top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing [[electronic resource] /] / edited by Simon James Fong, Richard C. Millham
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing [[electronic resource] /] / edited by Simon James Fong, Richard C. Millham
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (228 pages)
Disciplina 571.0284
Collana Springer Tracts in Nature-Inspired Computing
Soggetto topico Computational intelligence
Algorithms
Big data
Database management
Application software
Computational Intelligence
Algorithm Analysis and Problem Complexity
Big Data
Database Management
Information Systems Applications (incl. Internet)
ISBN 981-15-6695-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. The Big Data Approach Using Bio-Inspired Algorithms: Data Imputation -- Chapter 2. Parameter Tuning onto Recurrent Neural Network and Long Short Term Memory (RNN-LSTM) Network for Feature Selection in Classification of High-dimensional Bioinformatics Datasets -- Chapter 3. Data Stream Mining in Fog Computing Environment with Feature Selection Using Ensemble of Swarm Search Algorithms -- Chapter 4. Pattern Mining Algorithms -- Chapter 5. Extracting Association Rules: Meta-Heuristic and Closeness Preference Approach -- Chapter 6. Lightweight Classifier-based Outlier Detection Algorithms from Multivariate Data Stream -- Chapter 7. Comparison of Contemporary Meta-heuristic Algorithms for Solving Economic Load Dispatch Problem -- Chapter 8. The paradigm on fog computing with bio-inspired search methods and the ‘5Vs’ of big data -- Chapter 9. Approach for sentiment analysis on social media sites -- Chapter 10. Data Visualisation techniques and Algorithms -- Chapter 11. Business Intelligence -- Chapter 12. Big Data Tools for Tasks.
Record Nr. UNINA-9910767531703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing / / edited by Simon James Fong, Richard C. Millham
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing / / edited by Simon James Fong, Richard C. Millham
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Singapore, 2021
Descrizione fisica 1 online resource (228 pages)
Disciplina 571.0284
Collana Springer Tracts in Nature-Inspired Computing
Soggetto topico Computational intelligence
Algorithms
Big data
Database management
Application software
Computational Intelligence
Algorithm Analysis and Problem Complexity
Big Data
Database Management
Information Systems Applications (incl. Internet)
ISBN 981-15-6695-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. The Big Data Approach Using Bio-Inspired Algorithms: Data Imputation -- Chapter 2. Parameter Tuning onto Recurrent Neural Network and Long Short Term Memory (RNN-LSTM) Network for Feature Selection in Classification of High-dimensional Bioinformatics Datasets -- Chapter 3. Data Stream Mining in Fog Computing Environment with Feature Selection Using Ensemble of Swarm Search Algorithms -- Chapter 4. Pattern Mining Algorithms -- Chapter 5. Extracting Association Rules: Meta-Heuristic and Closeness Preference Approach -- Chapter 6. Lightweight Classifier-based Outlier Detection Algorithms from Multivariate Data Stream -- Chapter 7. Comparison of Contemporary Meta-heuristic Algorithms for Solving Economic Load Dispatch Problem -- Chapter 8. The paradigm on fog computing with bio-inspired search methods and the ‘5Vs’ of big data -- Chapter 9. Approach for sentiment analysis on social media sites -- Chapter 10. Data Visualisation techniques and Algorithms -- Chapter 11. Business Intelligence -- Chapter 12. Big Data Tools for Tasks.
Record Nr. UNINA-9910863112203321
Springer Singapore, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nature inspired algorithms and their applications / / editors, S. Balamurugan [et al.]
Nature inspired algorithms and their applications / / editors, S. Balamurugan [et al.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing, , [2022]
Descrizione fisica 1 online resource (384 pages)
Disciplina 571.0284
Soggetto topico Nature-inspired algorithms
Soggetto genere / forma Electronic books.
ISBN 1-119-68166-9
1-119-68198-7
1-119-68199-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Introduction to Nature-Inspired Computing -- 1.1 Introduction -- 1.2 Aspiration From Nature -- 1.3 Working of Nature -- 1.4 Nature-Inspired Computing -- 1.4.1 Autonomous Entity -- 1.5 General Stochastic Process of Nature-Inspired Computation -- 1.5.1 NIC Categorization -- 1.5.1.1 Bioinspired Algorithm -- 1.5.1.2 Swarm Intelligence -- 1.5.1.3 Physical Algorithms -- 1.5.1.4 Familiar NIC Algorithms -- References -- 2 Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning -- 2.1 Introduction of Genetic Algorithm -- 2.1.1 Background of GA -- 2.1.2 Why Natural Selection Theory Compared With the Search Heuristic Algorithm? -- 2.1.3 Working Sequence of Genetic Algorithm -- 2.1.3.1 Population -- 2.1.3.2 Fitness Among the Individuals -- 2.1.3.3 Selection of Fitted Individuals -- 2.1.3.4 Crossover Point -- 2.1.3.5 Mutation -- 2.1.4 Application of Machine Learning in GA -- 2.1.4.1 Genetic Algorithm Role in Feature Selection for ML Problem -- 2.1.4.2 Traveling Salesman Problem -- 2.1.4.3 Blackjack-A Casino Game -- 2.1.4.4 Pong Against AI-Evolving Agents (Reinforcement Learning) Using GA -- 2.1.4.5 SNAKE AI-Game -- 2.1.4.6 Genetic Algorithm's Role in Neural Network -- 2.1.4.7 Solving a Battleship Board Game as an Optimization Problem Which Was Initially Released by Milton Bradley in 1967 -- 2.1.4.8 Frozen Lake Problem From OpenAI Gym -- 2.1.4.9 N-Queen Problem -- 2.1.5 Application of Data Mining in GA -- 2.1.5.1 Association Rules Generation -- 2.1.5.2 Pattern Classification With Genetic Algorithm -- 2.1.5.3 Genetic Algorithms in Stock Market Data Mining Optimization -- 2.1.5.4 Market Basket Analysis -- 2.1.5.5 Job Scheduling -- 2.1.5.6 Classification Problem -- 2.1.5.7 Hybrid Decision Tree-Genetic Algorithm to Data Mining.
2.1.5.8 Genetic Algorithm-Optimization of Data Mining in Education -- 2.1.6 Advantages of Genetic Algorithms -- 2.1.7 Genetic Algorithms Demerits in the Current Era -- 2.2 Introduction to Artificial Bear Optimization (ABO) -- 2.2.1 Bear's Nasal Cavity -- 2.2.2 Artificial Bear ABO Gist Algorithm: -- Pseudo Algorithm: -- Implementation: -- 2.2.3 Implementation Based on Requirement -- 2.2.3.1 Market Place -- 2.2.3.2 Industry-Specific -- 2.2.3.3 Semi-Structured or Unstructured Data -- 2.2.4 Merits of ABO -- 2.3 Performance Evaluation -- 2.4 What is Next? -- References -- 3 Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique -- 3.1 Introduction -- 3.1.1 Example of Optimization Process -- 3.1.2 Components of Optimization Algorithms -- 3.1.3 Optimization Techniques Based on Solutions -- 3.1.3.1 Optimization Techniques Based on Algorithms -- 3.1.4 Characteristics -- 3.1.5 Classes of Heuristic Algorithms -- 3.1.6 Metaheuristic Algorithms -- 3.1.6.1 Classification of Metaheuristic Algorithms: Nature-Inspired vs. Non-Nature-Inspired -- 3.1.6.2 Population-Based vs. Single-Point Search (Trajectory) -- 3.1.7 Data Processing Flow of ACO -- 3.2 A Case Study on Surgical Treatment in Operation Room -- 3.3 Case Study on Waste Management System -- 3.4 Working Process of the System -- 3.5 Background Knowledge to be Considered for Estimation -- 3.5.1 Heuristic Function -- 3.5.2 Functional Approach -- 3.6 Case Study on Traveling System -- 3.7 Future Trends and Conclusion -- References -- 4 A Hybrid Bat-Genetic Algorithm-Based Novel Optimal Wavelet Filter for Compression of Image Data -- 4.1 Introduction -- 4.2 Review of Related Works -- 4.3 Existing Technique for Secure Image Transmission -- 4.4 Proposed Design of Optimal Wavelet Coefficients for Image Compression -- 4.4.1 Optimized Transformation Module.
4.4.1.1 DWT Analysis and Synthesis Filter Bank -- 4.4.2 Compression and Encryption Module -- 4.4.2.1 SPIHT -- 4.4.2.2 Chaos-Based Encryption -- 4.5 Results and Discussion -- 4.5.1 Experimental Setup and Evaluation Metrics -- 4.5.2 Simulation Results -- 4.5.2.1 Performance Analysis of the Novel Filter KARELET -- 4.5.3 Result Analysis Proposed System -- 4.6 Conclusion -- References -- 5 A Swarm Robot for Harvesting a Paddy Field -- 5.1 Introduction -- 5.1.1 Working Principle of Particle Swarm Optimization -- 5.1.2 First Case Study on Birds Fly -- 5.1.3 Operational Moves on Birds Dataset -- 5.1.4 Working Process of the Proposed Model -- 5.2 Second Case Study on Recommendation Systems -- 5.3 Third Case Study on Weight Lifting Robot -- 5.4 Background Knowledge of Harvesting Process -- 5.4.1 Data Flow of PSO Process -- 5.4.2 Working Flow of Harvesting Process -- 5.4.3 The First Phase of Harvesting Process -- 5.4.4 Separation Process in Harvesting -- 5.4.5 Cleaning Process in the Field -- 5.5 Future Trend and Conclusion -- References -- 6 Firefly Algorithm -- 6.1 Introduction -- 6.2 Firefly Algorithm -- 6.2.1 Firefly Behavior -- 6.2.2 Standard Firefly Algorithm -- 6.2.3 Variations in Light Intensity and Attractiveness -- 6.2.4 Distance and Movement -- 6.2.5 Implementation of FA -- 6.2.6 Special Cases of Firefly Algorithm -- 6.2.7 Variants of FA -- 6.3 Applications of Firefly Algorithm -- 6.3.1 Job Shop Scheduling -- 6.3.2 Image Segmentation -- 6.3.3 Stroke Patient Rehabilitation -- 6.3.4 Economic Emission Load Dispatch -- 6.3.5 Structural Design -- 6.4 Why Firefly Algorithm is Efficient -- 6.4.1 FA is Not PSO -- 6.5 Discussion and Conclusion -- References -- 7 The Comprehensive Review for Biobased FPA Algorithm -- 7.1 Introduction -- 7.1.1 Stochastic Optimization -- 7.1.2 Robust Optimization -- 7.1.3 Dynamic Optimization -- 7.1.4 Alogrithm.
7.1.5 Swarm Intelligence -- 7.2 Related Work to FPA -- 7.2.1 Flower Pollination Algorithm -- 7.2.2 Versions of FPA -- 7.2.3 Methods and Description -- 7.3 Limitations -- 7.4 Future Research -- 7.5 Conclusion -- References -- 8 Nature-Inspired Computation in Data Mining -- 8.1 Introduction -- 8.2 Classification of NIC -- 8.2.1 Swarm Intelligence for Data Mining -- 8.2.1.1 Swarm Intelligence Algorithm -- 8.2.1.2 Applications of Swarm Intelligence in Data Mining -- 8.2.1.3 Swarm-Based Intelligence Techniques -- 8.3 Evolutionary Computation -- 8.3.1 Genetic Algorithms -- 8.3.1.1 Applications of Genetic Algorithms in Data Mining -- 8.3.2 Evolutionary Programming -- 8.3.2.1 Applications of Evolutionary Programming in Data Mining -- 8.3.3 Genetic Programming -- 8.3.3.1 Applications of Genetic Programming in Data Mining -- 8.3.4 Evolution Strategies -- 8.3.4.1 Applications of Evolution Strategies in Data Mining -- 8.3.5 Differential Evolutions -- 8.3.5.1 Applications of Differential Evolution in Data Mining -- 8.4 Biological Neural Network -- 8.4.1 Artificial Neural Computation -- 8.4.1.1 Neural Network Models -- 8.4.1.2 Challenges of Artificial Neural Network in Data Mining -- 8.4.1.3 Applications of Artificial Neural Network in Data Mining -- 8.5 Molecular Biology -- 8.5.1 Membrane Computing -- 8.5.2 Algorithm Basis -- 8.5.3 Challenges of Membrane Computing in Data Mining -- 8.5.4 Applications of Membrane Computing in Data Mining -- 8.6 Immune System -- 8.6.1 Artificial Immune System -- 8.6.1.1 Artificial Immune System Algorithm (Enhanced) -- 8.6.1.2 Challenges of Artificial Immune System in Data Mining -- 8.6.1.3 Applications of Artificial Immune System in Data Mining -- 8.7 Applications of NIC in Data Mining -- 8.8 Conclusion -- References -- 9 Optimization Techniques for Removing Noise in Digital Medical Images -- 9.1 Introduction.
9.2 Medical Imaging Techniques -- 9.2.1 X-Ray Images -- 9.2.2 Computer Tomography Imaging -- 9.2.3 Magnetic Resonance Images -- 9.2.4 Positron Emission Tomography -- 9.2.5 Ultrasound Imaging Techniques -- 9.3 Image Denoising -- 9.3.1 Impulse Noise and Speckle Noise Denoising -- 9.4 Optimization in Image Denoising -- 9.4.1 Particle Swarm Optimization -- 9.4.2 Adaptive Center Pixel Weighted Median Exponential Filter -- 9.4.3 Hybrid Wiener Filter -- 9.4.4 Removal of Noise in Medical Images Using Particle Swarm Optimization -- 9.4.4.1 Curvelet Transform -- 9.4.4.2 PSO With Curvelet Transform and Hybrid Wiener Filter -- 9.4.5 DFOA-Based Curvelet Transform and Hybrid Wiener Filter -- 9.4.5.1 Dragon Fly Optimization Algorithm -- 9.4.5.2 DFOA-Based HWACWMF -- 9.5 Results and Discussions -- 9.5.1 Simulation Results -- 9.5.2 Performance Metric Analysis -- 9.5.3 Summary -- 9.6 Conclusion and Future Scope -- References -- 10 Performance Analysis of Nature-Inspired Algorithms in Breast Cancer Diagnosis -- 10.1 Introduction -- 10.1.1 NIC Algorithms -- 10.2 Related Works -- 10.3 Dataset: Wisconsin Breast Cancer Dataset (WBCD) -- 10.4 Ten-Fold Cross-Validation -- 10.4.1 Training Data -- 10.4.2 Validation Data -- 10.4.3 Test Data -- 10.4.4 Pseudocode -- 10.4.5 Advantages of K-Fold or 10-Fold Cross-Validation -- 10.5 Naive Bayesian Classifier -- 10.5.1 Pseudocode of Naive Bayesian Classifier -- 10.5.2 Advantages of Naive Bayesian Classifier -- 10.6 K-Means Clustering -- 10.7 Support Vector Machine (SVM) -- 10.8 Swarm Intelligence Algorithms -- 10.8.1 Particle Swarm Optimization -- 10.8.2 Firefly Algorithm -- 10.8.3 Ant Colony Optimization -- 10.9 Evaluation Metrics -- 10.10 Results and Discussion -- 10.11 Conclusion -- References -- 11 Applications of Cuckoo Search Algorithm for Optimization Problems -- 11.1 Introduction -- 11.2 Related Works.
11.3 Cuckoo Search Algorithm.
Record Nr. UNINA-9910555132603321
Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nature inspired algorithms and their applications / / editors, S. Balamurugan [et al.]
Nature inspired algorithms and their applications / / editors, S. Balamurugan [et al.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing, , [2022]
Descrizione fisica 1 online resource (384 pages)
Disciplina 571.0284
Soggetto topico Nature-inspired algorithms
ISBN 1-119-68166-9
1-119-68198-7
1-119-68199-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Introduction to Nature-Inspired Computing -- 1.1 Introduction -- 1.2 Aspiration From Nature -- 1.3 Working of Nature -- 1.4 Nature-Inspired Computing -- 1.4.1 Autonomous Entity -- 1.5 General Stochastic Process of Nature-Inspired Computation -- 1.5.1 NIC Categorization -- 1.5.1.1 Bioinspired Algorithm -- 1.5.1.2 Swarm Intelligence -- 1.5.1.3 Physical Algorithms -- 1.5.1.4 Familiar NIC Algorithms -- References -- 2 Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning -- 2.1 Introduction of Genetic Algorithm -- 2.1.1 Background of GA -- 2.1.2 Why Natural Selection Theory Compared With the Search Heuristic Algorithm? -- 2.1.3 Working Sequence of Genetic Algorithm -- 2.1.3.1 Population -- 2.1.3.2 Fitness Among the Individuals -- 2.1.3.3 Selection of Fitted Individuals -- 2.1.3.4 Crossover Point -- 2.1.3.5 Mutation -- 2.1.4 Application of Machine Learning in GA -- 2.1.4.1 Genetic Algorithm Role in Feature Selection for ML Problem -- 2.1.4.2 Traveling Salesman Problem -- 2.1.4.3 Blackjack-A Casino Game -- 2.1.4.4 Pong Against AI-Evolving Agents (Reinforcement Learning) Using GA -- 2.1.4.5 SNAKE AI-Game -- 2.1.4.6 Genetic Algorithm's Role in Neural Network -- 2.1.4.7 Solving a Battleship Board Game as an Optimization Problem Which Was Initially Released by Milton Bradley in 1967 -- 2.1.4.8 Frozen Lake Problem From OpenAI Gym -- 2.1.4.9 N-Queen Problem -- 2.1.5 Application of Data Mining in GA -- 2.1.5.1 Association Rules Generation -- 2.1.5.2 Pattern Classification With Genetic Algorithm -- 2.1.5.3 Genetic Algorithms in Stock Market Data Mining Optimization -- 2.1.5.4 Market Basket Analysis -- 2.1.5.5 Job Scheduling -- 2.1.5.6 Classification Problem -- 2.1.5.7 Hybrid Decision Tree-Genetic Algorithm to Data Mining.
2.1.5.8 Genetic Algorithm-Optimization of Data Mining in Education -- 2.1.6 Advantages of Genetic Algorithms -- 2.1.7 Genetic Algorithms Demerits in the Current Era -- 2.2 Introduction to Artificial Bear Optimization (ABO) -- 2.2.1 Bear's Nasal Cavity -- 2.2.2 Artificial Bear ABO Gist Algorithm: -- Pseudo Algorithm: -- Implementation: -- 2.2.3 Implementation Based on Requirement -- 2.2.3.1 Market Place -- 2.2.3.2 Industry-Specific -- 2.2.3.3 Semi-Structured or Unstructured Data -- 2.2.4 Merits of ABO -- 2.3 Performance Evaluation -- 2.4 What is Next? -- References -- 3 Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique -- 3.1 Introduction -- 3.1.1 Example of Optimization Process -- 3.1.2 Components of Optimization Algorithms -- 3.1.3 Optimization Techniques Based on Solutions -- 3.1.3.1 Optimization Techniques Based on Algorithms -- 3.1.4 Characteristics -- 3.1.5 Classes of Heuristic Algorithms -- 3.1.6 Metaheuristic Algorithms -- 3.1.6.1 Classification of Metaheuristic Algorithms: Nature-Inspired vs. Non-Nature-Inspired -- 3.1.6.2 Population-Based vs. Single-Point Search (Trajectory) -- 3.1.7 Data Processing Flow of ACO -- 3.2 A Case Study on Surgical Treatment in Operation Room -- 3.3 Case Study on Waste Management System -- 3.4 Working Process of the System -- 3.5 Background Knowledge to be Considered for Estimation -- 3.5.1 Heuristic Function -- 3.5.2 Functional Approach -- 3.6 Case Study on Traveling System -- 3.7 Future Trends and Conclusion -- References -- 4 A Hybrid Bat-Genetic Algorithm-Based Novel Optimal Wavelet Filter for Compression of Image Data -- 4.1 Introduction -- 4.2 Review of Related Works -- 4.3 Existing Technique for Secure Image Transmission -- 4.4 Proposed Design of Optimal Wavelet Coefficients for Image Compression -- 4.4.1 Optimized Transformation Module.
4.4.1.1 DWT Analysis and Synthesis Filter Bank -- 4.4.2 Compression and Encryption Module -- 4.4.2.1 SPIHT -- 4.4.2.2 Chaos-Based Encryption -- 4.5 Results and Discussion -- 4.5.1 Experimental Setup and Evaluation Metrics -- 4.5.2 Simulation Results -- 4.5.2.1 Performance Analysis of the Novel Filter KARELET -- 4.5.3 Result Analysis Proposed System -- 4.6 Conclusion -- References -- 5 A Swarm Robot for Harvesting a Paddy Field -- 5.1 Introduction -- 5.1.1 Working Principle of Particle Swarm Optimization -- 5.1.2 First Case Study on Birds Fly -- 5.1.3 Operational Moves on Birds Dataset -- 5.1.4 Working Process of the Proposed Model -- 5.2 Second Case Study on Recommendation Systems -- 5.3 Third Case Study on Weight Lifting Robot -- 5.4 Background Knowledge of Harvesting Process -- 5.4.1 Data Flow of PSO Process -- 5.4.2 Working Flow of Harvesting Process -- 5.4.3 The First Phase of Harvesting Process -- 5.4.4 Separation Process in Harvesting -- 5.4.5 Cleaning Process in the Field -- 5.5 Future Trend and Conclusion -- References -- 6 Firefly Algorithm -- 6.1 Introduction -- 6.2 Firefly Algorithm -- 6.2.1 Firefly Behavior -- 6.2.2 Standard Firefly Algorithm -- 6.2.3 Variations in Light Intensity and Attractiveness -- 6.2.4 Distance and Movement -- 6.2.5 Implementation of FA -- 6.2.6 Special Cases of Firefly Algorithm -- 6.2.7 Variants of FA -- 6.3 Applications of Firefly Algorithm -- 6.3.1 Job Shop Scheduling -- 6.3.2 Image Segmentation -- 6.3.3 Stroke Patient Rehabilitation -- 6.3.4 Economic Emission Load Dispatch -- 6.3.5 Structural Design -- 6.4 Why Firefly Algorithm is Efficient -- 6.4.1 FA is Not PSO -- 6.5 Discussion and Conclusion -- References -- 7 The Comprehensive Review for Biobased FPA Algorithm -- 7.1 Introduction -- 7.1.1 Stochastic Optimization -- 7.1.2 Robust Optimization -- 7.1.3 Dynamic Optimization -- 7.1.4 Alogrithm.
7.1.5 Swarm Intelligence -- 7.2 Related Work to FPA -- 7.2.1 Flower Pollination Algorithm -- 7.2.2 Versions of FPA -- 7.2.3 Methods and Description -- 7.3 Limitations -- 7.4 Future Research -- 7.5 Conclusion -- References -- 8 Nature-Inspired Computation in Data Mining -- 8.1 Introduction -- 8.2 Classification of NIC -- 8.2.1 Swarm Intelligence for Data Mining -- 8.2.1.1 Swarm Intelligence Algorithm -- 8.2.1.2 Applications of Swarm Intelligence in Data Mining -- 8.2.1.3 Swarm-Based Intelligence Techniques -- 8.3 Evolutionary Computation -- 8.3.1 Genetic Algorithms -- 8.3.1.1 Applications of Genetic Algorithms in Data Mining -- 8.3.2 Evolutionary Programming -- 8.3.2.1 Applications of Evolutionary Programming in Data Mining -- 8.3.3 Genetic Programming -- 8.3.3.1 Applications of Genetic Programming in Data Mining -- 8.3.4 Evolution Strategies -- 8.3.4.1 Applications of Evolution Strategies in Data Mining -- 8.3.5 Differential Evolutions -- 8.3.5.1 Applications of Differential Evolution in Data Mining -- 8.4 Biological Neural Network -- 8.4.1 Artificial Neural Computation -- 8.4.1.1 Neural Network Models -- 8.4.1.2 Challenges of Artificial Neural Network in Data Mining -- 8.4.1.3 Applications of Artificial Neural Network in Data Mining -- 8.5 Molecular Biology -- 8.5.1 Membrane Computing -- 8.5.2 Algorithm Basis -- 8.5.3 Challenges of Membrane Computing in Data Mining -- 8.5.4 Applications of Membrane Computing in Data Mining -- 8.6 Immune System -- 8.6.1 Artificial Immune System -- 8.6.1.1 Artificial Immune System Algorithm (Enhanced) -- 8.6.1.2 Challenges of Artificial Immune System in Data Mining -- 8.6.1.3 Applications of Artificial Immune System in Data Mining -- 8.7 Applications of NIC in Data Mining -- 8.8 Conclusion -- References -- 9 Optimization Techniques for Removing Noise in Digital Medical Images -- 9.1 Introduction.
9.2 Medical Imaging Techniques -- 9.2.1 X-Ray Images -- 9.2.2 Computer Tomography Imaging -- 9.2.3 Magnetic Resonance Images -- 9.2.4 Positron Emission Tomography -- 9.2.5 Ultrasound Imaging Techniques -- 9.3 Image Denoising -- 9.3.1 Impulse Noise and Speckle Noise Denoising -- 9.4 Optimization in Image Denoising -- 9.4.1 Particle Swarm Optimization -- 9.4.2 Adaptive Center Pixel Weighted Median Exponential Filter -- 9.4.3 Hybrid Wiener Filter -- 9.4.4 Removal of Noise in Medical Images Using Particle Swarm Optimization -- 9.4.4.1 Curvelet Transform -- 9.4.4.2 PSO With Curvelet Transform and Hybrid Wiener Filter -- 9.4.5 DFOA-Based Curvelet Transform and Hybrid Wiener Filter -- 9.4.5.1 Dragon Fly Optimization Algorithm -- 9.4.5.2 DFOA-Based HWACWMF -- 9.5 Results and Discussions -- 9.5.1 Simulation Results -- 9.5.2 Performance Metric Analysis -- 9.5.3 Summary -- 9.6 Conclusion and Future Scope -- References -- 10 Performance Analysis of Nature-Inspired Algorithms in Breast Cancer Diagnosis -- 10.1 Introduction -- 10.1.1 NIC Algorithms -- 10.2 Related Works -- 10.3 Dataset: Wisconsin Breast Cancer Dataset (WBCD) -- 10.4 Ten-Fold Cross-Validation -- 10.4.1 Training Data -- 10.4.2 Validation Data -- 10.4.3 Test Data -- 10.4.4 Pseudocode -- 10.4.5 Advantages of K-Fold or 10-Fold Cross-Validation -- 10.5 Naive Bayesian Classifier -- 10.5.1 Pseudocode of Naive Bayesian Classifier -- 10.5.2 Advantages of Naive Bayesian Classifier -- 10.6 K-Means Clustering -- 10.7 Support Vector Machine (SVM) -- 10.8 Swarm Intelligence Algorithms -- 10.8.1 Particle Swarm Optimization -- 10.8.2 Firefly Algorithm -- 10.8.3 Ant Colony Optimization -- 10.9 Evaluation Metrics -- 10.10 Results and Discussion -- 10.11 Conclusion -- References -- 11 Applications of Cuckoo Search Algorithm for Optimization Problems -- 11.1 Introduction -- 11.2 Related Works.
11.3 Cuckoo Search Algorithm.
Record Nr. UNINA-9910830496003321
Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nature Inspired Optimization for Electrical Power System / / edited by Manjaree Pandit, Hari Mohan Dubey, Jagdish Chand Bansal
Nature Inspired Optimization for Electrical Power System / / edited by Manjaree Pandit, Hari Mohan Dubey, Jagdish Chand Bansal
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIV, 129 p. 49 illus., 35 illus. in color.)
Disciplina 571.0284
Collana Algorithms for Intelligent Systems
Soggetto topico Electrical engineering
Energy systems
Mathematics
Mathematical optimization
Electrical Engineering
Energy Systems
Mathematics, general
Optimization
ISBN 981-15-4004-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Teaching Learning Based Optimization for Static and Dynamic Load Dispatch -- Application of Elitist Teacher Learner Based Optimization Algorithm for Congestion Management -- PSO Based Optimization of Levelized Cost of Energy for Hybrid Renewable Energy System -- PSO Based PID Controller Designing for LFC of Single Area Electrical Power Network -- Combined Economic Emission Dispatch of Hybrid Thermal-PV System Using Artificial Bee Colony Optimization -- Dynamic Scheduling of Energy Resources in Microgrid Using Grey Wolf Optimization -- Short-Term Hydrothermal Scheduling Using Bio- Inspired Computing: A Review.
Record Nr. UNINA-9910392750103321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui