- 3.3 Evaluating Metrics -- 3.4 Experimental Results -- 4 Discussion -- 5 Conclusion -- References -- Multimodal Brain Image Analysis and Survival Prediction Using Neuromorphic Attention-Based Neural Networks -- 1 Introduction -- 2 Methods -- 2.1 Neuromorphic Neural Network Inspired by Visual Cortex -- 2.2 Neuromorphic Pre-processing for Convolutional Neural Networks with Neuromorphic Attention-Based Learner -- 2.3 Feature Selection for Survival Days Prediction -- 3 Result and Discussion -- 3.1 Tumor Segmentation -- 3.2 Overall Survival Prediction -- 4 Conclusion -- References -- Context Aware 3D UNet for Brain Tumor Segmentation -- 1 Introduction -- 2 Proposed Method -- 2.1 Dense Blocks -- 2.2 Residual-Inception Blocks -- 3 Experimental Results -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Qualitative Analysis -- 3.4 Quantitative Analysis -- 4 Discussion and Conclusion -- References -- Brain Tumor Segmentation Network Using Attention-Based Fusion and Spatial Relationship Constraint -- 1 Introduction -- 2 Method -- 2.1 Multi-modal Tumor Segmentation Network -- 2.2 Spatial-Channel Fusion Block (SCFB) -- 2.3 Spatial Relationship Constraint -- 3 Experiment -- 3.1 Dataset -- 3.2 Implementations -- 3.3 Results -- 4 Conclusion -- References -- Modality-Pairing Learning for Brain Tumor Segmentation -- 1 Introduction -- 2 Methods -- 3 Experiments -- 3.1 Dataset -- 3.2 Experimental Settings -- 3.3 Evaluation Metrics -- 3.4 Experimental Results -- 4 Discussion and Conclusion -- References -- Transfer Learning for Brain Tumor Segmentation -- 1 Introduction -- 2 Method -- 2.1 Extending the AlbuNet Architecture -- 2.2 Loss Function -- 2.3 Choice of Hyperparameters -- 2.4 Preprocessing and Data Augmentation -- 2.5 Prediction -- 3 Evaluation -- 3.1 Extended AlbuNet with and Without Pretraining.
3.2 Clinical Dataset of the Syrian-Lebanese Hospital -- 3.3 Final Results -- 4 Conclusion -- References -- Efficient Embedding Network for 3D Brain Tumor Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Encoder Branch -- 2.3 Decoder Branch -- 2.4 Loss -- 2.5 Training -- 3 Results -- 4 Conclusion -- References -- Segmentation of the Multimodal Brain Tumor Images Used Res-U-Net -- 1 Introduction -- 2 Method -- 2.1 Pre-processing -- 2.2 Architecture -- 3 Experiments -- 3.1 Dataset -- 3.2 Setup -- 3.3 Evaluation -- 3.4 Result -- 4 Conclusion -- References -- Vox2Vox: 3D-GAN for Brain Tumour Segmentation -- 1 Introduction -- 1.1 Related Works -- 2 Method -- 2.1 Data -- 2.2 Image Pre-processing and Augmentation -- 2.3 Model Architecture -- 2.4 Losses -- 2.5 Optimization and Regularization -- 2.6 Model Ensembling and Post-processing -- 3 Results -- 4 Conclusions -- References -- Automatic Brain Tumor Segmentation with Scale Attention Network -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Overall Network Structure -- 3.2 Encoding Pathway -- 3.3 Decoding Pathway -- 3.4 Scale Attention Block -- 3.5 Implementation -- 4 Results -- 5 Summary -- References -- Impact of Spherical Coordinates Transformation Pre-processing in Deep Convolution Neural Networks for Brain Tumor Segmentation and Survival Prediction -- 1 Introduction -- 2 Brain Tumor Segmentation -- 2.1 Background -- 2.2 Spherical Coordinates Transformation -- 2.3 Post-processing -- 2.4 Segmentation Results -- 3 Prediction of Patient OS -- 3.1 LesionEncoder Framework -- 3.2 Tweedie Regressor -- 3.3 Performance Evaluation -- 3.4 OS Prediction Results -- 4 Discussion -- 5 Conclusion -- References -- Overall Survival Prediction for Glioblastoma on Pre-treatment MRI Using Robust Radiomics and Priors -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data.
2.2 Segmentation and Normalization.
Record Nr. UNISA-996464446503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (544 pages)
Disciplina 616.99281
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Machine learning
Pattern recognition systems
Bioinformatics
Computer Vision
Machine Learning
Automated Pattern Recognition
Computational and Systems Biology
ISBN 3-030-72084-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Papers -- Glioma Diagnosis and Classification: Illuminating the Gold Standard -- Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods -- Computational Diagnostics of GBM Tumors in the Era of Radiomics and Radiogenomics -- Brain Lesion Image Analysis -- Automatic Segmentation of Non-Tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks -- Convolutional neural network with asymmetric encoding and decoding structure for brain vessel segmentation on computed tomographic angiography -- Volume Preserving Brain Lesion Segmentation -- Microstructural modulations in the hippocampus allow to characterizing relapsing-remitting versus primary progressive multiple sclerosis -- Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology -- Multivariate analysis is sufficient for lesion-behaviour mapping -- Label-Efficient Multi-Task Segmentation using Contrastive Learning -- Spatio-temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation -- MMSSD: Multi-scale and Multi-level Single Shot Detector for Brain Metastases Detection -- Unsupervised 3D Brain Anomaly Detection -- Assessing Lesion Segmentation Bias of Neural Networks on Motion Corrupted Brain MRI Tejas Sudharshan Mathai, Yi Wang, Nathan Cross -- Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression -- Bayesian Skip Net: Building on Prior Information for the Prediction and Segmentation of Stroke Lesions -- Brain Tumor Segmentation -- Brain Tumor Segmentation Using Dual-Path Attention U-net in 3D MRI Images -- Multimodal Brain Image Analysis and Survival Prediction -- Using Neuromorphic Attention-based Neural Networks -- Context Aware 3D UNet for Brain Tumor Segmentation -- Modality-Pairing Learning for Brain Tumor Segmentation -- Transfer Learning for Brain Tumor Segmentation -- Efficient embedding network for 3D brain tumor segmentation -- Segmentation of the multimodal brain tumor images used Res-U-Net -- Vox2Vox: 3D-GAN for Brain Tumour Segmentation -- Automatic Brain Tumor Segmentation with Scale Attention Network -- Impact of Spherical Coordinates Transformation Pre-processing in Deep Convolution Neural Networks for Brain Tumor Segmentation and Survival Prediction -- Overall Survival Prediction for Glioblastoma on Pre-Treatment MRI Using Robust Radiomics and Priors -- Glioma segmentation using encoder-decoder network and survival prediction based on cox analysis -- Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution -- Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images -- MRI brain tumor segmentation using a 2D-3D U-Net ensemble -- Multimodal Brain Tumor Segmentation and Survival Prediction Using a 3D Self-Ensemble ResUNet -- MRI Brain Tumor Segmentation and Uncertainty Estimation using 3D-UNet architectures -- Utility of Brain Parcellation in Enhancing Brain Tumor Segmentation and Survival Prediction -- Uncertainty-driven refinement of tumor core segmentation using 3D-to-2D networks with label uncertainty -- Multi-Decoder Networks with Multi-Denoising Inputs for Tumor Segmentation -- MultiATTUNet: Brain Tumor Segmentation and Survival Multitasking -- A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation -- Ensemble of Two Dimensional Networks for Bain Tumor Segmentation -- Cascaded Coarse-to-Fine Neural Network for Brain Tumor Segmentation -- Low-Rank Convolutional Networks for Brain Tumor Segmentation -- Brain tumour segmentation using cascaded 3D densely-connected U-net -- Segmentation then Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival Prediction -- Enhancing MRI Brain Tumor Segmentation with an Additional Classification Network -- Self-training for Brain Tumour Segmentation with Uncertainty Estimation and Biophysics-Guided Survival Prediction.
Record Nr. UNINA-9910484791303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (539 pages)
Disciplina 616.99281
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Machine learning
Pattern recognition systems
Bioinformatics
Computer Vision
Machine Learning
Automated Pattern Recognition
Computational and Systems Biology
ISBN 3-030-72087-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Brain Tumor Segmentation -- Lightweight U-Nets for Brain Tumor Segmentation -- Efficient Brain Tumour Segmentation using Co-registered Data and Ensembles of Specialised Learners -- Efficient MRI Brain Tumor Segmentation using Multi-Resolution Encoder-Decoder Networks -- Trialing U-Net Training Modifications for Segmenting Gliomas Using Open Source Deep Learning Framework -- HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation -- H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task -- 2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation -- Attention U-Net with Dimension-hybridized Fast Data Density Functional Theory for Automatic Brain Tumor Image Segmentation -- MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation -- Glioma Segmentation with 3D U-Net Backed with Energy- Based Post- Processing -- nnU-Net for Brain Tumor Segmentation -- A Deep Random Forest Approach forMultimodal Brain Tumor Segmentation -- Brain tumor segmentation and associated uncertainty evaluation using Multi-sequences MRI Mixture Data Preprocessing -- A Deep supervision CNN network for Brain tumor Segmentation -- Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain Tumor Segmentation in MRI scans -- Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation -- Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fusion -- Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for brain tumor segmentation: BraTS 2020 challenge -- 3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction -- Segmentation, Survival Prediction, and Uncertainty Estimation of Gliomas from Multimodal 3D MRI using Selective Kernel Networks -- 3D brain tumor segmentation and survival prediction using ensembles of Convolutional Neural Networks -- Brain Tumour Segmentation using Probabilistic U-Net -- Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets -- A Deep Supervised U-Attention Net for Pixel-wise Brain Tumor Segmentation -- A two stage atrous convolution neural network for brain tumor segmentation -- TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI data -- Brain Tumor Segmentation and Survival Prediction using Automatic Hardmining in 3D CNN Architecture -- Some New Tricks for Deep Glioma Segmentation -- PieceNet: A Redundant UNet Ensemble -- Cerberus: A Multi-headed Network for BrainTumor Segmentation -- An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients based on Volumetric and Shape Features -- Squeeze-and-Excitation Normalization for Brain Tumor Segmentation -- Modified MobileNet for Patient Survival Prediction -- Memory Efficient 3D U-Net with Reversible Mobile Inverted Bottlenecks for Brain Tumor Segmentation -- Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified U-Net -- DR-Unet104 for Multimodal MRI brain tumor segmentation -- Glioma Sub-region Segmentation on Multi-parameter MRI with Label Dropout -- Variational-Autoencoder Regularized 3D MultiResUNet for the BraTS 2020 Brain Tumor Segmentation -- Learning Dynamic Convolutions for Multi-Modal 3D MRI Brain Tumor Segmentation -- Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification -- Automatic Glioma Grading Based on Two-stage Networks by Integrating Pathology and MRI Images -- Brain Tumor Classification Based on MRI Images and Noise Reduced Pathology Images -- Multimodal brain tumor classification -- A Hybrid Convolutional Neural Network Based-Method for Brain Tumor Classification Using mMRI and WSI -- CNN-based Fully Automatic Glioma Classification with Multi-modal Medical Images -- Glioma Classification Using Multimodal Radiology and Histology Data.
Record Nr. UNINA-9910484791403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (411 pages) : illustrations
Disciplina 616.99281
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Application software
Pattern recognition
Computers
Image Processing and Computer Vision
Machine Learning
Computer Applications
Pattern Recognition
Computing Milieux
ISBN 3-030-46643-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Brain Lesion Image Analysis -- Brain Tumor Image Segmentation -- Combined MRI and Pathology Brain Tumor Classification -- Tools Allowing Clinical Translation of Image Computing Algorithms.
Record Nr. UNISA-996418316703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xvi, 400 pages)
Disciplina 616.99281
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Application software
Education—Data processing
Pattern recognition
Image Processing and Computer Vision
Machine Learning
Computer Applications
Computers and Education
Pattern Recognition
ISBN 3-030-46640-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Brain Lesion Image Analysis -- Brain Tumor Image Segmentation -- Combined MRI and Pathology Brain Tumor Classification -- Tools Allowing Clinical Translation of Image Computing Algorithms.
Record Nr. UNISA-996418311403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries : 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II / / edited by Alessandro Crimi, Spyridon Bakas
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (411 pages) : illustrations
Disciplina 616.99281
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Machine learning
Application software
Pattern recognition systems
Computers
Computer Vision
Machine Learning
Computer and Information Systems Applications
Automated Pattern Recognition
Computing Milieux
ISBN 3-030-46643-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Brain Lesion Image Analysis -- Brain Tumor Image Segmentation -- Combined MRI and Pathology Brain Tumor Classification -- Tools Allowing Clinical Translation of Image Computing Algorithms.
Record Nr. UNINA-9910409665203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui