top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduzione alla biologia delle popolazioni vegetali / Jonathan Silvertown, Deborah Charlesworth ; edizione italiana a cura di Roberto Canullo
Introduzione alla biologia delle popolazioni vegetali / Jonathan Silvertown, Deborah Charlesworth ; edizione italiana a cura di Roberto Canullo
Autore Silvertown, Jonathan W.
Edizione [4. ed.]
Pubbl/distr/stampa Roma : Delfino medicina-scienze, 2011
Descrizione fisica VII, 358 p. : ill. ; 24 cm
Disciplina 581.788
Altri autori (Persone) Charlesworth, Deborah
Soggetto non controllato Popolazioni - Ecologia vegetale
ISBN 978-88-7287-437-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Altri titoli varianti Biologia delle popolazioni vegetali
Record Nr. UNINA-9910257055803321
Silvertown, Jonathan W.  
Roma : Delfino medicina-scienze, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Melatonin in Plants: Role in Plant Growth, Development, and Stress Response [[electronic resource] /] / edited by Anket Sharma, Golam Jalal Ahammed
Melatonin in Plants: Role in Plant Growth, Development, and Stress Response [[electronic resource] /] / edited by Anket Sharma, Golam Jalal Ahammed
Autore Sharma Anket
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (221 pages)
Disciplina 581.788
Altri autori (Persone) AhammedGolam Jalal
Collana Plant Life and Environment Dynamics
Soggetto topico Stress (Physiology)
Plants
Plant molecular biology
Botanical chemistry
Metabolism, Secondary
Plant Stress Responses
Plant Molecular Biology
Plant Biochemistry
Plant Secondary Metabolism
ISBN 981-9980-51-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910838272503321
Sharma Anket  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiotechnology : mitigation of abiotic stress in plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, and Akhilesh Kumar Singh
Nanobiotechnology : mitigation of abiotic stress in plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, and Akhilesh Kumar Singh
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 581.788
Soggetto topico Plants - Effect of stress on - Technological innovations
Crops - Effect of stress on - Technological innovations
Efecte de l'estrès sobre les plantes
Cultius (Biologia)
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73606-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- 1 Abiotic Stress in Plants: Socio-Economic Consequences and Crops Responses -- 1.1 Introduction -- 1.2 Socio-Economic Consequences of Abiotic Stress on Crop Production -- 1.3 Crops Response to Abiotic Stress -- 1.3.1 Growth and Productivity -- 1.3.2 Germination and Early Seedling Stages -- 1.3.3 Vegetative and Reproductive Stages -- 1.4 Crop Water Relations -- 1.4.1 Water Stress -- 1.4.2 Extreme Temperatures -- 1.4.3 Salinity -- 1.4.4 Heavy Metal -- 1.5 The Effect of Abiotic Stressors on Photosynthesis Pigments and Apparatus -- 1.5.1 Water Stress -- 1.5.2 Extreme Temperatures -- 1.5.3 Salinity -- 1.5.4 Heavy Metals -- 1.6 Conclusion and Future Prospects -- References -- 2 Plant Abiotic Stress Tolerance Mechanisms -- 2.1 Introduction -- 2.1.1 Morphological Flexibility Conferring Abiotic Stress Tolerance -- 2.2 Positive Physiological Modification to Tackle Abiotic Stress -- 2.2.1 Antioxidants -- 2.2.2 Osmotic Adjustment -- 2.2.3 Molecular Strategies -- 2.3 Conclusion and Future Perspective -- References -- 3 Biotechnology Strategies to Combat Plant Abiotic Stress -- 3.1 Introduction -- 3.2 Genetic Engineering Strategies for Resistance to Abiotic Stresses -- 3.2.1 Metabolite Engineering for Improving Abiotic Stress Tolerance -- 3.2.2 Genetic Engineering of Stress Responsive Genes and Transcription Factors -- 3.3 Tissue Culture Techniques -- 3.3.1 Somaclonal Variation and In Vitro Mutagenesis -- 3.3.2 In Vitro Selection for Abiotic Stress Tolerant Plants -- 3.4 Gene Editing Tools for Improving Stress Resistance in Plants -- 3.4.1 Zinc Finger Nucleases (ZFNs) -- 3.4.2 Transcription Activator-Like Effector Nucleases (TALENs) -- 3.4.3 Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9) -- 3.5 Conclusion and Prospects -- References.
4 Nanomaterials Fundamentals: Classification, Synthesis and Characterization -- 4.1 Introduction -- 4.2 Nanomaterials -- 4.3 Classification of Nanomaterials -- 4.4 Quantum Effects -- 4.5 Unique Properties of Nanomaterials -- 4.5.1 Physical Properties -- 4.5.2 Optical Properties -- 4.5.3 Chemical Properties -- 4.5.4 Electrical Properties -- 4.5.5 Magnetic Properties -- 4.5.6 Mechanical Properties -- 4.6 Synthesis Methods of Nanomaterials -- 4.6.1 Physical Methods for Synthesis Nanomaterials -- 4.6.2 Chemical Methods for Synthesis Nanomaterials -- 4.6.3 Green Methods for Synthesis Nanomaterials -- 4.7 Characterization of Nanoparticles -- 4.7.1 X-Ray Diffraction (XRD) -- 4.7.2 Transmission Electron Microscopy (TEM) -- 4.7.3 Scanning Electron Microscope (SEM) -- 4.7.4 Energy Dispersion Spectroscopy -- 4.7.5 Fourier Transform Infrared (FTIR) Spectrometer -- 4.7.6 Ultraviolet-Visible (UV/Vis) Spectroscopy -- 4.8 Conclusion and Prospects -- References -- 5 Nanotechnology in Agriculture -- 5.1 Introduction -- 5.2 Approaches for Synthesis of NPs -- 5.3 Classification and Examples of NPs -- 5.3.1 Nano Silver -- 5.3.2 Nano Alumino-Silicate -- 5.3.3 Titanium Dioxide NPs (nTio2) -- 5.3.4 Carbon NPs -- 5.3.5 Magnetic NPs -- 5.4 Biogenic/Green NPs -- 5.5 Application of Nanotechnology in Agriculture -- 5.5.1 Role of Nanotechnology in Seed Germination -- 5.5.2 Nano-Fertilizers for Better Crop Production -- 5.5.3 Nano-Pesticides and Nano-Herbicide for Crop Protection -- 5.5.4 Nanotechnology in Plant Disease Detection -- 5.5.5 Nano-Biosensors for Monitoring Agricultural Field -- 5.5.6 Nanotechnology in Recycling and Elimination of Agricultural Wastes -- 5.5.7 Role of Nanotechnology in Plant Genome Manipulation -- 5.6 Nano-Based Smart Delivery Systems for Nano-Fertilizers and Nano-Pesticides -- 5.6.1 Nanoformulation -- 5.6.2 Nanoemulsion -- 5.6.3 Nano-Encapsulation.
5.6.4 Mode of Administration -- 5.7 Conclusions and Prospects -- References -- 6 Contributions of Nano Biosensors in Managing Environmental Plant Stress Under Climatic Changing Era -- 6.1 Introduction -- 6.2 Nanosensors for Plant Health Status Monitoring -- 6.2.1 Abiotic and Biotic Stress -- 6.2.2 Nanoscale Sensors to Monitor Abiotic Stress in Plants -- 6.2.3 Detection of Toxic Elements in Water and Soil -- 6.2.4 Pests and Pathogen-Related Stresses -- 6.3 Optical Nanobiosensors for in Vivo Sensing -- 6.4 Conclusions and Prospects -- References -- 7 Nanobiotechnology: A Process to Combat Abiotic Stress in Crop Plants -- 7.1 Introduction -- 7.1.1 Climate Change -- 7.1.2 Stress Types -- 7.2 Plant Adaptation to Abiotic Stresses -- 7.3 Existing Biotechnological Strategies for Abiotic Stress Tolerance -- 7.4 Transgenic Plants as Alternative -- 7.5 Emerging Field of Nanotechnology -- 7.5.1 Types of Nanoparticles -- 7.5.2 Role of Nanoparticles on Plant -- 7.5.3 Development of Green Nanoparticles (GNPs) -- 7.6 Application of Nanobiotechnology in Agronomy -- 7.6.1 Application of Nanofertilizers -- 7.6.2 Mode of Application -- 7.7 Conclusions and Prospects -- References -- 8 Green Synthesis of Nanoparticles Using Different Plant Extracts and Their Characterizations -- 8.1 Introduction -- 8.1.1 Traditional Methods -- 8.1.2 Biological Methods -- 8.2 Green Synthesized NPs Using Plant Extract -- 8.2.1 Plant Material -- 8.2.2 Synthesis of NPs -- 8.2.3 Reaction Conditions -- 8.2.4 Mechanism of NPs Formation -- 8.3 Conclusion and Prospects -- References -- 9 Applications of Plant-Derived Nanomaterials in Mitigation of Crop Abiotic Stress -- 9.1 Introduction -- 9.1.1 Applications of Nanoparticles -- 9.2 Nano Fertilization -- 9.2.1 Soaking -- 9.2.2 Foliar Fertilization -- 9.2.3 Soil Fertilization -- 9.3 Mechanism of NPs Uptake and Accumulation in Crops.
9.3.1 Root System -- 9.3.2 Vegetative System -- 9.4 Effect of NPs on Plant Growth Under Abiotic Stresses -- 9.4.1 Silicone NPs Nano-Sio2 -- 9.4.2 Zinc Oxide NPs -- 9.4.3 Titanium Dioxide NPs -- 9.4.4 Silver NPs AgNPs -- 9.5 Application of Biosynthesis NPs in Agriculture for Sustainability Development -- 9.6 Conclusion and Prospects -- References -- 10 Biosynthesis and Characterization of Microorganisms-Derived Nanomaterials -- 10.1 Introduction -- 10.2 Biosynthesis of NPs Using Microorganisms -- 10.2.1 Synthesis of NPs Using Bacteria -- 10.2.2 Synthesis of NPs Using Actinomycetes -- 10.2.3 Synthesis of NPs Using Yeast -- 10.2.4 Synthesis of NPs Using Algae -- 10.2.5 Synthesis of NPs Using Fungi -- 10.2.6 Synthesis of Nanoparticles Using Virus -- 10.3 The Role of Biological Molecules of Microorganisms in Green NPs Synthesis -- 10.4 Conclusion and Prospects -- References -- 11 Utilization of Nanofertilizers in Crop Tolerance to Abiotic Stress -- 11.1 Introduction -- 11.2 Nano Fertilizers -- 11.2.1 Nanofertilizers Role -- 11.2.2 Characteristics of Nanofertilizer -- 11.2.3 Comparison Between Nanofertilizers and Conventional Fertilizers -- 11.3 Responses of Crop Growth Stages to Nanoparticles -- 11.3.1 Germination -- 11.3.2 Vegetative Stage -- 11.3.3 Reproduction Stage -- 11.4 Purification of Irrigation Water -- 11.5 Nanomaterials Toxicity to Crops -- 11.6 Effect of Nanofertilizers on Different Growth Stages of Plants Under Abiotic Stresses -- 11.6.1 Drought -- 11.6.2 Salinity -- 11.6.3 Heavy Metals -- 11.6.4 Heat -- 11.7 Conclusion and Prospects -- References -- 12 Role of Nanomaterials in Regulating Reactive Species as a Signaling Molecule of Abiotic Stress in Plants -- 12.1 Introduction -- 12.2 Production of ROS During Stress Conditions -- 12.3 Process of Nanoparticles Mechanism Under Stress Conditions.
12.4 Effect of Nanomaterials on Plants During Abiotic Stresses -- 12.5 Regulation of Reactive Species Signaling by Nanoparticles Under Abiotic Stresses -- 12.6 Conclusion and Prospects -- References -- 13 Role of Nanomaterials in Regulating Oxidative Stress in Plants -- 13.1 Introduction -- 13.2 Nanomaterials and Oxidative Stress -- 13.3 Mechanism Implicated by NMs to Alleviate Oxidative Burst in Plants -- 13.4 Attributes Governing Activities of Nanomaterials -- 13.5 Conclusions and Prospects -- References -- 14 Plant Stress Enzymes Nanobiotechnology -- 14.1 Introduction -- 14.2 ROS Scrounging Antioxidants of Plants -- 14.3 Stimulation of Antioxidant Mechanism in Response to Nanoparticle Exposure -- 14.4 Enzymatic Antioxidants -- 14.5 Impact of Nanoparticles on Plant Growth -- 14.6 Effect of Nanoparticles on Plant Growth Under Salinity -- 14.7 Impact of Nanoparticles on Plant Growth Under Drought Stress -- 14.8 Impact of Nanoparticles on Plant Growth Under Metallic Stress -- 14.9 Impact of Nanoparticles on Plant Growth Under Ultraviolet Radiation Stress -- 14.10 Effect of Nanoparticles on Plant Growth Under Flooding Stress -- 14.11 Conclusion and Prospects -- References -- 15 Plant Stress Hormones Nanobiotechnology -- 15.1 Introduction -- 15.2 Plant Growth Hormones and Their Physiological Significance -- 15.3 Phytohormones as Regulators of the Stress Responses -- 15.4 Phytohormone Signaling Under Stress -- 15.5 Impact of Nanoparticles on the Content of Phytohormones -- 15.6 Role of Nanomaterials and Phytohormones to Cope with Plants Stresses -- 15.7 Conclusions and Prospects -- References -- 16 Application of Nanobiotechnology in Overcoming Salinity Stress -- 16.1 Introduction -- 16.2 Effect of Salinity on Plants -- 16.3 Application of Nanobiotechnology in Agriculture -- 16.3.1 Role of Nanosensors in Agricultural Field.
16.3.2 Use of Nanoparticles for Mitigating Soil Salinity.
Record Nr. UNINA-9910495203703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui