Aurivillius Phase Materials : Exploring Lead-Free Ferroelectrics
| Aurivillius Phase Materials : Exploring Lead-Free Ferroelectrics |
| Autore | Kurchania Rajnish |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (162 pages) |
| Disciplina | 548.85 |
| Altri autori (Persone) | SubohiOroosa |
| Collana | IOP Series in Emerging Technologies in Optics and Photonics Series |
| ISBN | 0-7503-4480-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Foreword -- Acknowledgement -- Author biographies -- Rajnish Kurchania -- Oroosa Subohi -- Chapter 1 Introduction -- 1.1 General introduction -- 1.2 Materials classification on the basis of symmetry -- 1.3 The basics of ferroelectricity and related phenomenon -- 1.3.1 Dielectric materials -- 1.3.2 Impedance spectroscopy -- 1.3.3 Piezoelectricity -- 1.3.4 Pyroelectricity -- 1.3.5 Ferroelectricity -- 1.4 Classification of ferroelectrics -- 1.4.1 Classification of ferroelectrics based on crystal structure -- 1.4.2 The classification of ferroelectrics based on properties -- 1.5 Aurivillius oxides -- References -- Chapter 2 Odd number layered Aurivillius oxides -- 2.1 Single-layered oxides (m = 1) Bi2MoO6 and Bi2WO6 -- 2.1.1 Structure -- 2.1.2 Synthesis of Bi2MO6 ceramics and thin films (M = W, Mo) -- 2.2 Three-layered oxides (m = 3) Bi4Ti3O12 -- 2.2.1 Structure -- 2.2.2 Synthesis methods -- 2.2.3 The effect of A-site and B-site doping in Bi4Ti3O12 -- 2.3 Five-layered oxides (m = 5) -- 2.3.1 Structure -- 2.3.2 The synthesis of five-layered ceramics and thin films and their properties -- 2.3.3 The effect of ion substitution in five-layered Aurivillius oxides -- References -- Chapter 3 Even number layered Aurivillius oxides -- 3.1 Two-layered oxide (m = 2) structure -- 3.1.1 Synthesis of BaBi2Nb2O9 and Bi3TiNbO9 ceramics and thin films -- 3.1.2 The effect of ion substitution in BaBi2Nb2O9 and Bi3TiNbO9 -- 3.2 Four-layered oxides (m = 4) -- 3.2.1 Multiferroic Aurivillius oxide Bi5Ti3FeO15 -- 3.2.2 The four-layered titanates -- References -- Chapter 4 Mixed layered Aurivillius phases -- 4.1 Structure of intergrowths -- 4.2 Ordering and disordering in intergrowths -- 4.3 Non-successive layer intergrowths -- 4.4 Multiferroic intergrowths -- 4.5 Ferroelectric intergrowth ceramics -- 4.6 Ferroelectric intergrowth thin films.
4.7 The effect of doping in intergrowths -- 4.8 Summary -- References -- Chapter 5 Applications and future perspectives of Aurivillius oxides -- 5.1 Ferroelectric random-access memory (FeRAM) -- 5.2 Resistive random-access memory (RRAM) -- 5.3 Acoustic piezoelectric sensor -- 5.4 Biosensors -- 5.5 Pressure sensors -- 5.6 Piezoelectric nanogenerator -- 5.7 Ultrasonic transducer -- 5.8 Multifunctional applications -- 5.9 Photocatalysts -- 5.10 Future scope of Aurivillius phase oxides -- References. |
| Record Nr. | UNINA-9910861039503321 |
Kurchania Rajnish
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electronic States in Crystals of Finite Size : Quantum Confinement of Bloch Waves / / by Shang Yuan Ren
| Electronic States in Crystals of Finite Size : Quantum Confinement of Bloch Waves / / by Shang Yuan Ren |
| Autore | Ren Shang Yuan |
| Edizione | [2nd ed. 2017.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (XVI, 283 p. 42 illus.) |
| Disciplina | 548.85 |
| Collana | Springer Tracts in Modern Physics |
| Soggetto topico |
Nanoscience
Nanostructures Crystallography Materials—Surfaces Thin films Optics Electrodynamics Acoustics Nanoscale Science and Technology Crystallography and Scattering Methods Surfaces and Interfaces, Thin Films Classical Electrodynamics |
| ISBN | 981-10-4718-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Why a Theory of Electronic States in Crystals of Finite Size is Needed -- Introduction -- Part II One-Dimensional Semi-infinite Crystals and Finite Crystals -- The Periodic Sturm-Liouville Equations -- Surface States in One-Dimensional Semi-infinite Crystals -- Electronic States in Ideal One-Dimensional Crystals of Finite Length -- Part III Low-Dimensional Systems and Finite Crystals -- Electronic States in Ideal Quantum Films -- Electronic States in Ideal Quantum Wires -- Electronic States in Ideal Finite Crystals or Quantum Dots -- Part IV Epilogue -- Concluding Remarks -- Appendices. |
| Record Nr. | UNINA-9910254594803321 |
Ren Shang Yuan
|
||
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electronic Structure Crystallography and Functional Motifs of Materials
| Electronic Structure Crystallography and Functional Motifs of Materials |
| Autore | Guo Guo-Cong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (243 pages) |
| Disciplina | 548.85 |
| Altri autori (Persone) | JiangXiao-Ming |
| Soggetto topico |
Electronic structure
Materials science |
| ISBN |
9783527842339
3527842330 9783527842315 3527842314 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword 1 -- Foreword 2 -- Preface -- Abbreviations -- Introduction -- Chapter 1 Overview of Electronic Structure Crystallography -- 1.1 Introduction -- 1.1.1 History of Electronic Structure Crystallography -- 1.1.2 The Beginnings of X‐ray Crystallography and Quantum Mechanics -- 1.1.3 The Nascent Period of Experimental Electronic Structure Research -- 1.1.4 Developments of Pseudo‐atom Models -- 1.1.5 Developments of Experimental Electron‐density Matrix Models -- 1.1.6 Developments of Experimental Electron Wavefunction Models -- 1.1.7 Developments in Electron Diffraction‐Based Studies of Electronic Structures -- 1.2 Basic Descriptors of Electronic Structure -- 1.2.1 Electron Density -- 1.2.2 Residual Density -- 1.2.3 Deformation Density -- 1.2.4 Electron Wavefunction and Density Matrix -- 1.3 Experimental Characterization of Electronic Structure -- 1.3.1 Experimental Electronic Structure Measurement with X‐ray Single‐crystal Diffractometer -- 1.3.1.1 X‐ray Source -- 1.3.1.2 Goniometer -- 1.3.1.3 X‐ray Detector -- 1.3.1.4 Cryogenic Systems -- 1.3.2 Key Aspects of Experimental Electronic Structure Measurement -- 1.3.2.1 Single‐crystal Samples -- 1.3.2.2 Measurement Process -- 1.3.2.3 Data Correction -- 1.3.2.4 Examination of the Quality of Electronic Structure Refinement -- References -- Chapter 2 First‐Principles Calculations of the Electron Density Functions -- 2.1 Introduction -- 2.2 Basic Framework and Assumptions of the First‐Principles Calculations -- 2.3 Density Matrix and Density Function -- 2.3.1 Basic Definition -- 2.3.2 Electron Density -- 2.3.3 Momentum Density -- 2.4 Hartree-Fock (HF) and Kohn-Sham (KS) Methods -- 2.4.1 Basic Theoretical Framework -- 2.4.2 Periodic Solutions of Hartree-Fock (HF) and Kohn-Sham (KS) Equations.
2.4.3 Calculation of Crystal Density Matrix and Density Function -- 2.4.4 Pseudopotentials -- 2.4.5 Basis Set -- References -- Chapter 3 Topological Indices and Properties of Electronic Structures -- 3.1 Introduction -- 3.2 Analysis of Topological Atoms in Molecules -- 3.2.1 Topological Description of the Electron Density -- 3.2.2 Gradient Vector Field and Topological Atoms -- 3.2.3 Bond Path and Molecular Topological Graph -- 3.2.4 Laplacian -- 3.2.5 Topological Properties of Chemical Bonds -- 3.2.5.1 Electron Density at Bond Critical Points -- 3.2.5.2 Bond Radius and Bond Path Length -- 3.2.5.3 Laplacian of Electron Density at the Bond Critical Points -- 3.2.5.4 Ellipticity -- 3.2.5.5 Energy Density of Bond Critical Points -- 3.2.5.6 Delocalization Index and Bond Order -- 3.2.6 Topological Atomic Properties -- 3.2.6.1 Atomic Charges -- 3.2.6.2 Atomic Volume -- 3.2.6.3 Atomic Kinetic Energy -- 3.2.6.4 Laplacian -- 3.2.6.5 Total Atomic Energy -- 3.2.6.6 Atomic Dipole Moment -- 3.2.6.7 Atomic Quadrupole Moment -- 3.2.6.8 Atomic Information Entropy -- 3.3 Chemical Interaction Analysis -- 3.3.1 Source Function -- 3.3.2 Electron Localization Function -- 3.3.3 Reduced Density Gradient -- 3.4 Coarse Graining and Energy Partition of the Density Matrix -- 3.4.1 Partition of the Density Matrix in Real Space -- 3.4.2 Energy Partition -- 3.4.3 Electron Population Statistics -- 3.5 Restricted Space Partition -- 3.5.1 ω‐Restricted Partition -- 3.5.2 Restricted Electron Population Analysis -- 3.5.3 Quasi‐continuous Distribution -- 3.5.4 Electron Localization Indicators (ELI) -- 3.5.4.1 Same‐spin Electron Pairs -- 3.5.4.2 Singlet and Triplet Electron Pairs -- 3.5.4.3 ELI in Momentum Space -- 3.6 Intermolecular Interaction Energy -- 3.6.1 Interaction Energy of Experimental Electron Density -- 3.6.2 Pseudoatomic Representation of Electrostatic Interactions. 3.6.2.1 Multipole Expansion Approximation -- 3.6.2.2 Exact Potential and Multipole Moment (EPMM) Model -- 3.6.2.3 Promolecular Approximation -- 3.6.3 Non‐electrostatic Interactions -- 3.6.4 Lattice Energy -- 3.6.5 Interaction Energies Obtained from Experimental Charge Analysis -- References -- Chapter 4 Principles of Electronic Structure Measurement -- 4.1 Introduction -- 4.2 Thermal Vibration Analysis -- 4.2.1 Lattice Dynamics -- 4.2.2 Atomic Displacement Parameters -- 4.2.3 Rigid Fragment Analysis -- 4.2.4 Neutron Diffraction‐assisted Analysis -- 4.2.4.1 Temperature -- 4.2.4.2 Absorption -- 4.2.4.3 Extinction -- 4.2.4.4 Thermal Diffuse Scattering -- 4.2.4.5 Multiple Scattering -- 4.3 Scattering Experiments -- 4.3.1 X‐ray Diffraction -- 4.3.2 Polarized Neutron Diffraction -- 4.3.3 Compton Scattering -- 4.4 Refinement Algorithm for Experimental Electronic Structure -- 4.4.1 Least‐square Method -- 4.4.1.1 Mathematical -- 4.4.1.2 Least‐square Refinement of Structure Factors -- 4.4.1.3 Parameter‐estimated variance and covariance -- 4.4.2 Maximum Entropy Method -- References -- Chapter 5 Pseudo‐atom Models -- 5.1 Introduction -- 5.2 Independent Atom Model -- 5.3 Kappa Model -- 5.4 Multipole Model -- 5.4.1 Multipole Spherical Harmonics -- 5.4.2 Real Spherical Harmonic Density Function -- 5.4.3 Radial Distribution Functions -- 5.4.4 Multipole Model Framework -- 5.4.5 Aspheric Atomic Scattering Factors -- 5.4.6 Multipolar Model of Core Electron Expansion -- 5.5 Spin Density Model -- 5.5.1 Pure Spin Contribution -- 5.5.1.1 Atomic Orbital Model of Spin Density -- 5.5.1.2 Multipole Refinement of Spin Density -- 5.5.2 Spin and Orbital Contributions -- 5.5.3 Non‐collinear Magnetism -- 5.5.4 Combinatorial Refinement of Electron Density and Spin Density -- 5.6 Other Electron Density Models -- 5.6.1 The X‐ray Atomic Orbital (XAO) Model. 5.6.1.1 Atomic Single‐electron Orbitals in a Crystal Field -- 5.6.1.2 Electron Density and Structure Factor -- 5.6.2 X‐ray Molecular Orbital Model (XMO) -- 5.6.2.1 Molecular Orbital and Electron Density -- 5.6.2.2 Structure Factors for Monocentric and Bicentric Terms -- 5.6.2.3 Processing of Temperature Factors -- 5.6.3 Molecular Orbitals with Variable Occupation Numbers Model (MOON) -- References -- Chapter 6 Density Matrix Model -- 6.1 Introduction -- 6.2 Density Matrix Model -- 6.2.1 Definition of the Density Matrix -- 6.2.2 Localized Model of the Density Matrix -- 6.3 Correlation of Density Matrix to Scattering Experiments -- 6.3.1 Dynamic Scattering Factor -- 6.3.2 Static Structure Factor -- 6.3.3 Elastic Scattering -- 6.3.4 Inelastic Scattering -- 6.4 Reconstruction and Refinement of the Density Matrix -- 6.4.1 Bayesian Method -- 6.4.2 Combined Refinement of Different Types of Data -- 6.4.3 Refinement of the One‐electron Reduced Density Matrix (1‐RDM) -- 6.4.4 Combinatorial Refinement of Structure Factor and Compton Profile Data -- 6.4.5 Spin‐resolved One‐order Reduced Density Matrix (1‐SRDM) Refinement -- 6.4.5.1 Basic Framework -- 6.4.5.2 Molecular Modeling -- 6.4.5.3 Magnetic Structure Factor and Magnetic Compton Profile -- 6.4.5.4 Variation of the Basis Functions -- 6.4.5.5 Variation of Spin Population Matrices -- References -- Chapter 7 Electron Wavefunction Models -- 7.1 Introduction -- 7.2 X‐ray Constrained Wavefunction (XCW) Model -- 7.2.1 Mathematical Framework -- 7.2.2 Hirshfeld Atom Refinement -- 7.2.2.1 Selection of Wavefunction -- 7.2.2.2 Electron Density -- 7.2.2.3 Hirshfeld Atomic Partitioning Method -- 7.2.2.4 Calculation of the Structure Factor -- 7.2.3 X‐ray Constrained Wavefunction Refinement -- 7.2.3.1 Special Treatment for Thermal Vibrations -- 7.2.3.2 Density Matrix Representation of Structure Factor. 7.2.3.3 Experimental Constrained Wavefunction Refinement -- 7.2.4 Open Shell System Method -- 7.2.5 Treatment of Relativistic Effects -- 7.3 The X‐ray‐Constrained Extremely Localized Molecular Orbital Method -- 7.3.1 Theoretical Extremely Localized Molecular Orbitals -- 7.3.2 Refinement of the Experimentally Constrained Extremely Localized Molecular Orbitals -- References -- Chapter 8 Functional Electronic Structures and Functional Motif of Materials -- 8.1 Introduction -- 8.2 Material Functional Motif -- 8.2.1 Crystal Structure -- 8.2.2 Electronic Structure -- 8.2.3 Magnetic Structure -- 8.2.4 Modulated Defects -- 8.2.5 Statistical Defects -- 8.2.6 Local Defects -- 8.3 Functional Electronic Structures -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911019789603321 |
Guo Guo-Cong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Ferroelectric and antiferroelectric liquid crystals [[electronic resource] /] / Sven T. Lagerwall
| Ferroelectric and antiferroelectric liquid crystals [[electronic resource] /] / Sven T. Lagerwall |
| Autore | Lagerwall Sven T (Sven Torbjörn) |
| Pubbl/distr/stampa | Weinheim ; ; New York, : Wiley-VCH, c1999 |
| Descrizione fisica | 1 online resource (448 p.) |
| Disciplina |
530.429
548.85 |
| Soggetto topico |
Ferroelectric crystals
Liquid crystals |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-76419-1
9786611764197 3-527-61358-7 3-527-61359-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Ferroelectric and Antiferroelectric Liquid Crystals; Contents; List of Symbols and Abbreviations; 1 Introduction; 2 Polar Materials and Effects; 2.1 Polar and Nonpolar Dielectrics; 2.2 The Nonpolarity of Liquid Crystals in General; 2.3 Behavior of Dielectrics in Electric Fields: Classification of Polar Materials; 2.4 Developments in the Understanding of Polar Effects; 2.5 The van der Waals Attraction and Born's Mean Field Theory; 2.6 Landau Preliminaries . The Concept of Order Parameter; 2.7 The Simplest Description of a Ferroelectric; 2.8 Improper Ferroelectrics; 2.9 The Piezoelectric Phase
3 The Necessary Conditions for Macroscopic Polarization3.1 The Neumann and Curie Principles; 3.2 Franz Neumann, Königsberg, and the Rise of Theoretical Physics; 3.3 Neumann's Principle Applied to Liquid Crystals; 3.4 The Surface-Stabilized State; 3.5 Chirality and its Consequences; 3.6 The Curie Principle and Piezoelectricity; 3.7 Hermann's Theorem; 3.8 The Importance of Additional Symmetries; 3.9 Optical Activity and Enantiomorphism; 3.10 Non-Chiral Polar and NLO-Active Liquid Crystals; 4 The Flexoelectric Polarization; 4.1 Deformations from the Ground State of a Nematic 4.2 The Flexoelectric Coefficients4.3 The Molecular Picture; 4.4 Analogies and Contrasts to the Piezoelectric Effect; 4.5 The Importance of Rational Sign Conventions; 4.6 Singularities are Charged in Liquid Crystals; 4.7 The Flexoelectrooptic Effect; 4.8 Why Can a Cholesteric Phase not be Biaxial?; 4.9 Flexoelectric Effects in the Smectic A Phase; 4.10 Flexoelectric Effects in the Smectic C Phase; 5 The SmA* - SmC* Transition and the Helical C* State; 5.1 The Smectic C Order Parameter; 5.2 The SmA* - SmC* Transition; 5.3 The Smectic C* Order Parameters; 5.4 The Helical Smectic C* State 5.5 The Flexoelectric Contribution in the Helical State5.6 Nonchiral Helielectrics and Antiferroelectrics; 5.7 Mesomorphic States without Director Symmetry; 5.8 Simple Landau Expansions; 5.9 The Electroclinic Effect; 5.10 The Deformed Helix Mode in Short Pitch Materials; 5.11 The Landau Expansion for the Helical C* State; 5.12 The Pikin-Indenbom Order Parameter; 6 Electrooptics in the Surface-Stabilized State; 6.1 The Linear Electrooptic Effect; 6.2 The Quadratic Torque; 6.3 Switching Dynamics; 6.4 The Scaling Law for the Cone Mode Viscosity 6.5 Simple Solutions of the Director Equation of Motion6.6 Electrooptic Measurements; 6.7 Optical Anisotropy and Biaxiality; 6.8 The Effects of Dielectric Biaxiality; 6.9 The Viscosity of the Rotational Modes in the Smectic C Phase; 7 Dielectric Spectroscopy To Find the y^ and e^ Tensor Components; 7.1 Viscosities of Rotational Modes; 7.2 The Viscosity of the collective Modes; 7.3 The Viscosity of the Noncollective Modes; 7.4 The Viscosity yø from Electrooptic Measurements; 7.5 The Dielectric Permittivity Tensor; 7.6 The Case of Helical Smectic C* Structures; 7.7 Three Sample Geometries 7.8 Tilted Smectic Layers |
