| Nota di contenuto |
Front Cover -- Seldin and Giebisch's the Kidney -- Copyright Page -- Dedication -- Contents -- Foreword -- Preface -- List of Contributors -- I: Epithelial and Nonepithelial Transport and Regulation -- 1 Epithelial Cell Structure and Polarity -- Introduction -- The Nature and Physiologic Implications of Epithelial Polarity -- Epithelial Cell Structure: Morphology and Physiology -- The Junctional Complex -- The Apical Microvillar Surface -- The Basolateral Plasma Membrane -- The Basement Membrane -- Biogenesis of Epithelial Polarity -- In Vitro Systems -- Polarization Mechanisms: Spatial Cues from Cell Adhesion -- Polarization Mechanisms: The Intrinsic Polarization Machinery -- Sorting Pathways -- Technical Approaches -- Sodium Pump Targeting -- Regulation of Renal Transport Protein Function by Endocytosis and Recycling -- Sorting Signals -- Cell Type-Specific Sorting: Patterns -- Sorting: Mechanisms -- Tyrosine-Based Motifs and Adaptors -- Glycosphingolipid-Rich Membrane Domains -- PDZ Domain-containing Proteins -- Epithelial Cell Polarity and Renal Disease -- Carcinogenesis -- Ischemic Injury -- Genetic Diseases of Proximal Tubule Apical Endocytosis: Dent's Disease and the Oculo Cerebral Renal Syndrome of Lowe -- Polycystic Kidney Disease -- Acknowledgments -- References -- 2 Mechanisms of Ion Transport across Cell Membranes -- Introduction -- The Cell Interior and Extracellular Fluid Have Different Ionic Compositions -- The Plasma Membrane: Structure Related to Function -- The Plasma Membrane is Selectively Permeable -- Mechanisms of ion TRANSPORT -- Ion Transport can be Active or Passive -- Active and Passive Transport Processes can be Evaluated by Considering Direction of Electrochemical Potential Difference (D... -- Pathways and Mechanisms of Passive Transport -- Diffusion and Electrodiffusion -- Electrodiffusion -- Mediated Transport.
Thermodynamics of Mediated Passive Transport -- Kinetics of Mediated Passive Transport -- Modes of Coupled Transport -- Pathways and Mechanisms of Active Transport -- Primary Active Transport -- Secondary Active Transport -- Ion Transport PROTEINS -- Pores -- Channels -- K+-Selective Channels -- Na+-Selective Channels -- Cl− Selective Channels -- Carriers -- Pumps -- Similarities and Differences between Ion Transport Proteins -- References -- 3 Renal Ion-Translocating ATPases -- P-ATPases -- Structure and Function of Ca2+-ATPases (SERCA and PMCA) -- Structure of Na,K-ATPase and H,K-ATPase -- Catalytic α-Subunit -- Structure -- Isoforms -- β-Subunit -- Isoforms -- Structure and α-β Interaction -- Functional Role -- FXYD Proteins -- Isoforms -- Function and Interaction with α- and β-Subunits -- Properties of Na,K-ATPase and H,K-ATPase -- Ion Transport -- Pharmacology -- Genetics -- Regulation of Na,K-ATPase -- Substrates -- Post-Translational Modifications -- Synthesis and Degradation -- Membrane Trafficking -- Interaction with the Cytoskeleton -- New Physiological Functions of Na,k-ATPase -- Cell Signaling by Na,K-ATPase -- Role of Na,K-ATPase in Cell Adhesion -- Na,K-ATPase in the Kidney -- Regulation of Na,K-ATPase in Proximal Tubule -- Control of Na,K-ATPase by Insulin -- Control of Na,K-ATPase by Dopamine and Parathormone -- Angiotensin II Exerts a Biphasic Effect on Na,K-ATPase -- Regulation of Na,K-ATPase in Thick Ascending Limb of Henle's Loop -- Control of Na,K-ATPase in Collecting Duct -- Aldosterone Induces a Biphasic Stimulation of Na,K-ATPase -- Vasopressin Stimulates Na,K-ATPase -- Na,K-ATPase Expression is Regulated by Sodium Availability -- Induction of Na,K-ATPase is Associated with Sodium Retention in Nephrotic Syndrome and Liver Cirrhosis -- H,K-ATPases in Kidney -- Gastric H,K-ATPase -- Colonic H,K-ATPase -- V-ATPase.
Structure and Mechanism of Action of V-ATPases -- Isoforms -- Renal Isoforms of the V-ATPase -- Multiple Functions of the V-ATPASE in the Kidney -- Expression in the Kidney -- Bicarbonate Absorption -- Role of the V-ATPase in Intercalated Cells -- Role of the V-ATPase in Endocytosis in Renal Epithelial Cells -- References -- 4 Mechanisms of Water Transport Across Cell Membranes and Epithelia -- Introduction -- Basic Principles -- Osmotic Equilibrium is a Balance of Osmotic and Hydrostatic Forces -- Osmotic Water Flows Across Lipid and Porous Membranes have Different Properties -- Osmotic Water Flow Across Lipid Membranes -- Osmotic Water Flow Across a Porous Membrane -- Large Pores -- Single-File Pore -- Comparison of Diffusion and Osmotic Permeability Coefficients Reveals Whether Water Permeates Lipid Bilayer or Pores -- Porous Membrane -- Unstirred Layers are a Major Source of Artifacts in Water Permeability Measurements -- Unstirred-Layer Effects on Measurement of Pdw -- Unstirred-Layer Effects on the Measurement of Pos -- Solute Reflection Coefficients Denote Effective Osmolality of a Solution vis-à-vis a Membrane -- Lipid Membrane -- Porous Membrane -- Solvent Drag Can Account for Uphill Solute Transport -- Water Transport Across the Cell Membrane -- Intracellular Water Behaves Similar to Water in Free Solution -- The Osmotic Behavior of Cells is not Ideal -- Net Water Transport Across Membranes of Animal Cells is Osmotic -- Cell Volume is Determined by the Amount of Cell Solute and the Extracellular Osmolality -- Water Permeability of the Plasma Membrane Varies Considerably Among Cell Types -- Pathways for Water Transport Across Cell Membranes -- Water Pores Determine High Cell-Membrane Water Permeability -- High POS/Pd -- Low Arrhenius Activation Energy -- Sensitivity to Hg -- Flux Interactions -- Cell Membrane Water Pores are Aquaporins.
Mechanism of Water Permeation in AQPs -- Certain Aquaporins are Permeable to Solutes and Perhaps to Physiologic Gases -- Regulation of AQP-Mediated Water Permeability -- Other Membrane Proteins May Contribute to Water Transport -- Do Co-Transporters Perform Active Water Transport? -- Summary and Conclusions -- Water Transport in Epithelia -- Characteristics of Transepithelial Water Transport -- Epithelia Have Very Different Water Permeabilities -- Two Types of Transepithelial Water Transport -- Solute-Solvent Coupling -- Three-Compartment Models Define the Problem -- Standing-Gradient Hypothesis Explains Near-Isosmotic Fluid Transport, but is Difficult to Reconcile with Current Experiment... -- Near-Isosmotic Fluid Transport Model Solves the Difficulties of Three-Compartment Models -- Solute Recirculation in the Paracellular Pathway in Theory Explains Truly Isosmotic Transepithelial Fluid Transport -- In Certain Epithelia Asymmetries in Solute Composition Play Significant Roles -- Pathways for Transepithelial Water Transport are also Controversial -- Transcellular Osmotic Water Transport is Supported by High Cell-Membrane Pos -- Paracellular Osmotic Water Transport is Supported by Indirect Arguments -- Summary and Conclusions -- References -- 5 Cell Volume Control -- Cell Volume Regulatory Mechanisms -- Cell Volume Regulatory Ion Transport -- Ions in Cell Volume Maintenance -- Ion Release Following Cell Swelling -- Ion Uptake upon Cell Shrinkage -- Osmolytes -- Osmolyte Accumulation by Metabolism -- Osmolyte Accumulation by Transport -- Osmolyte Release -- Metabolic Pathways Sensitive to Cell Volume -- Protein and Glycogen Metabolism -- Glucose and Amino Acid Metabolism -- Oxidative Metabolism -- Other Metabolic Pathways -- Cell Volume-Sensitive Genes -- Signaling of Cell Volume Regulation -- Intracellular Ca2+ -- Cytoskeleton.
Protein Phosphorylation -- Phosphatidylinositol 4,5,-Bisphosphate -- Phospholipase A2 and Eicosanoids -- pH of Acidic Cellular Compartments -- Others -- Challenges and functions affecting cell Volume -- Alterations of Extracellular Fluid Osmolarity and Composition -- Osmolarity -- Extracellular K+ Concentration -- H+ and HCO3− Concentration -- Organic Acids -- Urea, Drugs, and Toxins -- Functional States Affecting Cell Volume Control -- Energy Depletion -- Transport -- Influence of Hormones and Transmitters on Cell Volume -- Neuromuscular Excitability -- Metabolism -- Cell Proliferation -- Migration -- Apoptotic Cell Death -- Necrotic Cell Death -- References -- 6 Solute Transport, Energy Consumption, and Production in the Kidney -- Introduction -- Energy Consumption -- Na Transport and Energy Consumption in the Kidney -- Na+ Transport and O2 Consumption -- Heterogeneity in Na+ Transport Efficiency among Nephron Segments -- Proximal Tubule -- Thick Ascending Limb of Henle -- CCD -- Energy Cost of Primary Active Transport -- P-type-ATPases -- Na+,K+-ATPase -- Ca2+-ATPase -- H+,K+-ATPase -- V-type ATPases -- ABC Superfamily -- Comparison of Ion Transporting ATPase Activities and QO2 along the Nephron -- Metabolic Basis in the Kidney -- Energy Production Pathway in the Kidney -- Mitochondrial Oxidative Phosphorylation -- Tricarboxylic Acid Cycle -- β-Oxidation of Fatty Acids -- Ketone Body Metabolism -- Glycolysis -- Gluconeogenesis -- Metabolic Parameters along Nephron Segments -- Preference of Metabolic Substrates in Nephron Segments -- Substrate Preference Along the Nephron Segments -- Proximal Tubule (PT) -- Thin Descending Limb of the Loop of Henle (TDL) -- Cortical Thick Ascending Limb of the Loop of Henle (CTAL) -- Medullary Thick Ascending Limb of the Loop of Henle (MTAL) -- Distal Convoluted Tubule (DCT) -- Cortical Collecting Duct (CCD).
Outer Medullary Collecting Duct (OMCD).
|