3D geoscience modeling : computer techniques for geological characterization : with 112 figures / Simon W. Houlding |
Autore | Houlding, Simon W. |
Pubbl/distr/stampa | Berlin ... [etc.] : Springer, c1994 |
Descrizione fisica | XI, 309 p. : ill. ; 24 cm. |
Disciplina | 550.113 |
Soggetto topico | Modelli geologici - simulazione al computer |
ISBN | 3-540-58015-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNIBAS-000004566 |
Houlding, Simon W.
![]() |
||
Berlin ... [etc.] : Springer, c1994 | ||
![]() | ||
Lo trovi qui: Univ. della Basilicata | ||
|
3D/4D Geological Modeling for Mineral Exploration / / edited by Gongwen Wang, Lizhen Cheng, Nan Li |
Pubbl/distr/stampa | Hershey, PA : , : IGI Global, , 2023 |
Descrizione fisica | 1 online resource (242 pages) |
Disciplina | 550.113 |
Soggetto topico | Geological modeling |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910729781303321 |
Hershey, PA : , : IGI Global, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (675 pages) |
Disciplina | 550.113 |
Soggetto topico |
Geological modeling - Simulation methods
Geological surveys - Simulation methods |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-16311-0
1-119-16310-2 1-119-16309-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3‐D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands.
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3‐D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3‐D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3‐D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3‐D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three‐Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three‐Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value. 4.5.3 Integrating 3‐D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3‐D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3‐D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3‐D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3‐D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3‐D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3‐D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked‐Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross‐Sections and Boreholes -- 5.4.3 Three‐Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule‐Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity. 6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3‐D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post‐Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3‐D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM). 7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground‐based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In‐hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity‐Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3‐D Hydrogeological Models Across the Dutch‐Belgian and Dutch‐German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces. 9.3 Software Functionality to Support Stacked‐Surface Modeling. |
Record Nr. | UNINA-9910555046403321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (675 pages) |
Disciplina | 550.113 |
Soggetto topico |
Geological modeling - Simulation methods
Geological surveys - Simulation methods |
ISBN |
1-119-16311-0
1-119-16310-2 1-119-16309-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3‐D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands.
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3‐D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3‐D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3‐D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3‐D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three‐Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three‐Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value. 4.5.3 Integrating 3‐D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3‐D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3‐D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3‐D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3‐D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3‐D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3‐D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked‐Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross‐Sections and Boreholes -- 5.4.3 Three‐Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule‐Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity. 6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3‐D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post‐Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3‐D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM). 7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground‐based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In‐hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity‐Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3‐D Hydrogeological Models Across the Dutch‐Belgian and Dutch‐German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces. 9.3 Software Functionality to Support Stacked‐Surface Modeling. |
Record Nr. | UNINA-9910830813403321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational challenges in the geosciences / / Clint Dawson, Margot Gerritsen, editors |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | New York : , : Springer, , 2013 |
Descrizione fisica | 1 online resource (ix, 167 pages) : illustrations (some color) |
Disciplina | 550.113 |
Collana | The IMA Volumes in Mathematics and its Applications |
Soggetto topico |
Earth sciences - Mathematical models
Earth sciences - Computer simulation |
ISBN | 1-4614-7434-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Physical and Computational Issues in the Numerical Modeling of Ocean Circulation, R.L. Higdon -- Modeling Hazardous, Free-Surface Geophysical Flows with Depth-Averaged Hyperbolic Systems and Adaptive Numerical Methods, D.L. George -- Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge using SWAN+ADCIRC and FigureGen, J.C. Dietrich, C.N. Dawson, J.M. Proft, M.T. Howard, G. Wells, J.G. Fleming, R.A. Luettich, Jr., J.J. Westerink, Z. Cobell, M. Vitse, H. Lander, B.O. Blanton, C.M. Szpilka, J.H. Atkinson -- Methane in Surbsurface: Mathematical Modeling and Computational Challenges, M. Peszynska -- Fast Algorithms for Bayesian Inversion, S. Ambikasaran, A. K. Saibaba, E.F. Darve and P.K. Kitanidis -- Modeling Spatial and Structural Uncertainty in the Subsurface , M. Gerritsen and J. Caers. |
Record Nr. | UNINA-9910741199603321 |
New York : , : Springer, , 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Earth system modelling . Volume 6 ESM data archives in the times of the grid / / Wolfgang Hiller, Reinhard Budich, Rene Redler |
Autore | Hiller Wolfgang <1955-> |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | New York, : Springer, 2013 |
Descrizione fisica | 1 online resource (97 p.) |
Disciplina |
550.1
550.1/13 550.113 |
Altri autori (Persone) |
BudichReinhard
RedlerRene |
Collana | SpringerBriefs in earth system sciences |
Soggetto topico |
Global temperature changes - Mathematical models
Dynamic climatology - Mathematical models Earth sciences - Research |
ISBN | 3-642-37244-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ESM Data Archives in times of the Grid -- Distributed archives, databases and data portals: The Scene -- Harvesting of Metadata with Open Access Tools -- Data Discovery: Identifying, Searching and Finding Data -- User Driven Data Access Mechanisms -- Collaborative Climate Community Data and Processing Grid - C3Grid: Workflows for data selection, pre- and post-processing in a distributed environment -- Earth System Grid Federation: Federated and Integrated Climate Data from Multiple Sources -- Future Perspectives. |
Record Nr. | UNINA-9910437953203321 |
Hiller Wolfgang <1955->
![]() |
||
New York, : Springer, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Earth system modelling [[electronic resource] ] . Volume 4 : IO and postprocessing / / V. Balaji, Rene Redler, Reinhard Budich, editors |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin ; ; New York, : Springer, c2013 |
Descrizione fisica | 1 online resource (58 p.) |
Disciplina | 550.113 |
Altri autori (Persone) |
BalajiV
RedlerRene BudichReinhard |
Collana | SpringerBriefs in earth system sciences |
Soggetto topico |
Climatology - Mathematical models
Climatic changes - Mathematical models Climatology - Computer simulation Earth sciences - Computer simulation |
ISBN | 3-642-36464-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Input/Output and Post processing -- Parallel I/O Basics -- ESM I/O layers -- Data Storage -- Data Representation -- Data Analysis and Visualization -- Future Perspectives. |
Altri titoli varianti |
IO and postprocessing
Input/output and postprocessing Earth system modeling |
Record Nr. | UNINA-9910437938703321 |
Berlin ; ; New York, : Springer, c2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geostatistical simulations : proceedings of the Geostatistical Simulation Workshop, Fontainebleau, France, 27-28 May 1993 / edited by M. Armstrong and P.A. Dowd |
Autore | Geostatistical Simulation Workshop (1993 : Fontainebleau, France) |
Pubbl/distr/stampa | Dordrecht ; Boston : Kluwer Academic Publishers, c1994 |
Descrizione fisica | xi, 255 p. : ill. ; 25 cm |
Disciplina | 550.113 |
Altri autori (Persone) |
Armstrong, M.
Dowd, P. A. |
Collana | Quantitative geology and geostatistics ; 7 |
Soggetto topico | Geologia - Metodi statistici - Congressi |
ISBN | 0792327322 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991004125659707536 |
Geostatistical Simulation Workshop (1993 : Fontainebleau, France)
![]() |
||
Dordrecht ; Boston : Kluwer Academic Publishers, c1994 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|