Applied geostatistics with SGeMS : a user's guide / / Nicolas Remy, Alexandre Boucher and Jianbing Wu
| Applied geostatistics with SGeMS : a user's guide / / Nicolas Remy, Alexandre Boucher and Jianbing Wu |
| Autore | Remy Nicolas <1975-> |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2009 |
| Descrizione fisica | 1 online resource (xix, 264 pages) : digital, PDF file(s) |
| Disciplina | 550.72/7 |
| Soggetto topico |
Geological modeling - Computer simulation
Geological modeling - Statistical methods Geology - Computer simulation Geology - Statistical methods |
| ISBN |
1-139-15437-0
1-107-19010-X 1-139-23479-X 1-283-34099-2 9786613340993 1-139-15997-6 1-139-16097-4 1-139-15541-5 1-139-15716-7 1-139-15892-9 1-139-15001-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- General overview -- Geostatistics : a recall of concepts -- Data sets and SGeMS EDA tools -- Variogram computation and modeling -- Common parameter input interfaces -- Estimation algorithms -- Stochastic simulation algorithms -- Utilities -- Scripting, commands and plug-ins. |
| Record Nr. | UNINA-9911006576403321 |
Remy Nicolas <1975->
|
||
| Cambridge : , : Cambridge University Press, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modern Spatiotemporal Geostatistics
| Modern Spatiotemporal Geostatistics |
| Autore | Christakos George |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newburyport, : Dover Publications, 2013 |
| Descrizione fisica | 1 online resource (593 p.) |
| Disciplina | 550.72/7 |
| Collana | Dover Earth Science |
| Soggetto topico |
Earth sciences - Statistical methods
Maximum entropy method Bayesian statistical decision theory Geology Earth & Environmental Sciences Geology - General |
| ISBN |
9781523132010
1523132019 9780486310930 0486310930 9781680150940 1680150944 |
| Classificazione | SCI031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Dedication; Preface; Contents; Mapping Fundamentals; The Epistemic Status of Modern Spatiotemporal Geostatistics: It Pays to Theorize!; Why Modern Geostatistics?; Indetermination thesis; Spatiotemporal geometry; Sources of physical knowledge; The non-Procrustean spirit; Bayesian Maximum Entropy Space/Time Analysis and Mapping; BME features; The Integration Capability of Modern Spatiotemporal Geostatistics; The "Knowledge-Map" Approach; Scientific content; 1. Spatiotemporal Mapping in Natural Sciences; A More Realistic Concept
The Spatiotemporal Continuum IdeaThe Coordinate System; Euclidean coordinate systems; Non-Euclidean coordinate systems; Metrical Structure; Separate metrical structures; Composite metrical structures; Some comments on physical spatiotemporal geometry; The Field Idea; Restrictions on spatiotemporal geometry imposed by field measurements and natural media; Restrictions on spatiotemporal geometry imposed by physical laws; The Complementarity Idea; Putting Things Together: The Spatiotemporal Random Field Concept; Correlation analysis and spatiotemporal geometry Permissibility criteria and spatiotemporal geometryEffect of spatiotemporal geometry on mapping; Some Final Thoughts; 2. Spatiotemporal Geometry; From the General to the Specific; The General Knowledge Base; A mathematical formulation of the general knowledge base; General knowledge in terms of statistical moments; General knowledge in terms of physical laws; Some other forms of general knowledge; The Specificatory Knowledge Base; Specificatory knowledge in terms of hard data; Specificatory knowledge in terms of soft data; Summa Theologica; 3. Physical Knowledge Acquisition and Processing of Physical KnowledgeEpistemic Geostatistics and the BME Analysis; Prior stage; Meta-prior stage; Integration or posterior stage; Conditional Probability of a Spatiotemporal Map and its Relation to the Probability of Conditionals; Material and strict map conditionals; Other map conditionals; The BME Net; 4. The Epistemic Paradigm; A Pragmatic Framework of the Mapping Problem; The Prior Stage; Map information measures in light of general knowledge; General knowledge-based map pdf General knowledge in the form of random field statistics (including multiple-point statistics)General knowledge in the form of physical laws; Possible modifications and generalizations of the prior stage; The Meta-Prior Stage; The Integration or Posterior Stage; The Structure of the Modern Spatiotemporal Geostatistics Paradigm; The Two Legs on Which the BME Equations Stand; 5. Mathematical Formulation of the BME Method; Specificatory Knowledge and Single-Point Mapping; Posterior Operators for Interval and Probabilistic Soft Data; Posterior Operators for Other Forms of Soft Data; Discussion 6. Analytical Expressions of the Posterior Operator |
| Record Nr. | UNINA-9911006601103321 |
Christakos George
|
||
| Newburyport, : Dover Publications, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistics for earth and environmental scientists / / John H. Schuenemeyer, Lawrence J. Drew
| Statistics for earth and environmental scientists / / John H. Schuenemeyer, Lawrence J. Drew |
| Autore | Schuenemeyer J. H |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2011 |
| Descrizione fisica | 1 online resource (422 p.) |
| Disciplina | 550.72/7 |
| Soggetto topico |
Geology - Statistical methods
Earth sciences - Statistical methods Environmental sciences - Statistical methods |
| ISBN |
9786613371676
9781283371674 1283371677 9781118102213 1118102215 9780470650899 0470650893 9780470650707 0470650702 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Statistics for Earth and Environmental Scientists; Contents; Preface; 1 Role of Statistics and Data Analysis; 1.1 INTRODUCTION; 1.2 CASE STUDIES; 1.3 DATA; 1.4 SAMPLES VERSUS THE POPULATION: SOME NOTATION; 1.5 VECTOR AND MATRIX NOTATION; 1.6 FREQUENCY DISTRIBUTIONS AND HISTOGRAMS; 1.7 DISTRIBUTION AS A MODEL; 1.8 SAMPLE MOMENTS; 1.9 NORMAL (GAUSSIAN) DISTRIBUTION; 1.10 EXPLORATORY DATA ANALYSIS; 1.11 ESTIMATION; 1.12 BIAS; 1.13 CAUSES OF VARIANCE; 1.14 ABOUT DATA; 1.15 REASONS TO CONDUCT STATISTICALLY BASED STUDIES; 1.16 DATA MINING; 1.17 MODELING; 1.18 TRANSFORMATIONS
1.19 STATISTICAL CONCEPTS1.20 STATISTICS PARADIGMS; 1.21 SUMMARY; EXERCISES; 2 Modeling Concepts; 2.1 INTRODUCTION; 2.2 WHY CONSTRUCT A MODEL?; 2.3 WHAT DOES A STATISTICAL MODEL DO?; 2.4 STEPS IN MODELING; 2.5 IS A MODEL A UNIQUE SOLUTION TO A PROBLEM?; 2.6 MODEL ASSUMPTIONS; 2.7 DESIGNED EXPERIMENTS; 2.8 REPLICATION; 2.9 SUMMARY; EXERCISES; 3 Estimation and Hypothesis Testing on Means and Other Statistics; 3.1 INTRODUCTION; 3.2 INDEPENDENCE OF OBSERVATIONS; 3.3 CENTRAL LIMIT THEOREM; 3.4 SAMPLING DISTRIBUTIONS; 3.5 CONFIDENCE INTERVAL ESTIMATE ON A MEAN 3.6 CONFIDENCE INTERVAL ON THE DIFFERENCE BETWEEN MEANS3.7 HYPOTHESIS TESTING ON MEANS; 3.8 BAYESIAN HYPOTHESIS TESTING; 3.9 NONPARAMETRIC HYPOTHESIS TESTING; 3.10 BOOTSTRAP HYPOTHESIS TESTING ON MEANS; 3.11 TESTING MULTIPLE MEANS VIA ANALYSIS OF VARIANCE; 3.12 MULTIPLE COMPARISONS OF MEANS; 3.13 NONPARAMETRIC ANOVA; 3.14 PAIRED DATA; 3.15 KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST; 3.16 COMMENTS ON HYPOTHESIS TESTING; 3.17 SUMMARY; EXERCISES; 4 Regression; 4.1 INTRODUCTION; 4.2 PITTSBURGH COAL QUALITY CASE STUDY; 4.3 CORRELATION AND COVARIANCE; 4.4 SIMPLE LINEAR REGRESSION 4.5 MULTIPLE REGRESSION4.6 OTHER REGRESSION PROCEDURES; 4.7 NONLINEAR MODELS; 4.8 SUMMARY; EXERCISES; 5 Time Series; 5.1 INTRODUCTION; 5.2 TIME DOMAIN; 5.3 FREQUENCY DOMAIN; 5.4 WAVELETS; 5.5 SUMMARY; EXERCISES; 6 Spatial Statistics; 6.1 INTRODUCTION; 6.2 DATA; 6.3 THREE-DIMENSIONAL DATA VISUALIZATION; 6.4 SPATIAL ASSOCIATION; 6.5 EFFECT OF TREND; 6.6 SEMIVARIOGRAM MODELS; 6.7 KRIGING; 6.8 SPACE-TIME MODELS; 6.9 SUMMARY; EXERCISES; 7 Multivariate Analysis; 7.1 INTRODUCTION; 7.2 MULTIVARIATE GRAPHICS; 7.3 PRINCIPAL COMPONENTS ANALYSIS; 7.4 FACTOR ANALYSIS; 7.5 CLUSTER ANALYSIS 7.6 MULTIDIMENSIONAL SCALING7.7 DISCRIMINANT ANALYSIS; 7.8 TREE-BASED MODELING; 7.9 SUMMARY; EXERCISES; 8 Discrete Data Analysis and Point Processes; 8.1 INTRODUCTION; 8.2 DISCRETE PROCESS AND DISTRIBUTIONS; 8.3 POINT PROCESSES; 8.4 LATTICE DATA AND MODELS; 8.5 PROPORTIONS; 8.6 CONTINGENCY TABLES; 8.7 GENERALIZED LINEAR MODELS; 8.8 SUMMARY; EXERCISES; 9 Design of Experiments; 9.1 INTRODUCTION; 9.2 SAMPLING DESIGNS; 9.3 DESIGN OF EXPERIMENTS; 9.4 COMMENTS ON FIELD STUDIES AND DESIGN; 9.5 MISSING DATA; 9.6 SUMMARY; EXERCISES; 10 Directional Data; 10.1 INTRODUCTION; 10.2 CIRCULAR DATA 10.3 SPHERICAL DATA |
| Altri titoli varianti | Earth and environmental scientists |
| Record Nr. | UNINA-9910139399903321 |
Schuenemeyer J. H
|
||
| Hoboken, N.J., : Wiley, c2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||