top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical Modelling and Analysis of Infectious Diseases / / edited by Khalid Hattaf, Hemen Dutta
Mathematical Modelling and Analysis of Infectious Diseases / / edited by Khalid Hattaf, Hemen Dutta
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 342 p. 113 illus.)
Disciplina 614.4015118
Collana Studies in Systems, Decision and Control
Soggetto topico Applied mathematics
Engineering mathematics
Veterinary medicine
Mathematical and Computational Engineering
Veterinary Microbiology, Parasitology and Infectious Diseases
ISBN 3-030-49896-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Pathogen Evolution when Transmission and Virulence are Stochastic -- On the relationship between the basic reproduction number and the shape of the spatial domain -- Cause and Control strategy for infectious diseases with nonlinear incidence and treatment rate -- Global stability of a delay virus dynamics model with mitotic transmission and cure rate -- Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes On SICA models for HIV transmission -- Analytical and numerical solutions of a TB-HIV/AIDS co-infection model via fractional derivatives without singular kernel.
Record Nr. UNINA-9910411932003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical studies on human disease dynamics : emerging paradigms and challenges : AMS-IMS-SIAM Joint Summer Research Conference, competitive mathematical models of disease dynamics: emerging paradigms and challenges, July 17-21, 2005, Snowbird, Utah / Abba Gumel, editor-in-chief ; Carlos Castillo-Chavez, Ronald E. Mickens, Dominic P. Clemence, editors
Mathematical studies on human disease dynamics : emerging paradigms and challenges : AMS-IMS-SIAM Joint Summer Research Conference, competitive mathematical models of disease dynamics: emerging paradigms and challenges, July 17-21, 2005, Snowbird, Utah / Abba Gumel, editor-in-chief ; Carlos Castillo-Chavez, Ronald E. Mickens, Dominic P. Clemence, editors
Autore AMS-IMS-SIAM Joint Summer Research Conference on Modeling the dynamics of human disease : emerging paradigms and challenges <2005 ; Snowbird, Utah>
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c2006
Descrizione fisica xii, 389 p. : ill. ; 26 cm
Disciplina 614.4015118
Altri autori (Persone) Gumel, Abbaauthor
Castillo-Chávez, Carlos
Mickens, Ronald E.
Clemence, Dominic P.
Collana Contemporary mathematics, 0271-4132 ; 410
Soggetto topico Epidemiology - Mathematical models - Congresses
Diseases - Mathematical models - Congresses
ISBN 0821837753
Classificazione AMS 92-06
AMS 92D30
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002432419707536
AMS-IMS-SIAM Joint Summer Research Conference on Modeling the dynamics of human disease : emerging paradigms and challenges <2005 ; Snowbird, Utah>  
Providence, R. I. : American Mathematical Society, c2006
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Mathematical understanding of infectious disease dynamics [[electronic resource] /] / editors Stefan Ma, Yingcun Xia
Mathematical understanding of infectious disease dynamics [[electronic resource] /] / editors Stefan Ma, Yingcun Xia
Pubbl/distr/stampa New Jersey, : World Scientific, c2009
Descrizione fisica 1 online resource (240 p.)
Disciplina 614.4015118
Altri autori (Persone) MaStefan
XiaYingcun
Collana Lecture notes series
Soggetto topico Communicable diseases - Epidemiology - Mathematical models
Medicine
Soggetto genere / forma Electronic books.
ISBN 1-282-44100-0
9786612441004
981-283-483-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Foreword; Preface; The Basic Epidemiology Models: Models, Expressions for R0, Parameter Estimation, and Applications Herbert W. Hethcote; Epidemiology Models with Variable Population Size Herbert W. Hethcote; Age-Structured Epidemiology Models and Expressions for R0 Herbert W. Hethcote; Clinical and Public Health Applications of Mathematical Models John W. Glasser; Non-identifiables and Invariant Quantities in Infectious Disease Models Ping Yan
Record Nr. UNINA-9910456724603321
New Jersey, : World Scientific, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical understanding of infectious disease dynamics [[electronic resource] /] / editors Stefan Ma, Yingcun Xia
Mathematical understanding of infectious disease dynamics [[electronic resource] /] / editors Stefan Ma, Yingcun Xia
Pubbl/distr/stampa New Jersey, : World Scientific, c2009
Descrizione fisica 1 online resource (240 p.)
Disciplina 614.4015118
Altri autori (Persone) MaStefan
XiaYingcun
Collana Lecture notes series
Soggetto topico Communicable diseases - Epidemiology - Mathematical models
Medicine
ISBN 1-282-44100-0
9786612441004
981-283-483-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Foreword; Preface; The Basic Epidemiology Models: Models, Expressions for R0, Parameter Estimation, and Applications Herbert W. Hethcote; Epidemiology Models with Variable Population Size Herbert W. Hethcote; Age-Structured Epidemiology Models and Expressions for R0 Herbert W. Hethcote; Clinical and Public Health Applications of Mathematical Models John W. Glasser; Non-identifiables and Invariant Quantities in Infectious Disease Models Ping Yan
Record Nr. UNINA-9910780905403321
New Jersey, : World Scientific, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical understanding of infectious disease dynamics / / editors Stefan Ma, Yingcun Xia
Mathematical understanding of infectious disease dynamics / / editors Stefan Ma, Yingcun Xia
Edizione [1st ed.]
Pubbl/distr/stampa New Jersey, : World Scientific, c2009
Descrizione fisica 1 online resource (240 p.)
Disciplina 614.4015118
Altri autori (Persone) MaStefan
XiaYingcun
Collana Lecture notes series
Soggetto topico Communicable diseases - Epidemiology - Mathematical models
Medicine
ISBN 1-282-44100-0
9786612441004
981-283-483-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Foreword; Preface; The Basic Epidemiology Models: Models, Expressions for R0, Parameter Estimation, and Applications Herbert W. Hethcote; Epidemiology Models with Variable Population Size Herbert W. Hethcote; Age-Structured Epidemiology Models and Expressions for R0 Herbert W. Hethcote; Clinical and Public Health Applications of Mathematical Models John W. Glasser; Non-identifiables and Invariant Quantities in Infectious Disease Models Ping Yan
Record Nr. UNINA-9910824472603321
New Jersey, : World Scientific, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematics of Public Health : Mathematical Modelling from the Next Generation
Mathematics of Public Health : Mathematical Modelling from the Next Generation
Autore David Jummy
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2023
Descrizione fisica 1 online resource (325 pages)
Disciplina 614.4015118
Altri autori (Persone) WuJianhong
Collana Fields Institute Communications Series
ISBN 3-031-40805-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Mathematical Models: Perspectives of Mathematical Modelers and Public Health Professionals -- 1.1 Natural History of Disease in Humans -- 1.2 Introduction to Mathematical Epidemiology -- 1.3 Model Formulation and Examples of Some Communicable Disease Models -- 1.3.1 Simple SIR Compartmental Models -- 1.3.2 Simple Endemic Models -- 1.3.3 Agent-Based Models -- 1.3.4 Network Models -- 1.3.5 Machine Learning Models -- 1.3.5.1 Estimating Parameters -- 1.3.5.2 Estimating Hidden States -- 1.4 Qualitative Analysis of Selected Models -- 1.4.1 Epidemic Model -- 1.4.2 Endemic Model -- 1.4.3 Network Model -- 1.5 Quantitative Analysis -- 1.6 Review of Mathematical Models of Selected Communicable Diseases and Their Impacts on Policy- and Decision-Making -- 1.6.1 SARS 2003 Pandemic Models -- 1.6.2 Pandemic Influenza Models -- 1.6.3 SARS-CoV-2 Pandemic Models -- 1.6.4 HIV Models -- 1.6.5 HCV Models -- 1.7 Model Algorithms for a Simple SIR Model -- 1.7.1 Python Code -- 1.7.2 Julia Code -- 1.7.3 R Code -- 1.7.4 MATLAB Code -- 1.8 Human Epidemiology Data, Model Fitting, and Parameter Estimation -- 1.9 Conclusion -- References -- 2 Discovering First Principle of Behavioural Change in Disease Transmission Dynamics by Deep Learning -- 2.1 Introduction -- 2.2 Expert-Based Behavioural Change Transmission Dynamics Models -- 2.2.1 Calculation of the Final Epidemic Size -- 2.2.2 Applications to the Ontario's First COVID-19 Pandemic Wave -- 2.3 Two-Step Recovering-Explaining Framework -- 2.3.1 Universal Differential Equations -- 2.3.2 Data-Driven Methods or Equation-Searching Methods -- 2.3.2.1 Symbolic Regression -- 2.3.2.2 Sparse Identification of Nonlinear Dynamics (SINDy) -- 2.3.3 Two-Step Recovering-Explaining Methods -- 2.4 Deep Learning-Based Behavioural Change Transmission Dynamics Models -- 2.4.1 The Behavioural Change Laws.
2.5 Discussions and Conclusions -- References -- 3 Understanding Epidemic Multi-wave Patterns via Machine Learning Clustering and the Epidemic Renormalization Group -- 3.1 Introduction -- 3.2 Renormalization Group Epidemiology: From eRG to CeRG -- 3.2.1 The Single-Wave eRG Approach -- 3.2.2 The Multi-wave CeRG Approach -- 3.3 A Machine Learning Approach to the Wave Pattern -- 3.3.1 The Status of Variants -- 3.3.2 Method -- 3.3.2.1 Cluster Algorithm -- 3.3.2.2 Emerging Variants as Persistent Time-Ordered Cluster Chains -- 3.3.3 Application to COVID-19 Data -- 3.4 An Epidemiological Theory of Variants: The MeRG Framework -- 3.4.1 The Model -- 3.4.2 Flow Among Variants: Fixed Points and (Ir)relevant Operators -- 3.4.3 Connecting Variant Dynamics to the CeRG -- 3.4.4 Fitting the Real Data -- 3.5 Conclusion -- References -- 4 Contact Matrices in Compartmental Disease Transmission Models -- 4.1 Introduction -- 4.2 Motivating Example -- 4.3 Defining Contact Matrices -- 4.3.1 What Is a Contact? -- 4.3.2 Sources of Contact Data -- 4.3.3 Assumptions and Parametric Forms -- 4.3.4 Example -- 4.4 Properties of Contact Matrices -- 4.4.1 Balancing Contact Matrices -- 4.4.2 Intrinsic Connectivity -- 4.4.3 Example -- 4.5 Restratifying Contact Matrices -- 4.5.1 Intuition and Equations for Restratification -- 4.5.2 Example -- 4.6 Mobility in Contact Matrices -- 4.6.1 Mobility Data and Mobility Matrices -- 4.6.2 Contact Matrices from Mobility Matrices -- 4.6.3 Integrating Age Mixing and Mobility Data in Contact Matrices -- 4.6.4 Example -- References -- 5 An Optimal Control Approach for Public Health Interventions on an Epidemic-Viral Model in Deterministic and Stochastic Environments -- 5.1 Introduction -- 5.1.1 A Fast Time Scale Viral Model -- 5.1.2 SIQR Epidemic Model with a Coupled Viral Model -- 5.1.3 Qualitative Analysis of the Coupled Model.
5.2 Optimal Control Analysis -- 5.2.1 Investigation of the Deterministic Optimal Control -- 5.2.2 Investigation of the Stochastic Optimal Control -- 5.3 Numerical Simulations -- 5.4 Conclusion -- References -- 6 Modeling Airborne Disease Dynamics: Progress and Questions -- 6.1 Introduction -- 6.2 Viral Matter in an Infectious Individual -- 6.3 Aerosol Size Distribution in Human Exhalations -- 6.4 Airborne Transmission of Aerosols -- 6.5 Transmission Through Fomites -- 6.6 Infection Probability of a Susceptible -- 6.7 Probability Distribution for Number of Secondary Infections Z -- 6.8 Conclusion -- References -- 7 Modeling Mutation-Driven Emergence of Drug-Resistance: A Case Study of SARS-CoV-2 -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Model Structure -- 7.2.2 Model Equations -- 7.2.3 Reproduction Number -- 7.3 Results -- 7.3.1 Baseline Scenario -- 7.3.2 Waning Immunity and Reinfection -- 7.4 Discussion -- References -- 8 A Categorical Framework for Modeling with Stock and Flow Diagrams -- 8.1 Introduction -- 8.2 The Syntax of Stock-Flow Diagrams -- 8.3 The Semantics of Stock-Flow Diagrams -- 8.3.1 ODEs (Ordinary Differential Equations) -- 8.3.2 Causal Loop Diagrams -- 8.3.3 System Structure Diagrams -- 8.4 Composing Open Stock-Flow Diagrams -- 8.5 Stratifying Typed System Structure Diagrams -- 8.6 ModelCollab: A Graphical Real-Time Collaborative Compositional Modeling Tool -- 8.7 Conclusion -- References -- 9 Agent-Based Modeling and Its Trade-Offs: An Introduction and Examples -- 9.1 Introduction -- 9.2 Characteristics of Agent-Based Models -- 9.2.1 Parameters -- 9.2.2 State, Actions, and Rules -- 9.2.3 Environment -- 9.2.4 Outputs and Emergent Behavior -- 9.2.5 Stochastics -- 9.2.6 Interventions -- 9.3 Example: Chickenpox -- 9.3.1 Chickenpox and Shingles -- 9.3.2 Model Scope -- 9.3.3 Statecharts -- 9.3.4 Model Fit -- 9.3.5 Costs and QALYs.
9.3.6 Suitability of ABM -- 9.3.7 Choice of AnyLogic as a Tool -- 9.4 Example: Pertussis -- 9.4.1 Pertussis -- 9.4.2 Model Scope -- 9.4.3 Model Structure -- 9.4.4 Model Fit -- 9.4.5 Scenarios -- 9.4.6 Suitability of ABM -- 9.5 Trade-Offs Between ABMs and Aggregate Models -- 9.6 Summary -- References -- 10 Mathematical Assessment of the Role of Interventions Against SARS-CoV-2 -- 10.1 Introduction -- 10.2 Formulation of Vaccination Model for COVID-19 -- 10.2.1 Data Fitting and Parameter Estimation -- 10.2.2 Basic Qualitative Properties -- 10.3 Existence and Asymptotic Stability of Equilibria -- 10.3.1 Disease-Free Equilibrium -- 10.3.1.1 Local Asymptotic Stability of DFE -- 10.3.1.2 Existence of Backward Bifurcation -- 10.3.1.3 Global Asymptotic Stability of DFE: Special Cases -- 10.3.2 Existence and Stability of Endemic Equilibria: Special Case -- 10.3.2.1 Existence -- 10.3.2.2 Local Asymptotic Stability -- 10.3.3 Vaccine-Induced Herd Immunity Threshold -- 10.3.4 Global Parameter Sensitivity Analysis -- 10.4 Numerical Simulations -- 10.4.1 Effect of Masking as a Singular Control and Mitigation Intervention -- 10.4.2 Assessing the Combined Impact of Vaccination and Masks on Herd Immunity Threshold -- 10.4.3 Assessing the Combined Impact of Vaccination and Masks on Daily New Cases -- 10.5 Discussion and Conclusions -- Appendix 1: Proof of Theorem 3 -- Computation of Left and Right Eigenvectors of Jβp* -- Computation of Backward Bifurcation Coefficients, a and b -- Appendix 2: Proof of Theorem 4 -- Appendix 3: Proof of Theorem 5 -- Proof of Positive Invariance and Attractivity of Ω** -- Next-Generation Matrices for the Second Special Case of the Model -- Proof of Theorem 5 -- Appendix 4: Proof of Theorem 7 -- Case 1: θ= 0 -- Case 2: θ≠0 -- References -- 11 Long-Term Dynamics of COVID-19 in a Multi-strain Model -- 11.1 Introduction -- 11.2 Methodology.
11.2.1 Model Description -- 11.2.2 Parameter Estimation -- 11.2.3 Data Sources -- 11.3 COVID-19 Long-Term Scenarios Modelling -- 11.4 Results -- 11.5 Discussion -- 11.6 Conclusion -- 11.7 Supplementary Information -- References -- Correction to: Contact Matrices in Compartmental Disease Transmission Models.
Record Nr. UNINA-9910799203303321
David Jummy  
Cham : , : Springer International Publishing AG, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sociophysics approach to epidemics / / Jun Tanimoto
Sociophysics approach to epidemics / / Jun Tanimoto
Autore Tanimoto Jun <1965->
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (297 pages) : illustrations
Disciplina 614.4015118
Collana Evolutionary Economics and Social Complexity Science
Soggetto topico Epidemiology - Mathematical models
Game theory
ISBN 981-336-481-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- About the Author -- Chapter 1: A Social-Physics Approach to Modeling and Analyzing Epidemics -- 1.1 Modeling of a Social-Complex System: A Human-Physics System -- 1.2 How the Spread of an Infectious Disease Can be Modeled?-Mathematical Epidemiology -- 1.3 How Human Behavior Can be Modeled?-Evolutionary Game Theory -- References -- Chapter 2: Evolutionary Game Theory: Fundamentals and Applications for Epidemiology -- 2.1 Two-Player and Two-Strategy Games -- 2.1.1 Theoretical Foundation -- 2.1.2 Social Viscosity -- 2.1.3 Multi-Agent-Simulation Approach -- 2.2 Multi-Player Games -- 2.3 Social Dilemma and its Mathematical Quantification -- 2.3.1 Concept of the Universal Scaling for Dilemma Strength -- 2.3.1.1 Direct Reciprocity -- 2.3.1.2 Indirect Reciprocity -- 2.3.1.3 Kin Selection -- 2.3.1.4 Group Selection -- 2.3.1.5 Network Reciprocity -- 2.3.2 Concept of a Social Efficiency Deficit -- 2.3.2.1 Donor and Recipient Game -- 2.3.2.2 Public Goods Game -- 2.3.2.3 PD with Social Viscosity -- 2.3.2.4 Chicken Game -- 2.3.3 Application of SED -- 2.3.3.1 Derivation of SED -- 2.3.3.2 Discussion -- References -- Chapter 3: Fundamentals of Mathematical Epidemiology and the Vaccination Game -- 3.1 Basic Model: SIR, SIS, and SEIR -- 3.1.1 Formulation of the SIR Model -- 3.1.2 Herd Immunity -- 3.1.3 Formulation of the SIS Model -- 3.1.4 Formulation of the SEIR Model -- 3.2 Theoretical Framework of a Vaccination Game -- 3.2.1 Two Models to Represent Stochastic Vaccination: Effectiveness and Efficiency -- 3.2.1.1 Effectiveness Model -- 3.2.1.2 Efficiency Model -- 3.2.2 Strategy-Updating Rule -- 3.2.2.1 Individual-Based Risk Assessment (IB-RA) -- 3.2.2.2 Strategy-Based Risk Assessment (SB-RA) -- 3.2.2.3 Direct Commitment (DC) -- 3.2.3 Global Dynamics for Strategy Updating -- 3.3 MAS Approach to the Vaccination Game.
3.3.1 Spatial Structure When Taking the MAS Approach -- 3.3.2 Effective Transmission Rate, βe, and Effective Recovery Rate, γe -- 3.3.3 Result of the Vaccination Game -- Comparison Between the MAS and ODE Models -- 3.4 Effect of the Underlying Topology -- 3.4.1 Degree Distribution -- 3.4.2 Networked SIR Model -- 3.4.3 Networked SIR/V Process with an Effectiveness Model -- 3.4.4 Networked SIR/V Process with an Efficiency Model -- 3.4.5 Payoff Structure and Global Dynamics for Strategy Updating -- 3.4.6 Result of the Networked Vaccination Game -- Comparison of Different Degree Distributions -- References -- Chapter 4: Plural Strategies: Intervention Game -- 4.1 Alternative Provisions Featuring Different Combinations of Cost-Effect Performances -- 4.2 Model Structure -- 4.2.1 Formulation of the SVMBIR Model -- 4.2.2 Payoff Structure -- 4.2.3 Strategy-Updating and Global Dynamics -- 4.2.3.1 Individual-Based Risk Assessment (IB-RA) -- 4.2.3.2 Strategy-Based Risk Assessment (SB-RA) -- 4.2.3.3 Direct Commitment (DC) -- 4.3 Result and Discussion -- References -- Chapter 5: Quarantine and Isolation -- 5.1 Social Background -- Quarantine or Isolation? -- 5.2 Model Structure -- 5.2.1 Formulation of the SVEIR Model -- 5.2.2 Payoff Structure -- 5.2.3 Strategy Updating and Global Dynamics -- 5.3 Result and Discussion -- 5.3.1 Local Dynamics in a Single Season -- 5.3.2 Social Equilibrium from Global Dynamics -- 5.3.3 Public-Based (Passive) Provision: Quarantine and Isolation vs. Individual-Based (Active) Provision: Vaccination -- 5.3.4 Passive Provision Rather Compensates the Shadow by Active Provision Than Mutually Competing -- 5.3.5 Comprehensive Discussion -- References -- Chapter 6: Media Information Effect Hampering the Spread of Disease -- 6.1 Positive Effect of Media Helps to Suppress the Spread of an Epidemic -- 6.2 Model Structure.
6.2.1 Formulation of the SVIR-UA Model -- 6.2.2 Payoff Structure -- 6.2.3 Strategy Updating and Global Dynamics -- 6.2.3.1 Individual-Based Risk Assessment (IB-RA) -- 6.2.3.2 Strategy-Based Risk Assessment (SB-RA) -- 6.2.4 Spatial Structure -- 6.2.5 Initial Condition and Numerical Procedure -- 6.3 Results and Discussion -- References -- Chapter 7: Immunity Waning Effect -- 7.1 Introduction and Background: Immunity and Its Degrading in View of Infectious Disease -- 7.2 Model Structure -- 7.2.1 Formulation of the SVnIR2n Model -- 7.2.2 Parameterization for Immunity Waning Effect -- 7.2.3 Time Evolution of Vaccination by Behavior Model -- 7.3 Result and Discussion -- 7.3.1 Fundamental Characteristic of Time Evolution -- 7.3.2 Dynamics Observed in Trajectory -- 7.3.3 Phase Diagram Analysis -- 7.3.4 Comprehensive Discussion -- References -- Chapter 8: Pre-emptive Vaccination Versus Antiviral Treatment -- 8.1 Introduction and Background: Behavioral Incentives in a Vaccination-Dilemma Setting with an Optional Treatment -- 8.2 Model Structure -- 8.2.1 Formulation of the SVITR Model -- 8.2.2 Reproduction Number -- 8.2.3 Payoff Structure -- 8.2.4 Strategy Updating and Global Dynamics -- 8.2.4.1 Individual-Based Risk Assessment (IB-RA) -- 8.2.4.2 Strategy-Based Risk Assessment (SB-RA) -- 8.2.5 Utility of Treatment -- 8.3 Result and Discussion -- 8.3.1 SVITR Dynamics -- 8.3.2 Interplay Between Vaccination and Treatment Costs -- 8.3.3 Individual-Versus Society-Centered Decision Making -- 8.3.4 Interplay Between Vaccine and Treatment Characteristics -- 8.3.5 Comprehensive Discussion -- References -- Chapter 9: Pre-emptive Vaccination Versus Late Vaccination -- 9.1 Introduction and Background: Is Pre-Emptive or Late Vaccination More Beneficial? -- 9.2 Model Structure -- 9.2.1 Formulation of the Dynamics of the Epidemic and Human Behavior -- 9.2.2 Payoff Structure.
9.2.3 Strategy Updating and Global Dynamics -- 9.3 Result and Discussion -- References -- Chapter 10: Influenza Vaccine Uptake -- 10.1 Introduction and Background: Multiple Strains and Multiple Vaccines -- 10.2 Model Structure -- 10.2.1 Dynamics of Epidemic Spread -- 10.2.2 Payoff Structure -- 10.2.3 Strategy Updating and Global Dynamics -- 10.3 Result and Discussion -- 10.3.1 Dynamics in a Single Season -- 10.3.2 Evolutionary Outcome of Vaccination Coverage -- 10.3.3 Phase Diagrams -- 10.3.4 Analysis of Social-Efficiency Deficit (SED) -- 10.3.5 Comprehensive Discussion -- Chapter 11: Optimal Design of a Vaccination-Subsidy Policy -- 11.1 Introduction and Background: Free Ticket, Discount Ticket, or a Combination of the Two-Which Subsidy Policy Is Socially O... -- 11.2 Model Design -- 11.2.1 Vaccination Game on a Scale-Free Network -- 11.2.2 Subsidy Policies -- 11.2.3 MAS Approach -- 11.3 Result and Discussion -- Chapter 12: Flexible Modeling -- 12.1 Introduction and Background: A New Cyclic Epidemic-Vaccination Model: Embedding the Attitude of Individuals Toward Vaccin... -- 12.2 Model Depiction -- 12.3 Result and Discussion -- Postscript -- Index.
Record Nr. UNINA-9910483687703321
Tanimoto Jun <1965->  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui