Aromatic and heteroaromatic chemistry |
Pubbl/distr/stampa | London, : Chemial Soc. |
Disciplina |
547.6
547.605 |
ISSN | 0305-9715 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti | Specialist periodical report.Aromatic and heteroaromatc chemistry |
Note periodicità | Annuale |
Record Nr. | UNINA-990008909990403321 |
London, : Chemial Soc. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Aromatic interactions : frontiers in knowledge and application / / edited by Darren W. Johnson, University of Oregon, Eugene, Oregon, USA, Fraser Hof, University of Victoria, Victoria, British Columbia, Canada |
Pubbl/distr/stampa | Cambridge : , : Royal Society of Chemistry, , [2017] |
Descrizione fisica | 1 online resource (297 pages) : color illustrations |
Disciplina | 547.6 |
Collana | Monographs in supramolecular chemistry |
Soggetto topico | Aromaticity (Chemistry) |
ISBN | 1-78262-662-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910156199503321 |
Cambridge : , : Royal Society of Chemistry, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Aromaticity and antiaromaticity : concepts and applications / / Miquel Solà [and three others] |
Autore | Solà Miquel |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2023] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 547.6 |
Soggetto topico |
Aromaticity (Chemistry)
Aromatitzants Compostos aromàtics |
Soggetto genere / forma | Llibres electrònics |
ISBN |
1-119-08590-X
1-119-08592-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- List of Abbreviations -- Chapter 1 Historical Overview -- Chapter 2 Simple Electron Counting Rules -- 2.1 Introduction -- 2.2 Hückel's 4n + 2 Rule -- 2.3 Baird's 4n π‐Electron Rule for the Lowest‐Lying Triplet Excited State -- 2.4 Soncini and Fowler's Rule -- 2.5 Möbius' 4n π‐Electron Rule -- 2.6 The Linking Number Rule -- 2.7 Platt's Ring Perimeter Model -- 2.8 Clar's π‐Sextet Rule -- 2.8.1 Glidewell and Lloyd's Rule -- 2.8.2 The Y‐Rule -- 2.9 Hirsch's 2(n + 1)2 Rule -- 2.10 The 2n2 + 2n + 1 (S & -- equals -- n + ½) Rule -- 2.11 Wade-Mingos' 2n + 2 Rule -- 2.11.1 Jemmis' mno Rule -- 2.11.2 Equivalence between Hückel's and Wade-Mingos' Rules -- 2.12 Other Rules -- References -- Chapter 3 Aromaticity from Organic to Inorganic Compounds -- 3.1 Introduction -- 3.2 π‐Aromatic Inorganic Species -- 3.3 Aromaticity in Main Group Metal Compounds -- 3.4 Aromaticity in Transition Metal Compounds -- 3.5 Conclusions -- References -- Chapter 4 Stability and Reactivity in Aromatic Compounds -- 4.1 Introduction -- 4.2 Aromaticity and Thermodynamic Stability -- 4.3 Aromaticity and Kinetic Stability -- 4.3.1 Acenes -- 4.3.2 Pericyclic Reactions -- 4.3.2.1 Diels-Alder Cycloadditions -- 4.3.2.2 [2+2+2] Cycloadditions -- 4.3.2.3 [1,7]‐Sigmatropic Migrations -- 4.3.2.4 Fullerene Additions -- References -- Chapter 5 Descriptors of Aromaticity: Geometric Criteria -- 5.1 Introduction -- 5.2 Geometry‐Based Estimation of the Molecular Energy -- 5.3 Bond Length Alternation as a Basis for Defining Aromaticity Indices -- 5.3.1 The Julg Aromaticity Index AJ -- 5.3.2 The Harmonic Oscillator Model of Aromaticity, HOMA (1972 and 1993) -- 5.4 Separation of HOMA into Two Components EN and GEO (1996) -- 5.5 Harmonic Oscillator Model of Electron Delocalization, HOMED (2007).
5.6 Harmonic Oscillator Model for Heterocycles with π Electron and/or n‐Electron Delocalization: The HOMHED Index (2012) -- 5.7 Applications of the Bond Orders for Estimating Aromaticity -- 5.8 Bird's Aromaticity Indices I5 and I6 (1985) -- 5.9 Pozharskii Criterion of Aromaticity, ΔN‾ (1985) and Bond Alternation Coefficient, BAC (1995) -- 5.10 Applications -- 5.11 Impact of the Electric Field on Aromaticity -- 5.12 Stacking Interactions versus H‐Bonding in Nucleobases -- 5.13 Showing the Interaction Path for Substituent Effects -- 5.14 Applications in the Field of Quasiaromatic Systems -- 5.15 Extension of HOMA to Noncyclic and Non‐π‐electron Systems -- 5.16 Conclusions -- References -- Chapter 6 Descriptors of Aromaticity: Energetic Criteria -- 6.1 Introduction -- 6.2 Thermochemical Approaches -- 6.3 Energetic Approaches Based on Molecular Geometry -- 6.4 Theoretical Approaches -- References -- Chapter 7 Descriptors of Aromaticity: Magnetic Criteria -- 7.1 Introduction -- 7.2 NMR Chemical Shifts -- 7.3 Nucleus Independent Chemical Shifts -- 7.4 Magnetically Induced Current Densities -- 7.5 Anisotropy of the Induced Current Density Tensor -- References -- Chapter 8 Descriptors of Aromaticity: Electronic Criteria -- 8.1 Introduction -- 8.2 Density Functions -- 8.3 Measures of Electron Delocalization -- 8.3.1 The Electron Sharing Indices (ESI) -- 8.3.2 The Electron Localization Function (ELF) -- 8.4 Electronic Descriptors of Aromaticity -- References -- Chapter 9 Heteroaromaticity -- 9.1 Introduction -- 9.2 Six‐Membered Organic and Inorganic Heterocycles -- 9.3 Polycyclic Heteroaromatic Hydrocarbons -- 9.4 Five‐Membered Organic Heterocycles -- 9.5 Aromaticity of Nucleic Bases -- References -- Chapter 10 Möbius Aromaticity -- 10.1 Introduction -- 10.2 Metallacyclic Möbius Aromatic Species -- 10.3 Macrocyclic Möbius Aromaticity -- References. Chapter 11 σ‐, π‐, δ‐, and φ‐Aromaticity -- 11.1 Introduction -- 11.2 σ‐Aromatic and σ‐Antiaromatic Species -- 11.2.1 σ‐Aromatic Species -- 11.2.2 σ‐Antiaromatic Species -- 11.3 σ‐, π‐Doubly Aromatic, and σ‐, π‐Doubly Antiaromatic Species and Species with σ‐, π‐Conflicting Aromaticity -- 11.3.1 σ‐, π‐Doubly Aromatic Species -- 11.3.2 σ‐, π‐Doubly Antiaromatic Species -- 11.3.3 Species with σ‐Antiaromaticity and π‐Aromaticity -- 11.3.4 Species with σ‐Aromaticity and π‐Antiaromaticity -- 11.4 δ‐Aromaticity -- 11.5 ϕ‐Aromaticity -- 11.6 Conclusions -- References -- Chapter 12 The Distortivity of π‐Electrons -- 12.1 Introduction -- 12.2 The Kekulean Distortion -- 12.3 Frequencies of the Kekulé Vibrational Mode in Benzene -- 12.4 Changes in Aromaticity in the Kekulean Distortion -- 12.5 The Maximum Hardness and Minimum Polarizability Principles -- 12.6 The Distortive Nature of π‐Electrons -- 12.7 Conclusions -- References -- Chapter 13 Three‐Dimensional Aromaticity -- 13.1 Introduction -- 13.2 Spherical Aromaticity -- 13.2.1 Aromaticity on the Surface of the Sphere -- 13.2.2 Aromaticity Inside the Sphere -- 13.2.2.1 Closo Boranes -- 13.2.2.2 Jellium Cluster Model -- 13.3 Octahedral Aromaticity -- 13.4 Cubic Aromaticity -- 13.5 Tetrahedral Aromaticity -- 13.6 Cylindrical Aromaticity -- References -- Chapter 14 Excited State Aromaticity -- 14.1 Introduction -- 14.2 Theoretical and Experimental Studies of Excited State Aromaticity -- 14.2.1 Theoretical and Computational Studies -- 14.2.2 Experimental Studies -- 14.3 Influence of Aromaticity in the Excited State Properties -- 14.3.1 Molecular Dipole Moments -- 14.3.2 Singlet‐Triplet Energy Gaps -- 14.3.3 Photoacidity -- 14.4 Influence of Aromaticity in the Excited State Reactivity -- 14.4.1 Photoisomerizations -- 14.4.2 Excited State Intramolecular Proton Transfer. 14.4.3 Photochemical Formation of Ortho‐Xylylenes -- 14.4.4 Photochemical Pericyclic Reactions -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830205903321 |
Solà Miquel | ||
Hoboken, New Jersey : , : John Wiley & Sons, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
BENZENE / / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans |
Autore | IARC Working Group on the Evaluation of Carcinogenic Risks to Humans |
Pubbl/distr/stampa | Lyon (FR) : , : International Agency for Research on Cancer, , 2018 |
Descrizione fisica | 1 online resource (309 pages). : illustrations |
Disciplina | 547.6 |
Collana | IARC monographs on the evaluation of carcinogenic risks to humans |
Soggetto topico | Benzene |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910702821703321 |
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans | ||
Lyon (FR) : , : International Agency for Research on Cancer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Cyclophanes / François Diederich |
Autore | Diederich, François |
Pubbl/distr/stampa | Cambridge : The Royal Society of Chemistry, copyr. 1994 |
Descrizione fisica | XV, 313 p. : ill. ; 20 cm |
Disciplina | 547.6 |
Collana | Monographs in supramolecular chemistry |
Soggetto non controllato | Composti aromatici |
ISBN | 0-85186-405-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000959740203316 |
Diederich, François | ||
Cambridge : The Royal Society of Chemistry, copyr. 1994 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Cyclophanes / Francois Diederich |
Autore | DIEDERICH, Francois |
Pubbl/distr/stampa | Cambridge : Royal Sociecy of Chemisty, copyr. 1991 |
Descrizione fisica | XV, 313 p. : ill. ; 20 cm. |
Disciplina | 547.6 |
Collana | Monographs in supramolecolar chemistry |
Soggetto non controllato | composti aromatici |
ISBN | 0-85186-966-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000347780203316 |
DIEDERICH, Francois | ||
Cambridge : Royal Sociecy of Chemisty, copyr. 1991 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others] |
Autore | Zhu Frank <1957-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020] |
Descrizione fisica | 1 online resource (425 pages) |
Disciplina | 547.6 |
Collana | THEi Wiley ebooks |
Soggetto topico | Aromatic compounds |
ISBN |
1-119-48788-9
1-5231-3296-5 1-119-48789-7 1-119-48787-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555110903321 |
Zhu Frank <1957-> | ||
Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others] |
Autore | Zhu Frank <1957-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020] |
Descrizione fisica | 1 online resource (425 pages) |
Disciplina | 547.6 |
Collana | THEi Wiley ebooks |
Soggetto topico | Aromatic compounds |
ISBN |
1-119-48788-9
1-5231-3296-5 1-119-48789-7 1-119-48787-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910816961103321 |
Zhu Frank <1957-> | ||
Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of polycyclic aromatic hydrocarbons : chemistry, occurrence, and health issues / Guilherme C Bandeira ; Henrique E Meneses |
Pubbl/distr/stampa | New York, : Nova Science Publishers, c2013 |
Descrizione fisica | XIV, 409 p. : ill. ; 27 cm. |
Disciplina | 547.6 |
Collana | Chemistry research and applications |
Soggetto non controllato | Chimica organica - Composti aromatici |
ISBN | 978-1-62257-473-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNIPARTHENOPE-000030620 |
New York, : Nova Science Publishers, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Parthenope | ||
|
Industrial arene chemistry : markets, technologies, sustainable processes and case studies of aromatic commodities / / edited by Jacques Mortier |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2023] |
Descrizione fisica | 1 online resource (2806 pages) |
Disciplina | 547.6 |
Soggetto topico |
Aromatic compounds
Chemical engineering |
ISBN |
3-527-82799-4
3-527-82798-6 3-527-82797-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Table of Contents -- Title Page -- Copyright -- Foreword -- Preface -- Section 1. The Markets for Aromatic Commodities -- Section 2. BTX, Naphthalene, and Higher Aromatics from Fossil‐Based Sources -- Section 3. Aromatics from Methanol and Synthesis Gas -- Section 4. The Chemistry of Downstream Functional Aromatics -- Section 5. Sustainable Aromatics Production and Technology -- Volume 1 -- Section 1: The Markets for Aromatic Commodities -- 1 The Fossil‐Based BTX Market -- 1.1 Introduction -- 1.2 Development of the Steel Industry - Extraction of Aromatics from Coke Oven Light Oil -- 1.3 Refining and Petrochemicals - Aromatics from Reformate and Pygas -- 1.4 Aromatics in Gasoline -- 1.5 Toluene and Mixed Xylenes for Chemical and Solvent Use -- 1.6 Benzene as Co‐product - Pricing Volatility -- 1.7 Paraxylene Production and Sourcing -- 1.8 Orthoxylene and Metaxylene as Co‐products -- 1.9 The Shift to Asia and Explosive Growth in China - Changing Regional Product Flows -- 1.10 Environmental Challenges: Decarbonization, a Future for Bio‐based Aromatics? -- 1.11 The Competitive Challenge for Europe -- 2 The Downstream Functional Aromatics Market -- 2.1 Introduction -- 2.2 Benzene Derivatives -- 2.3 Toluene Derivatives -- 2.4 Xylene Derivatives -- 2.5 Outlook for Future Growth: Sustainability and the Impact of Recycling -- 3 Crude Oil to Chemicals: Industry Development and Strategic Implications -- 3.1 Driving Forces Behind Crude Oil to Chemicals -- 3.2 COTC Routes -- 3.3 COTC vs. Traditional Refinery Petrochemical Integration -- 3.4 Recent COTC Projects -- 3.5 Configuration and Technologies -- 3.6 Strategic Implications -- 3.7 Carbon Footprint and Sustainability -- References -- Section 2: BTX, Naphthalene and Higher Aromatics from Fossil‐Based Sources -- 4 BTX from Light Hydrocarbons -- 4.1 Introduction.
4.2 Commercial Processes and Emerging Methods -- 4.3 Brief Principle and Elementary Step -- 4.4 Light Hydrocarbon Aromatization -- 4.5 Brief Comparison Between Zn/HZSM‐5 and Ga/HZSM‐5 -- 4.6 Deactivation of ZSM‐5 and Metal/ZSM‐5 Catalysts -- 4.7 Summary and Outlook -- Acknowledgments -- List of Abbreviations -- References -- 5 BTX Aromatics from Naphtha Hydrocarbons -- 5.1 Introduction -- 5.2 Naphtha -- 5.3 Dehydrocyclization by Monofunctional Metal Catalysts -- 5.4 Catalytic Naphtha Reforming by Bifunctional Catalysts -- 5.5 Aromatization by Monofunctional Acid Catalysts -- 5.6 In Summary -- References -- 6 BTX Aromatics from Heavier Material than Naphtha -- 6.1 Introduction -- 6.2 Heavier Material than Naphtha -- 6.3 Thermal Cracking -- 6.4 Catalytic Cracking -- 6.5 Hydroprocessing -- 6.6 In Summary -- References -- 7 BTX Aromatics from Other Conversion Processes -- 7.1 Introduction -- 7.2 Xylene Isomerization -- 7.3 Transalkylation (Disproportionation) -- 7.4 Hydrodealkylation -- 7.5 Methylation -- 7.6 Decarboxylation of Benzoic Acid -- 7.7 Hydrodeoxygenation of Phenolic Compounds -- 7.8 In Summary -- References -- 8 Bi‐ and Tri‐nuclear Aromatic Production -- 8.1 Introduction -- 8.2 Properties of Bi‐ and Tri‐nuclear Aromatics -- 8.3 Markets for Bi‐ and Tri‐nuclear Aromatics -- 8.4 Naphthalene -- 8.5 Anthracene -- 8.6 In Summary -- References -- 9 Extraction Separation of Aromatics -- 9.1 Introduction -- 9.2 Extraction of Aromatics Using Traditional Organic Solvents -- 9.3 Extraction of Aromatics Using Ionic Liquids -- 9.4 Extraction of Aromatics Using Deep Eutectic Solvents -- 9.5 Extractive Distillation of Aromatics from Aliphatics -- 9.6 Summary and Outlook -- Acknowledgments -- Abbreviations -- References -- 10 The Honeywell UOP CCR Platforming™ Process for BTX Production (Case Study) -- 10.1 Introduction -- 10.2 History. 10.3 Feedstock and Products -- 10.4 Reforming Reactions -- 10.5 Reforming Process Conditions -- 10.6 Reforming Catalysts -- 10.7 Process Flow Schemes -- 10.8 Economics -- 10.9 Forward Directions -- References -- 11 The Honeywell UOP ParexTM Process: Fifty Years of Growth for the Petrochemical Industry (Case Study) -- 11.1 Introduction -- 11.2 Development of Adsorptive Separation Technology for Para‐xylene -- 11.3 Integration of Para‐xylene Adsorption with Other Aromatic Technologies -- 11.4 Evolution of The UOP Parex Process -- 11.5 Outlook -- References -- 12 Forty Years of Xylene Isomerization Technology Deployment at ExxonMobil (Case Study) -- 12.1 Introduction -- 12.2 Vapor‐Phase Xylene Isomerization (VPI) -- 12.3 EB Dealkylation‐Based VPI Processes: An Evolutionary History -- 12.4 Significance of Xylene Loss -- 12.5 Retrofit of EB‐Reforming Process to EB‐Dealkylation Process -- 12.6 Liquid‐Phase Isomerization -- 12.7 Outlook for Xylene Isomerization Processes -- References -- 13 ExxonMobil PxMaxSM Process: Production of Paraxylene (Case Study) -- 13.1 Introduction -- 13.2 Shape‐Selective Catalysis -- 13.3 Development of Selective Toluene Disproportionation Technology -- 13.4 Process Description -- 13.5 Paraxylene Recovery from Paraxylene‐Enriched Effluent -- 13.6 STDP vs. Other Toluene Routes to Xylenes -- 13.7 Economics Favoring STDP -- 13.8 Outlook -- References -- 14 BP/Amoco Paraxylene Crystallization Technology (Case Study) -- 14.1 Introduction -- 14.2 The BP Amoco pX Unit Fractionation Section -- 14.3 The BP Amoco pX Unit Crystallization Section -- 14.4 The BP Amoco pX Unit Refrigeration Section -- 14.5 Other New BP Amoco pX Technologies -- 14.6 Summary -- Acknowledgments -- References -- 15 Reactions and Mechanisms of Xylene Isomerization and Related Processes -- 15.1 Introduction -- 15.2 EB Transalkylation Catalysts. 15.3 A Shape Selective Shift in the Mechanism for Ethyl Transfer -- 15.4 EB Dealkylation Catalysts -- 15.5 Summary of the Effect of the Shape Selective Shift in Ethyl Transfer or Removal -- 15.6 Dual Bed EB TA and EB DE Catalysts -- 15.7 Comment on Optimal EB Conversion for Selective Adsorption vs. Crystallization pX Units -- 15.8 Conversion of C9 P& -- N Co‐Boilers Over EB TA and EB DE Catalysts -- 15.9 EB Isomerization Catalysts -- 15.10 How the Shape Selective Shift in the Mechanism of Ethyl Transfer or Removal Led to the Development of Effective TOL/A9+ Transalkylation Catalysts -- 15.11 Thoughts on Incorporating TOL/A9+ TA and/or STDP and/or Selective TOL Alkylation By Methanol (STA) in an Aromatics Complex -- 15.12 Experimental Determination of the True Equilibrium Distribution of Xylenes -- 15.13 Summary -- List of Abbreviations -- References -- Note -- 16 Honeywell UOP Tatoray Process: Maximizing Feed Utilization for Aromatics Production (Case Study) -- 16.1 Introduction -- 16.2 Process Chemistry -- 16.3 UOP Tatoray Catalysts -- 16.4 UOP Tatoray Process -- 16.5 Summary -- List of Abbreviations -- References -- 17 The Honeywell UOP MX Sorbex™ Process: Enabling Growth of PET Resin Applications (Case Study) -- 17.1 Introduction -- 17.2 Mechanisms for Meta‐Xylene Separation -- 17.3 Adsorbent and Desorbent Selection -- 17.4 Commercial Applications -- 17.5 Outlook -- References -- Section 3: Aromatics from Methanol and Synthesis Gas -- 18 Methanol‐to‐Aromatics Compounds (MTA) Process -- 18.1 The Purpose of Developing MTA Technology -- 18.2 The Chemistry of MTA: Mechanistic and Kinetic Considerations -- 18.3 The Preparation of Catalysts in MTA -- 18.4 Effect of Operating Conditions -- 18.5 Reactor Technology of MTA -- 18.6 Perspectives -- References -- 19 Carbon Monoxide and Carbon Dioxide for Aromatics Production -- 19.1 Introduction. 19.2 The Routes for Direct Aromatic Synthesis from CO and CO2 -- 19.3 Catalyst Design Strategies for Improving Catalytic Performance of Catalysts -- 19.4 Other Issues on the Production of Aromatics from CO and CO2 -- 19.5 Process Simulation on the Technical Economics Aspects -- 19.6 Summary and Outlook -- References -- Volume 2 -- Section 4: The Chemistry of Downstream Functional Aromatics -- Section 4.1: Alkylation -- 20 Homogeneous Friedel-Crafts Alkylation -- 20.1 Industrial Friedel-Crafts Alkylation -- 20.2 Catalysts in Friedel-Crafts Alkylation -- 20.3 Recent Advances in Friedel-Crafts Alkylation -- 20.4 Outlook and Future -- References -- 21 Heterogeneous Friedel-Crafts Alkylation -- 21.1 Introduction -- 21.2 Ethylbenzene Synthesis by the Ethylation of Benzene -- 21.3 Cumene Synthesis by the Isopropylation of Benzene -- 21.4 p‐Xylene Synthesis by the Isomerization of Xylene Isomers -- 21.5 p‐Xylene Synthesis by Toluene Disproportionation -- 21.6 p‐Xylene Synthesis by Toluene Methylation -- 21.7 Synthesis of Linear Alkylbenzenes -- 21.8 Alkylation of Naphthalene and the Related Catalysis -- 21.9 Alkylation of Biphenyl and Related Catalysis -- 21.10 Concluding Remark -- References -- 22 Badger Ethylbenzene Technology (Case Study) -- 22.1 Introduction -- 22.2 Ethylbenzene Technology Overview -- 22.3 EBMAXSM Process Description -- 22.4 Feedstocks for Ethylbenzene Production -- 22.5 Process Performance -- 22.6 Process Safety -- 22.7 Environmental Impact -- 22.8 Ethylbenzene Technology Outlook -- References -- 23 Exelus Styrene Monomer (ExSyM) Process (Case Study) -- 23.1 Styrene Industry Overview -- 23.2 Alkylation of Benzene with Ethylene -- 23.3 Dehydrogenation of Ethylbenzene to Styrene Monomer -- 23.4 PO/SM Route -- 23.5 Alternative Routes -- 23.6 Scheme of Reactions -- 23.7 Role of Acid-Base Sites -- 23.8 Ethylbenzene Formation. 23.9 Phenylethanol as Intermediate. |
Record Nr. | UNINA-9910684595103321 |
Weinheim, Germany : , : Wiley-VCH, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|