Cis-trans isomerization in biochemistry [[electronic resource] /] / edited by Christophe Dugave
| Cis-trans isomerization in biochemistry [[electronic resource] /] / edited by Christophe Dugave |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina |
547.12252
547.7804452 |
| Altri autori (Persone) | DugaveChristophe |
| Soggetto topico |
Biomolecules
Stereochemistry Isomerism Biochemistry |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-72283-5
9786610722839 3-527-60933-4 3-527-60949-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
cis-trans Isomerization in Biochemistry; Contents; Preface; List of Contributors; 1 Nomenclature; 2 General Mechanisms of Cis-Trans Isomerization: A Rapid Survey; 2.1 Introduction; 2.2 Homolytic Cis-Trans Isomerization; 2.3 Heterolytic Cis-Trans Isomerization; 3 Mechanisms of Cis-Trans Isomerization around the Carbon-Carbon Double Bonds via the Triplet State; 3.1 A Concept of a Triplet-Excited Region; 3.2 Triplet-State Isomerization in Retinal; 3.2.1 Cis-Trans Isomerization Examined by Electronic Absorption and Raman Spectroscopies and by High-Performance Liquid Chromatography Analysis
3.2.2 Triplet-Excited Region in All-trans-Retinal Shown in Terms of Stretching Force Constants Determined by Raman Spectroscopy and Normal Coordinate Analysis [9]3.2.3 Dynamic Triplet-Excited Region in Retinal As Revealed by Deuteration Effects on the Quantum Yields of Isomerization via the T(1) State (Okumura, Koyama, unpublished results); 3.2.4 Summary and Future Trends; 3.3 Triplet-State Isomerization in β-Carotene and Spheroidene; 3.3.1 Cis-Trans Isomerization in β-Carotene Studied by Electronic Absorption and Raman Spectroscopies and by HPLC Analysis 3.3.2 Cis-Trans Isomerization in Spheroidene Studied by Time-Resolved Absorption Spectroscopy and by HPLC Analysis [17]3.3.3 The Triplet-Excited Region of All-trans-Spheroidene in Solution and the Triplet-State Structure of 15-cis-Spheroidene Bound to the Bacterial Reaction Center Determined by Raman Spectroscopy and Normal Coordinate Analysis [18]; 3.3.3.1 All-trans-Spheroidene in Solution; 3.3.3.2 15-cis-Spheroidene Bound to the Reaction Center 3.3.4 Conformational Changes and the Inversion of Spin-Polarization Identified by Low-Temperature Electron Paramagnetic Resonance Spectroscopy of the Reaction Center-Bound 15-cis-Spheroidene: A Hypothetical Mechanism of Triplet-Energy Dissipation [19]3.3.5 Summary and Future Trends; 3.4 Spectroscopic and Analytical Techniques for Studying Cis-Trans Isomerization in the T(1) State; 3.4.1 Spectroscopic Techniques: Electronic Absorption, Raman, and Magnetic Resonance Spectroscopies; 3.4.2 A Useful Analytical Technique: Singular-Value Decomposition Followed by Global Fitting [23-25] 4 Retinal Binding Proteins4.1 Retinal Chromophore in Rhodopsins; 4.1.1 Specific Color Regulation of the Retinal Chromophore in Protein; 4.1.2 Unique Photochemistry of the Retinal Chromophore in Protein; 4.2 Photoisomerization in Visual Rhodopsins; 4.2.1 Structure and Function of Visual Rhodopsins; 4.2.2 Primary Process in Vision Studied by Ultrafast Spectroscopy; 4.2.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization; 4.3 Photoisomerization in Archaeal Rhodopsins; 4.3.1 Structure and Function of Archaeal Rhodopsin 4.3.2 Primary Process in Bacterial Photosynthesis and Light Sensor Studied by Ultrafast Spectroscopy |
| Record Nr. | UNINA-9910144307703321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cis-trans isomerization in biochemistry [[electronic resource] /] / edited by Christophe Dugave
| Cis-trans isomerization in biochemistry [[electronic resource] /] / edited by Christophe Dugave |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina |
547.12252
547.7804452 |
| Altri autori (Persone) | DugaveChristophe |
| Soggetto topico |
Biomolecules
Stereochemistry Isomerism Biochemistry |
| ISBN |
1-280-72283-5
9786610722839 3-527-60933-4 3-527-60949-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
cis-trans Isomerization in Biochemistry; Contents; Preface; List of Contributors; 1 Nomenclature; 2 General Mechanisms of Cis-Trans Isomerization: A Rapid Survey; 2.1 Introduction; 2.2 Homolytic Cis-Trans Isomerization; 2.3 Heterolytic Cis-Trans Isomerization; 3 Mechanisms of Cis-Trans Isomerization around the Carbon-Carbon Double Bonds via the Triplet State; 3.1 A Concept of a Triplet-Excited Region; 3.2 Triplet-State Isomerization in Retinal; 3.2.1 Cis-Trans Isomerization Examined by Electronic Absorption and Raman Spectroscopies and by High-Performance Liquid Chromatography Analysis
3.2.2 Triplet-Excited Region in All-trans-Retinal Shown in Terms of Stretching Force Constants Determined by Raman Spectroscopy and Normal Coordinate Analysis [9]3.2.3 Dynamic Triplet-Excited Region in Retinal As Revealed by Deuteration Effects on the Quantum Yields of Isomerization via the T(1) State (Okumura, Koyama, unpublished results); 3.2.4 Summary and Future Trends; 3.3 Triplet-State Isomerization in β-Carotene and Spheroidene; 3.3.1 Cis-Trans Isomerization in β-Carotene Studied by Electronic Absorption and Raman Spectroscopies and by HPLC Analysis 3.3.2 Cis-Trans Isomerization in Spheroidene Studied by Time-Resolved Absorption Spectroscopy and by HPLC Analysis [17]3.3.3 The Triplet-Excited Region of All-trans-Spheroidene in Solution and the Triplet-State Structure of 15-cis-Spheroidene Bound to the Bacterial Reaction Center Determined by Raman Spectroscopy and Normal Coordinate Analysis [18]; 3.3.3.1 All-trans-Spheroidene in Solution; 3.3.3.2 15-cis-Spheroidene Bound to the Reaction Center 3.3.4 Conformational Changes and the Inversion of Spin-Polarization Identified by Low-Temperature Electron Paramagnetic Resonance Spectroscopy of the Reaction Center-Bound 15-cis-Spheroidene: A Hypothetical Mechanism of Triplet-Energy Dissipation [19]3.3.5 Summary and Future Trends; 3.4 Spectroscopic and Analytical Techniques for Studying Cis-Trans Isomerization in the T(1) State; 3.4.1 Spectroscopic Techniques: Electronic Absorption, Raman, and Magnetic Resonance Spectroscopies; 3.4.2 A Useful Analytical Technique: Singular-Value Decomposition Followed by Global Fitting [23-25] 4 Retinal Binding Proteins4.1 Retinal Chromophore in Rhodopsins; 4.1.1 Specific Color Regulation of the Retinal Chromophore in Protein; 4.1.2 Unique Photochemistry of the Retinal Chromophore in Protein; 4.2 Photoisomerization in Visual Rhodopsins; 4.2.1 Structure and Function of Visual Rhodopsins; 4.2.2 Primary Process in Vision Studied by Ultrafast Spectroscopy; 4.2.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization; 4.3 Photoisomerization in Archaeal Rhodopsins; 4.3.1 Structure and Function of Archaeal Rhodopsin 4.3.2 Primary Process in Bacterial Photosynthesis and Light Sensor Studied by Ultrafast Spectroscopy |
| Record Nr. | UNINA-9910830730203321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cis-trans isomerization in biochemistry / / edited by Christophe Dugave
| Cis-trans isomerization in biochemistry / / edited by Christophe Dugave |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina |
547.12252
547.7804452 |
| Altri autori (Persone) | DugaveChristophe |
| Soggetto topico |
Biomolecules
Stereochemistry Isomerism Biochemistry |
| ISBN |
9786610722839
9781280722837 1280722835 9783527609338 3527609334 9783527609499 3527609490 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
cis-trans Isomerization in Biochemistry; Contents; Preface; List of Contributors; 1 Nomenclature; 2 General Mechanisms of Cis-Trans Isomerization: A Rapid Survey; 2.1 Introduction; 2.2 Homolytic Cis-Trans Isomerization; 2.3 Heterolytic Cis-Trans Isomerization; 3 Mechanisms of Cis-Trans Isomerization around the Carbon-Carbon Double Bonds via the Triplet State; 3.1 A Concept of a Triplet-Excited Region; 3.2 Triplet-State Isomerization in Retinal; 3.2.1 Cis-Trans Isomerization Examined by Electronic Absorption and Raman Spectroscopies and by High-Performance Liquid Chromatography Analysis
3.2.2 Triplet-Excited Region in All-trans-Retinal Shown in Terms of Stretching Force Constants Determined by Raman Spectroscopy and Normal Coordinate Analysis [9]3.2.3 Dynamic Triplet-Excited Region in Retinal As Revealed by Deuteration Effects on the Quantum Yields of Isomerization via the T(1) State (Okumura, Koyama, unpublished results); 3.2.4 Summary and Future Trends; 3.3 Triplet-State Isomerization in β-Carotene and Spheroidene; 3.3.1 Cis-Trans Isomerization in β-Carotene Studied by Electronic Absorption and Raman Spectroscopies and by HPLC Analysis 3.3.2 Cis-Trans Isomerization in Spheroidene Studied by Time-Resolved Absorption Spectroscopy and by HPLC Analysis [17]3.3.3 The Triplet-Excited Region of All-trans-Spheroidene in Solution and the Triplet-State Structure of 15-cis-Spheroidene Bound to the Bacterial Reaction Center Determined by Raman Spectroscopy and Normal Coordinate Analysis [18]; 3.3.3.1 All-trans-Spheroidene in Solution; 3.3.3.2 15-cis-Spheroidene Bound to the Reaction Center 3.3.4 Conformational Changes and the Inversion of Spin-Polarization Identified by Low-Temperature Electron Paramagnetic Resonance Spectroscopy of the Reaction Center-Bound 15-cis-Spheroidene: A Hypothetical Mechanism of Triplet-Energy Dissipation [19]3.3.5 Summary and Future Trends; 3.4 Spectroscopic and Analytical Techniques for Studying Cis-Trans Isomerization in the T(1) State; 3.4.1 Spectroscopic Techniques: Electronic Absorption, Raman, and Magnetic Resonance Spectroscopies; 3.4.2 A Useful Analytical Technique: Singular-Value Decomposition Followed by Global Fitting [23-25] 4 Retinal Binding Proteins4.1 Retinal Chromophore in Rhodopsins; 4.1.1 Specific Color Regulation of the Retinal Chromophore in Protein; 4.1.2 Unique Photochemistry of the Retinal Chromophore in Protein; 4.2 Photoisomerization in Visual Rhodopsins; 4.2.1 Structure and Function of Visual Rhodopsins; 4.2.2 Primary Process in Vision Studied by Ultrafast Spectroscopy; 4.2.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization; 4.3 Photoisomerization in Archaeal Rhodopsins; 4.3.1 Structure and Function of Archaeal Rhodopsin 4.3.2 Primary Process in Bacterial Photosynthesis and Light Sensor Studied by Ultrafast Spectroscopy |
| Record Nr. | UNINA-9911019794103321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||