| Record Nr. | UNINA-9910144723403321 |
Lagerwall Sven T (Sven Torbjörn)
|
||
| Weinheim ; ; New York, : Wiley-VCH, c1999 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Ferroelectric and antiferroelectric liquid crystals [[electronic resource] /] / Sven T. Lagerwall
| Ferroelectric and antiferroelectric liquid crystals [[electronic resource] /] / Sven T. Lagerwall |
| Autore | Lagerwall Sven T (Sven Torbjörn) |
| Pubbl/distr/stampa | Weinheim ; ; New York, : Wiley-VCH, c1999 |
| Descrizione fisica | 1 online resource (448 p.) |
| Disciplina |
530.429
548.85 |
| Soggetto topico |
Ferroelectric crystals
Liquid crystals |
| ISBN |
1-281-76419-1
9786611764197 3-527-61358-7 3-527-61359-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Ferroelectric and Antiferroelectric Liquid Crystals; Contents; List of Symbols and Abbreviations; 1 Introduction; 2 Polar Materials and Effects; 2.1 Polar and Nonpolar Dielectrics; 2.2 The Nonpolarity of Liquid Crystals in General; 2.3 Behavior of Dielectrics in Electric Fields: Classification of Polar Materials; 2.4 Developments in the Understanding of Polar Effects; 2.5 The van der Waals Attraction and Born's Mean Field Theory; 2.6 Landau Preliminaries . The Concept of Order Parameter; 2.7 The Simplest Description of a Ferroelectric; 2.8 Improper Ferroelectrics; 2.9 The Piezoelectric Phase
3 The Necessary Conditions for Macroscopic Polarization3.1 The Neumann and Curie Principles; 3.2 Franz Neumann, Königsberg, and the Rise of Theoretical Physics; 3.3 Neumann's Principle Applied to Liquid Crystals; 3.4 The Surface-Stabilized State; 3.5 Chirality and its Consequences; 3.6 The Curie Principle and Piezoelectricity; 3.7 Hermann's Theorem; 3.8 The Importance of Additional Symmetries; 3.9 Optical Activity and Enantiomorphism; 3.10 Non-Chiral Polar and NLO-Active Liquid Crystals; 4 The Flexoelectric Polarization; 4.1 Deformations from the Ground State of a Nematic 4.2 The Flexoelectric Coefficients4.3 The Molecular Picture; 4.4 Analogies and Contrasts to the Piezoelectric Effect; 4.5 The Importance of Rational Sign Conventions; 4.6 Singularities are Charged in Liquid Crystals; 4.7 The Flexoelectrooptic Effect; 4.8 Why Can a Cholesteric Phase not be Biaxial?; 4.9 Flexoelectric Effects in the Smectic A Phase; 4.10 Flexoelectric Effects in the Smectic C Phase; 5 The SmA* - SmC* Transition and the Helical C* State; 5.1 The Smectic C Order Parameter; 5.2 The SmA* - SmC* Transition; 5.3 The Smectic C* Order Parameters; 5.4 The Helical Smectic C* State 5.5 The Flexoelectric Contribution in the Helical State5.6 Nonchiral Helielectrics and Antiferroelectrics; 5.7 Mesomorphic States without Director Symmetry; 5.8 Simple Landau Expansions; 5.9 The Electroclinic Effect; 5.10 The Deformed Helix Mode in Short Pitch Materials; 5.11 The Landau Expansion for the Helical C* State; 5.12 The Pikin-Indenbom Order Parameter; 6 Electrooptics in the Surface-Stabilized State; 6.1 The Linear Electrooptic Effect; 6.2 The Quadratic Torque; 6.3 Switching Dynamics; 6.4 The Scaling Law for the Cone Mode Viscosity 6.5 Simple Solutions of the Director Equation of Motion6.6 Electrooptic Measurements; 6.7 Optical Anisotropy and Biaxiality; 6.8 The Effects of Dielectric Biaxiality; 6.9 The Viscosity of the Rotational Modes in the Smectic C Phase; 7 Dielectric Spectroscopy To Find the y^ and e^ Tensor Components; 7.1 Viscosities of Rotational Modes; 7.2 The Viscosity of the collective Modes; 7.3 The Viscosity of the Noncollective Modes; 7.4 The Viscosity yø from Electrooptic Measurements; 7.5 The Dielectric Permittivity Tensor; 7.6 The Case of Helical Smectic C* Structures; 7.7 Three Sample Geometries 7.8 Tilted Smectic Layers |
| Record Nr. | UNINA-9910830759703321 |
Lagerwall Sven T (Sven Torbjörn)
|
||
| Weinheim ; ; New York, : Wiley-VCH, c1999 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexoelectricity in liquid crystals [[electronic resource] ] : theory, experiments and applications / / edited by Agnes Buka and Nándor Éber
| Flexoelectricity in liquid crystals [[electronic resource] ] : theory, experiments and applications / / edited by Agnes Buka and Nándor Éber |
| Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (299 p.) |
| Disciplina | 548.85 |
| Altri autori (Persone) |
BukaAgnes
EberMilton |
| Soggetto topico |
Liquid crystals - Electric properties
Liquid crystals |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-73918-6
1-84816-800-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Introduction to Flexoelectricity: Its Discovery and Basic Concepts R.B. Meyer; References; 1. Molecular Theory of Flexoelectricity in Nematic Liquid Crystals M.A. Osipov; 1.1. Introduction; 1.2. Dipolar and Quadrupolar Flexoelectricity; 1.3. Density Functional Theory of Flexoelectricity; 1.4. Influence of Polar Molecular Shape on the Flexocoeccients; 1.5. Influence of Dipole-Dipole Correlations; 1.6. Influence of Real Molecular Shape; References; 2. Flexoelectro-optics and Measurements of Flexocoefficients N.V. Madhusudana; 2.1. Introduction; 2.2. Theoretical Background
2.3. Experimental Techniques2.4. Some Remarks on the Experimental Results; References; 3. Flexoelectricity of Bent-core Molecules A. Jakli, J. Harden and N. Eber; 3.1. Introduction; 3.1.1. Bent-core (banana-shaped) liquid crystals; 3.1.2. Bent-core nematics; 3.2. Flexoelectricity in Bent-core Liquid Crystals; 3.2.1. The .exoelectric coefficients; 3.2.2. A direct flexing method for measuring flexoelectric coefficients; 3.2.3. Giant flexoelectricity of bent-core nematics studied by the flexing method; 3.3. The Inverse (Converse) Flexoelectric Effect; 3.3.1. Converse giant flexoelectric effect 3.3.2. Flexoelectricity of bent-core molecules studied by indirect methods3.4. Physical Origin of Giant Flexoelectricity; 3.5. Giant Flexoelectric Effect in Liquid Crystalline Elastomers; Acknowledgments; References; 4. The Role of Flexoelectricity in Pattern Formation A. Buka, T. Toth-Katona, N. Eber, A. Krekhov and W. Pesch; 4.1. Introduction; 4.2. Equilibrium Structures: Flexodomains; 4.3. Dissipative Structures: Electroconvection; 4.3.1. Standard electroconvection; 4.3.2. Non-standard electroconvection; 4.4. Crossover between Flexodomains and Electroconvection 4.5. Discussions and Conclusions Acknowledgements; References; 5. Flexoelectricity in Chiral Polar Smectics M. Cepic; 5.1. Introduction; 5.2. Ferroelectric Liquid Crystals; 5.2.1. Phenomenological modelling of chiral tilted smectics; 5.2.2. Polar properties and flexoelectricity; 5.3. Antiferroelectric Liquid Crystals; 5.3.1. Structures of phases; 5.3.1.1. The ferroelectric SmC* phase; 5.3.1.2. The antiferroelectric SmC*A phase; 5.3.1.3. The incommensurate SmC* a phase; 5.3.1.4. The antiferroelectric SmC* FI2 phase; 5.3.1.5. The ferrielectric SmC* FI1 phase; 5.3.1.6. The six-layer SmC* 6d phase 5.3.2. Discrete model 5.3.3. Discrete form of flexoelectricity; 5.3.4. Lock-in periodicities; 5.3.4.1. Achiral interactions a1; 5.3.4.2. Achiral interactions a2; 5.3.4.3. Achiral interactions a3; 5.3.4.4. Chiral interactions f1; 5.3.4.5. Chiral interactions f2; 5.3.4.6. Quadrupolar biquadratic interactions bQ; 5.3.4.7. Period two: The SmC* FI2 phase; 5.3.4.8. Period three: The SmC* FI1 and the SmC* 6d phases; 5.4. Flexoelectricity in Complex Structures; 5.4.1. General direction of polarization; 5.4.2. On the observability of flexoelectric polarization; 5.5. Conclusions; References 6. Flexoelectricity in Lyotropics and in Living Liquid Crystals A.G. Petrov |
| Record Nr. | UNINA-9910464790503321 |
| Singapore ; ; London, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexoelectricity in liquid crystals [[electronic resource] ] : theory, experiments and applications / / edited by Agnes Buka and Nándor Éber
| Flexoelectricity in liquid crystals [[electronic resource] ] : theory, experiments and applications / / edited by Agnes Buka and Nándor Éber |
| Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (299 p.) |
| Disciplina | 548.85 |
| Altri autori (Persone) |
BukaAgnes
EberMilton |
| Soggetto topico |
Liquid crystals - Electric properties
Liquid crystals |
| ISBN |
1-283-73918-6
1-84816-800-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Introduction to Flexoelectricity: Its Discovery and Basic Concepts R.B. Meyer; References; 1. Molecular Theory of Flexoelectricity in Nematic Liquid Crystals M.A. Osipov; 1.1. Introduction; 1.2. Dipolar and Quadrupolar Flexoelectricity; 1.3. Density Functional Theory of Flexoelectricity; 1.4. Influence of Polar Molecular Shape on the Flexocoeccients; 1.5. Influence of Dipole-Dipole Correlations; 1.6. Influence of Real Molecular Shape; References; 2. Flexoelectro-optics and Measurements of Flexocoefficients N.V. Madhusudana; 2.1. Introduction; 2.2. Theoretical Background
2.3. Experimental Techniques2.4. Some Remarks on the Experimental Results; References; 3. Flexoelectricity of Bent-core Molecules A. Jakli, J. Harden and N. Eber; 3.1. Introduction; 3.1.1. Bent-core (banana-shaped) liquid crystals; 3.1.2. Bent-core nematics; 3.2. Flexoelectricity in Bent-core Liquid Crystals; 3.2.1. The .exoelectric coefficients; 3.2.2. A direct flexing method for measuring flexoelectric coefficients; 3.2.3. Giant flexoelectricity of bent-core nematics studied by the flexing method; 3.3. The Inverse (Converse) Flexoelectric Effect; 3.3.1. Converse giant flexoelectric effect 3.3.2. Flexoelectricity of bent-core molecules studied by indirect methods3.4. Physical Origin of Giant Flexoelectricity; 3.5. Giant Flexoelectric Effect in Liquid Crystalline Elastomers; Acknowledgments; References; 4. The Role of Flexoelectricity in Pattern Formation A. Buka, T. Toth-Katona, N. Eber, A. Krekhov and W. Pesch; 4.1. Introduction; 4.2. Equilibrium Structures: Flexodomains; 4.3. Dissipative Structures: Electroconvection; 4.3.1. Standard electroconvection; 4.3.2. Non-standard electroconvection; 4.4. Crossover between Flexodomains and Electroconvection 4.5. Discussions and Conclusions Acknowledgements; References; 5. Flexoelectricity in Chiral Polar Smectics M. Cepic; 5.1. Introduction; 5.2. Ferroelectric Liquid Crystals; 5.2.1. Phenomenological modelling of chiral tilted smectics; 5.2.2. Polar properties and flexoelectricity; 5.3. Antiferroelectric Liquid Crystals; 5.3.1. Structures of phases; 5.3.1.1. The ferroelectric SmC* phase; 5.3.1.2. The antiferroelectric SmC*A phase; 5.3.1.3. The incommensurate SmC* a phase; 5.3.1.4. The antiferroelectric SmC* FI2 phase; 5.3.1.5. The ferrielectric SmC* FI1 phase; 5.3.1.6. The six-layer SmC* 6d phase 5.3.2. Discrete model 5.3.3. Discrete form of flexoelectricity; 5.3.4. Lock-in periodicities; 5.3.4.1. Achiral interactions a1; 5.3.4.2. Achiral interactions a2; 5.3.4.3. Achiral interactions a3; 5.3.4.4. Chiral interactions f1; 5.3.4.5. Chiral interactions f2; 5.3.4.6. Quadrupolar biquadratic interactions bQ; 5.3.4.7. Period two: The SmC* FI2 phase; 5.3.4.8. Period three: The SmC* FI1 and the SmC* 6d phases; 5.4. Flexoelectricity in Complex Structures; 5.4.1. General direction of polarization; 5.4.2. On the observability of flexoelectric polarization; 5.5. Conclusions; References 6. Flexoelectricity in Lyotropics and in Living Liquid Crystals A.G. Petrov |
| Record Nr. | UNINA-9910789345803321 |
| Singapore ; ; London, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
IEEE Std 176-1949 (ANSI C83.3-1951) : IEEE Standards on Piezoelectric Crystals, 1949 / / IEEE
| IEEE Std 176-1949 (ANSI C83.3-1951) : IEEE Standards on Piezoelectric Crystals, 1949 / / IEEE |
| Pubbl/distr/stampa | New York : , : IEEE, , 1949 |
| Descrizione fisica | 1 online resource (20 pages) |
| Disciplina | 548.85 |
| Collana | IEEE Std |
| Soggetto topico |
Crystals - Electric properties
Piezoelectric devices |
| ISBN | 1-5044-0179-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | IEEE Std 176-1949 |
| Record Nr. | UNINA-9910309756103321 |
| New York : , : IEEE, , 1949 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
IEEE Std 176-1949 (ANSI C83.3-1951) : IEEE Standards on Piezoelectric Crystals, 1949 / / IEEE
| IEEE Std 176-1949 (ANSI C83.3-1951) : IEEE Standards on Piezoelectric Crystals, 1949 / / IEEE |
| Pubbl/distr/stampa | New York : , : IEEE, , 1949 |
| Descrizione fisica | 1 online resource (20 pages) |
| Disciplina | 548.85 |
| Collana | IEEE Std |
| Soggetto topico |
Crystals - Electric properties
Piezoelectric devices |
| ISBN | 1-5044-0179-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | IEEE Std 176-1949 |
| Record Nr. | UNISA-996577949003316 |
| New York : , : IEEE, , 1949 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Reactivity in molecular crystals / / edited by Yuji Ohashi
| Reactivity in molecular crystals / / edited by Yuji Ohashi |
| Pubbl/distr/stampa | Tokyo, Japan ; ; Weinheim, [Germany] : , : Kodansha : , : VCH, , 1993 |
| Descrizione fisica | 1 online resource (362 p.) |
| Disciplina |
548
548.85 |
| Soggetto topico |
Molecular crystals
Chemical reactions |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-84295-8
9786611842956 3-527-61613-6 3-527-61612-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Reactivity in Molecular Crystals; List of Contributors; Contents; Preface; 1. THEORETICAL APPROACH; 1.1 Potential Energy Calculations of Crystals; 1.2 A Novel Molecular-Dynamics Method to Predict Molecular Crystal Structures; 2. PHYSICO-CHEMICAL APPROACH; 2.1 Development of a New X-Ray Diffractometer (IPD-WAS) for Rapid Measurement; 2.2 Reaction Process in Solid State Studied by High Resolution Electron Spectromicroscopy; 2.3 Analysis of Charge Transfer Complex Formation in the Solid State by Penning lonilation Electron Spectroscopy
2.4 Analysis of Reactive Species by Time Resolved Infrared Reflection Absorption Spectroscopy2.5 Molecular Motion in Clathrate Crystals Analyred by Solid-state NMR Method; 2.6 Asymmetric Structure Analysis for Reaction Centers of a Molecular Crystal and on a Crystal Surface by EXAFS Spectroscopy; 2.7 Excitation Energy Transfer Between Metal Complexes in Solids; 3. CRYSTALLINE-STATE REACTION; 3.1 Dynamic Structure Analysis of Crystalline-State Reaction; 3.2 Reversible Intercalation of Guest Molecules in Crystals of Cholic Acid 3.3 How can Crystalline Environment Provide Outstanding Chemistry for Diarylcarbenes or Arylnitrenes4. Solid-to- Solid Organic Reactions; 4.1 Introduction; 4.2 Pinacol and Benzylic Acid Rearrangement; 4.3 Baeyer-Villiger Oxidation; 4.4 Reduction with NaBH4; 4.5 Grignard, Reformatsky and Luche Reactions; 4.6 Coupling Reactions; 4.7 Witting-Horner Reaction; 4.8 Aldol Condensation; 4.9 Dehydration, Rearrangement, Chlorination and Etherification of Secondary Alcohols; 4.10 Host-Guest Inclusion Complexation in the Solid State; 5. Streoselective Solid-State Photoreaction 5.1 Determining Factors of Molecular Arrangement and Reaction Course in the Crystalline-State Photoreaction of Unsymmetrically Substituted Diolefins5.2 Stereoselectivity in Reactions of Clathrate Crystals; 5.3 Solid-state Photochromism of Tetraphenyldihydro-1,3,5-Triazine and Related Heterocycles; 5.4 Solid-state Photoracemization and Photoisomerization of Alkyl Cobalt Complexes; 6. REACTIVITY AND CRYSTAL STRUCTURE; 6.1 Packing Effect in Solid-State Polymerization of Diethynylbenzene Derivatives by Radiation 6.2 High Selective Reaction Deduced by Tunneling Effect in the Crystalline Environment6.3 Formation of Bimolecular Films and Crystal Structure; 6.4 Reactivity and Reaction Pathway of the Sulfur Compounds; 6.5 Stereoselectivity and Molecular Recognition in Double Macrocyclic Inclusion Crystals; Index |
| Record Nr. | UNINA-9910144279503321 |
| Tokyo, Japan ; ; Weinheim, [Germany] : , : Kodansha : , : VCH, , 1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||