Agromining : farming for metals : extracting unconventional resources using plants / / Antony van der Ent [and four others] editors |
Edizione | [2nd ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (IX, 489 p. 119 illus., 108 illus. in color.) |
Disciplina | 582.019214 |
Collana | Mineral Resource Reviews |
Soggetto topico |
Heavy-metal tolerant plants
Plants - Effect of metals on Metals - Physiological effect |
ISBN | 3-030-58904-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 The Long Road to Developing Agromining/Phytomining -- 2 Agronomy of ‘Metal Crops’ Used in Agromining -- 3 Processing of Bio-ore to Products -- 4 Processing of Bio-ore to Products: REEs, and other elements -- 5 Life Cycle Assessment and Ecosystem Services of Agromining -- 6 Global Distribution and Ecology of Hyperaccumulator Plants -- 7 Physiology and Molecular Biology of Trace Element Hyperaccumulation -- 9 Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology -- 10 Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry -- 11 The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation -- 12 Incorporating Hyperaccumulator Plants into Mine Rehabilitation in the Asia-Pacific Region -- 13 Agromining of High-Value Elements and Contaminants from Minerals Wastes -- 14 Agromining from Various Industrial Wastes -- 15 Phytoextraction of Cadmium: Feasibility in Field Applications and Potential Use of Harvested Biomass -- 16 Metal recovery with agromining from former mine and industrial sites under restoration -- 17 Element Case Studies: Nickel (temperate/Mediterranean regions). |
Record Nr. | UNINA-9910482987303321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hydrogen sulfide and plant acclimation to abiotic stresses / / M. Nasir Khan [and three others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (241 pages) |
Disciplina | 582.019214 |
Collana | Plant in Challenging Environments |
Soggetto topico |
Plants - Effect of hydrogen sulfide on
Plants - Effect of stress on Efecte de l'estrès sobre les plantes Àcid sulfúric |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-73678-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910495173003321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant metal and metalloid transporters / / Kundan Kumar and Sudhakar Srivastava, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (455 pages) |
Disciplina | 582.019214 |
Soggetto topico |
Plants - Effect of metals on
Metals - Transport properties Plants - Effect of heavy metals on |
ISBN | 981-19-6103-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- 1: Plant Metal and Metalloid Transporters -- 1.1 Introduction -- 1.2 Metals and Their Significance in Plants -- 1.3 Metalloids and Their Significance in Plants -- 1.4 Metal Transporters -- 1.4.1 NRAMP Transporters -- 1.4.2 CDF Transporters -- 1.4.3 ZIP Transporters -- 1.4.4 ABC Transporters -- 1.4.5 Heavy Metal ATPases (HMAs) -- 1.5 Metalloid Transporters -- 1.5.1 Diversity of Plant Metalloid Transporters -- 1.5.2 Metalloid Absorption Channels -- 1.5.3 Metalloid Channel Transporters and Their Specificity -- 1.6 Metalloid Transporter Types -- 1.6.1 Aquaporin Transporters -- 1.6.1.1 NIP Transporters -- 1.6.2 Metalloid Efflux Transporters in Plants -- 1.6.2.1 BOR Transporters -- 1.6.2.2 Lsi2 Transporters -- 1.7 Directional Transport Systems for Metalloid Uptake -- 1.7.1 Polar Localization of Metalloid Transporters in Plants -- 1.8 Distribution of Metalloids by Transporters -- 1.8.1 Transporters for B Distribution -- 1.8.2 Transporters for Si Distribution -- 1.8.3 Transporters for As Distribution -- 1.9 Conclusions and Future Perspectives -- References -- 2: Heavy Metals: Transport in Plants and Their Physiological and Toxicological Effects -- 2.1 Introduction -- 2.2 Different Sources of Heavy Metal Pollution -- 2.3 Properties of Heavy Metal -- 2.4 Effects and Transport of Metal Pollutants into the Ecosystem -- 2.4.1 Translocation of Metals in Soil -- 2.4.2 Translocation of Metals in Water -- 2.4.3 Translocation of Metals in Air -- 2.5 Heavy Metal Pollution in the Atmosphere: A Need for Great Attention -- 2.6 Heavy Metals and Their Translocation in Plants -- 2.6.1 Chromium -- 2.6.2 Toxicology Processes -- 2.6.3 Fluoride -- 2.6.4 Toxicological Processes -- 2.6.5 Manganese -- 2.6.6 Cobalt -- 2.6.7 Nickel -- 2.6.8 Copper -- 2.6.9 Zinc -- 2.6.10 Mercury -- 2.6.11 Lead -- 2.7 Conclusion.
References -- 3: The Role of ABC Transporters in Metal Transport in Plants -- 3.1 Introduction -- 3.2 ABC Transporter Family -- 3.3 Molecular Structure of ABC Transporters -- 3.4 Primary Superfamilies of Plant ABC Transporters -- 3.4.1 MDR Superfamily -- 3.4.2 MRP Superfamily -- 3.5 Classes of Plant ABC Transporters -- 3.6 Role of ABC Transporters -- 3.6.1 Role in Growth and Development: Transport of Hormones, Fatty Acids, and Phytate -- 3.6.2 Role in Pathogen Defense -- 3.7 ABC Transporters in Metal Transport and Sequestration -- 3.8 Future Prospects -- References -- 4: Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism -- 4.1 Introduction -- 4.2 Cadmium Transporters: Uptake and Translocation -- 4.3 NRAMP Transporters -- 4.4 ZIP Transporters -- 4.5 YSL Transporters -- 4.6 Transporters Involved in Shoot Uptake of Cadmium -- 4.7 Cadmium Stress Signaling -- 4.8 Phytochelatins and Metallothioneins: Role in Cd Detoxification -- 4.9 Cadmium Toxicity and Amino Acid Metabolism -- 4.10 Conclusion -- References -- 5: Natural Resistance-Associated Macrophage Proteins (NRAMPs): Functional Significance of Metal Transport in Plants -- 5.1 Introduction -- 5.2 Genomic Analysis -- 5.3 Structural Analysis -- 5.4 Functional Characterization -- 5.5 Expression Pattern and Regulation -- 5.6 Conclusion -- References -- 6: Role of Heavy Metal ATPases in Transport of Cadmium and Zinc in Plants -- 6.1 Introduction -- 6.2 Heavy Metal ATPases in Alleviating Heavy Metal Toxicity -- 6.3 Cadmium Toxicity in Plants -- 6.3.1 Transporters in Alleviating Cadmium Stress -- 6.3.2 Activities of HMA Within the Roots in Response to Cadmium Stress -- 6.3.3 Heavy Metal ATPase Associated with Cadmium Translocation -- 6.3.4 Heavy Metal ATPase Associated with Xylem Unloading and Cadmium Distribution. 6.4 Zinc Toxicity in Plants -- 6.4.1 Heavy Metal ATPases in Zinc Homeostasis -- 6.5 Expression of Heavy Metal ATPases -- 6.6 Prospects and Conclusion -- References -- 7: The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport -- 7.1 Introduction -- 7.2 PIP Members as Metalloid Transporters -- 7.3 NIP Members as Metalloid Transporters -- 7.4 XIP Members as Metalloid Transporters -- 7.5 Role of TIPs in Metalloid Transport and Tolerance -- 7.6 Future Perspectives -- References -- 8: The Multidrug and Toxic Compound Extrusion (MATE) Family in Plants and Their Significance in Metal Transport -- 8.1 Introduction -- 8.2 Structure of MATEs -- 8.3 Function of MATE Transporters in Metal Toxicity Tolerance -- 8.3.1 Role of MATE Transporters in Xenobiotic Toxicity Tolerance -- 8.3.2 Effect of Aluminum on Plants -- 8.3.2.1 MATE Transporters Exude Citrate in Response to Aluminum Toxicity -- 8.3.3 Role of MATE Transporters in Iron Homeostasis -- 8.4 Other Functions of MATE Transporters in Plants -- 8.4.1 Secondary Metabolite Transport -- 8.4.2 Developmental Roles -- 8.4.3 Biotic Stress -- 8.5 Conclusion and Future Perspectives -- References -- 9: Molecular Mechanism of Aluminum Tolerance in Plants: An Overview -- 9.1 Aluminum Toxicity and Tolerance in Plants: An Introduction -- 9.2 Effect of Aluminum Stress in Plants -- 9.3 Aluminum Tolerance Mechanism -- 9.3.1 External Tolerance Mechanism -- 9.3.2 Internal Tolerance Mechanism -- 9.3.3 Transcription Factors Involved in Combatting Aluminum Stress -- 9.3.4 Plant Hormones Involved in Aluminum Stress Adaptation -- 9.4 Manipulation of Aluminum-Tolerant Genes Using Transgenic Approaches -- 9.5 Conclusion and Future Perspective -- References -- 10: Functional, Structural, and Transport Aspects of ZIP in Plants -- 10.1 Introduction -- 10.2 Role of Zn in Plants -- 10.3 Zn Transport Protein in Plants. 10.3.1 Zn Uptake and Transport in Plants -- 10.4 ZIP in Plants -- 10.4.1 Structural and Functional Aspect of ZIP in Plants -- 10.4.2 Regulation of ZIP in Plants -- 10.5 Conclusion and Future Prospectus -- References -- 11: The Function of HAK as K+ Transporter and AKT as Inward-Rectifying Agent in the K+ Channel -- 11.1 Introduction -- 11.2 HAK-AKT Transporters Present in Various Plants -- 11.3 K+ Channels and Transporters -- 11.4 Adaptive Responses of Plants to Salinity Stress -- 11.5 Mechanism of Action of HAK and AKT -- 11.6 Conclusion -- References -- 12: The Mechanism of Silicon Transport in Plants -- 12.1 Silicon -- 12.2 Silicon in Plants -- 12.3 Silicon in Soil -- 12.4 Silicon and Abiotic Stresses -- 12.4.1 Water-Deficit Stress -- 12.4.2 Temperature Stress -- 12.4.3 Ultraviolet Stress -- 12.4.4 Mechanical Injury -- 12.4.5 Heavy Metal Stress -- 12.4.6 Excessive Mineral Nutrient Stress -- 12.4.7 Saline Stress -- 12.5 Silicon and Biotic Stress Mitigation -- 12.6 Omics Studies on Silicon Application on Crops -- 12.7 Reactive Oxygen Species Regulation -- 12.8 Silicon and Phytohormone Cross Talk -- 12.9 Si Accumulation and Transporters in the Plant Kingdom -- 12.10 Silicon Accumulation and Uptake -- 12.11 Silicon Transport in Xylem -- 12.12 Elements Effecting Silicon Uptake and Distribution -- 12.13 Silicon Uptake Mechanism: Influx and Efflux Transporters (Table 12.2) -- 12.14 Silicon Transport -- 12.14.1 Channel-Type Transporters -- 12.15 Silicon Uptake in Major Crops -- 12.15.1 Silicon Uptake in Rice -- 12.15.2 Silicon Uptake in Sugarcane -- 12.15.3 Silicon Uptake in Pepper -- 12.15.4 Silicon Uptake in Tomato -- 12.15.5 Silicon Uptake in Wheat -- 12.15.6 Silicon Uptake in Maize -- 12.15.7 Silicon Uptake in Cucumber -- 12.15.8 Silicon Uptake in Barley -- 12.15.9 Silicon Uptake in Arabidopsis -- 12.15.10 Silicon Uptake in Cannabis. 12.16 Silicon Controversy -- 12.17 Conclusion -- 12.18 Future Recommendation -- References -- 13: The Copper Transport Mechanism in Plants -- 13.1 Introduction -- 13.2 Mechanism of Copper (Cu) Transport in Plants -- 13.3 P-Type ATPase Copper Transporters -- 13.4 COPT Copper Transporters -- 13.5 Copper Chaperones -- 13.6 Natural Resistance-Associated Macrophage Protein (NRAMP) -- 13.7 Relating the Biosynthetic and Homeostatic Roles of Cu Transport Systems -- 13.8 Conclusion -- References -- 14: Plant Metal Tolerance Proteins: Insight into Their Roles in Metal Transport and Homeostasis for Future Biotechnological Ap... -- 14.1 Introduction -- 14.2 Regulation of Cellular Metal Homeostasis -- 14.2.1 Role of MTPs in Vacuolar Compartmentalization for Metal Homeostasis -- 14.2.2 Plasma Membrane-Localized MTP Transporter Responsible for Distal Transport of Mn -- 14.2.3 MTP Transporter as Manganese Transport Proteins in Endomembranes -- 14.2.4 MTP Member Assures Mn Homeostasis During Seed Development and Germination -- 14.3 Potential of MTP in Biotechnological Application -- 14.4 Future Prospects -- References -- 15: Co-Transport Mechanism in Plants for Metals and Metalloids -- 15.1 Introduction -- 15.2 Cation Diffusion Facilitators (CDF) Transporter -- 15.3 Lsi Transporter -- 15.4 Yellow Stripe-Like Proteins (YSL) Transporter -- 15.5 Heavy Metal ATPases (HMAs) Transporters -- 15.6 ZIP Transporter -- 15.7 NRAMP (Natural Resistance-Associated Macrophage Protein) Transporters -- 15.8 ABC Transporter -- 15.9 Aquaglyceroporin Transporter -- 15.10 Conclusions -- References -- 16: Metal Nanoparticle Implication, Transport, and Detection in Plants -- 16.1 Introduction -- 16.2 Metal NPs Implications on Plants -- 16.2.1 Metal NPs Implications on Seed Germination -- 16.2.2 Metal NPs Implications on Plant Growth and Root Elongation. 16.2.3 Metal NP Implications on Photosynthetic Pigments. |
Record Nr. | UNINA-9910624382803321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant metal interaction : emerging remediation techniques / / edited by Parvaiz Ahmad |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Elsevier, , 2016 |
Descrizione fisica | 1 online resource (0 p.) |
Disciplina | 582.019214 |
Soggetto topico |
Plants - Effect of metals on
Trace elements in plant nutrition |
Soggetto genere / forma | Electronic books. |
ISBN | 0-12-803183-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996426333703316 |
Amsterdam, [Netherlands] : , : Elsevier, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Plant metal interaction : emerging remediation technique / edited by Parvaiz Ahmad |
Pubbl/distr/stampa | Amsterdam, : Elsevier, 2016 |
Descrizione fisica | Testo elettronico (PDF) (619 p.) |
Disciplina | 582.019214 |
Soggetto topico |
n
Piante |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996461653903316 |
Amsterdam, : Elsevier, 2016 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. di Salerno | ||
|
Plant metal interaction : emerging remediation techniques / / edited by Parvaiz Ahmad |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Elsevier, , 2016 |
Descrizione fisica | 1 online resource (0 p.) |
Disciplina | 582.019214 |
Soggetto topico |
Plants - Effect of metals on
Trace elements in plant nutrition |
ISBN | 0-12-803183-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583383503321 |
Amsterdam, [Netherlands] : , : Elsevier, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant-Metal Interactions / / edited by Sudhakar Srivastava, Ashish K. Srivastava, Penna Suprasanna |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (326 pages) : illustrations |
Disciplina | 582.019214 |
Soggetto topico |
Plant genetics
Plant physiology Proteomics Metabolism Agriculture Plant Genetics and Genomics Plant Physiology Metabolomics |
ISBN | 3-030-20732-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. An integrated transcriptomic,proteomic and metabolomic approach to unravel the molecular mechanisms of metal stress tolerance in plants -- 2. Molecular mechanisms and signaling response of heavy metal stress tolerance in plants -- 3. Metabolome modulation during arsenic stress in plants -- 4. Arsenic transport, metabolism in plants -- 5. Selenium plant interactions and underlying responses -- 6. Aluminum tolerance in plants- an overview -- 7. Cadmium (Cd): An emerging regulatory metal with critical role in cell signalling and plant morphogenesis -- 8. Hyperaccumulators versus non-accumulators unravel novel mechanisms of metal tolerance -- 9. Toxic versus essential metal interactions -- 10. Microbes in the rescue of plants against metal stresses: Identification of underlying mechanisms -- 11. Analysis of halophytes and phytoremediation of heavy metal contaminated soils -- 12. Arbuscular mycorrhiza and plant chromium tolerance -- 13. Metals, crops and agricultural productivity: Impact of metals on crop loss -- 14. Heavy metal toxicity and plant productivity: Role of metal scavengers -- 15. Plant mediated synthesis of nano-materials for environmental remediation. |
Record Nr. | UNINA-9910349451903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|