top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electron flow in organic chemistry [[electronic resource] ] : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Electron flow in organic chemistry [[electronic resource] ] : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Autore Scudder Paul H
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (450 p.)
Disciplina 547/.128
Soggetto topico Chemistry, Organic
Chemical bonds
Charge exchange
Soggetto genere / forma Electronic books.
ISBN 1-299-10606-4
1-118-35501-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1 BONDING AND ELECTRON DISTRIBUTION 1 1.1 The Decision-Based Approach To Organic Chemistry 2 1.2 Ionic And Covalent Bonding 6 1.3 Lewis Structures And Resonance Forms 8 1.4 Curved-Arrow Notation 11 1.5 Nomenclature And Abbreviations 16 1.6 An Orbital View Of Bonding (Supplemental) 18 1.7 The Shapes Of Molecules 21 1.8 Molecular Repulsions, Attractions, And Hydrogen Bonding 25 1.9 Conjugation, Vinylogy, Aromaticity 27 1.10 Summary 30 2 THE PROCESS OF BOND FORMATION 34 2.1 Energetics Control Knowledge 35 2.2 Orbital Overlap In Covalent Bond Formation 35 2.3 Orbital Interaction Diagrams 38 2.4 Polarizability And Hard And Soft Acid?Base Theory 41 2.5 Thermodynamics, Position Of Equilibrium 43 2.6 Kinetics, Rate Of Reaction 47 2.7 Solvent Stabilization Of Ions 53 2.8 Enzymatic Catalysis - Lessons From Biochemistry 55 2.9 Summary 57 3 PROTON TRANSFER AND THE PRINCIPLES OF STABILITY 61 3.1 Introduction To Proton Transfer 62 3.2 Ranking Of Acids And Bases, The pKa Chart 63 3.3 Structural Factors That Influence Acid Strength 66 3.4 Structural Factors That Influence Base Strength 70 3.5 Carbon Acids & Ranking Of Electron-Withdrawing Groups 71 3.6 Calculation Of Keq For Proton Transfer 76 3.7 Proton Transfer Mechanisms 77 3.8 Common Errors 81 3.9 Proton Transfer Product Predictions 82 3.10 Summary 83 4 IMPORTANT REACTION ARCHETYPES 88 4.1 Introduction To Reaction Archetypes 89 4.2 Nucleophilic Substitution At A Tetrahedral Center 89 4.3 Elimination Reactions Create Pi Bonds 110 4.4 Addition Reactions To Polarized Multiple Bonds 124 4.5 Nucleophilic Substitution At A Trigonal Planar Center 133 4.6 Electrophilic Substitution At A Trigonal Planar Center 140 4.7 Rearrangements To An Electrophilic Carbon 144 4.8 Reaction Archetype Summary 146 5 CLASSIFICATION OF ELECTRON SOURCES 151 5.1 Generalized Ranking Of Electron Sources 151 5.2 Nonbonding Electrons 152 5.3 Electron-Rich Sigma Bonds 154 5.4 Electron-Rich Pi Bonds 155 5.5 Simple Pi Bonds 156 5.6 Aromatic Rings 159 5.7 Summary Of Generic Electron Sources 160 6 CLASSIFICATION OF ELECTRON SINKS 166 6.1 Generalized Ranking Of Electron Sinks 166 6.2 Electron-Deficient Species 167 6.3 Weak Single Bonds 168 6.4 Polarized Multiple Bonds Without Leaving Groups 170 6.5 Polarized Multiple Bonds With Leaving Groups 172 6.6 Summary Of Generic Electron Sinks 173 7 THE ELECTRON FLOW PATHWAYS 179 7.1 The Dozen Most Common Pathways 180 7.2 Six Minor Pathways 191 7.3 Common Path Combinations 197 7.4 Variations On A Theme 201 7.5 Twelve Major Paths Summary And Crosschecks 208 8 INTERACTION OF ELECTRON SOURCES AND SINKS 213 8.1 Source And Sink Correlation Matrix 214 8.2 H-A Sinks Reacting With Common Sources 214 8.3 Y?L Sinks Reacting With Common Sources 218 8.4 sp3 C?L Sinks Reacting With Common Sources 222 8.5 C=Y Sinks Reacting With Common Sources 227 8.6 R?C?Y Sinks Reacting With Common Sources 233 8.7 C=C?Ewg Sinks Reacting With Common Sources 235 8.8 L?C=Y Sinks Reacting With Common Sources 237 8.9 Miscellaneous Reactions 240 8.10 Metal Ions As Electron Sinks 242 8.11 Rearrangements To An Electrophilic Center 243 8.12 Nu-L Reactions 244 8.13 Product Matrix Summary 248 9 DECISIONS, DECISIONS 251 9.1 Decision Point Recognition 252 9.2 Multiple Additions 252 9.3 Regiochemistry & Stereochemistry Of Enolate Formation 254 9.4 Ambident Nucleophiles 255 9.5 Substitution Vs. Elimination 258 9.6 Ambident Electrophiles 262 9.7 Intermolecular Vs. Intramolecular 263 9.8 To Migrate Or Not To An Electrophilic Center 264 9.8 Summary 266 10 CHOOSING THE MOST PROBABLE PATH 269 10.1 Problem-Solving In General 270 10.2 General Mechanistic Cross-Checks 274 10.3 The Path-Selection Process 276 10.4 Reaction Mechanism Strategies 278 10.5 Worked Mechanism Examples 279 10.6 Product Prediction Strategies 297 10.7 Worked Product Prediction Examples 297 10.8 Methods For Testing Mechanisms 313 10.9 Lessons from Biochemical Mechanisms 319 10.10 Summary 321 11 ONE-ELECTRON PROCESSES 326 11.1 Radical Structure And Stability 326 11.2 Radical Path Initiation 329 11.3 Major Paths For Radicals Reacting With Neutrals 330 11.4 Unimolecular Radical Paths 332 11.5 Termination Radical Paths 333 11.6 Radical Path Combinations 333 11.7 Approaches To Radical Mechanisms 336 11.8 Single Electron Transfer, S.E.T., And Charged Radicals 338 11.9 Dissolving Metal Reductions 339 11.10 Electron Transfer Initiated Processes 340 11.11 One-Electron Path Summary 340 12 QUALITATIVE M.O. THEORY & PERICYCLIC REACTIONS 343 12.1 Review Of Orbitals As Standing Waves 344 12.2 Molecular Orbital Theory For Linear Pi Systems 344 12.3 Molecular Orbital Theory For Cyclic Conjugated PI Systems 348 12.4 Perturbation Of The HOMO And LUMO 351 12.5 Delocalization Of Sigma Electrons (Supplemental) 352 12.6 Concerted Pericyclic Cycloaddition Reactions 353 12.7 Concerted Pericyclic Electrocyclic Reactions 357 12.8 Concerted Pericyclic Sigmatropic Rearrangements 359 12.9 Pericyclic Reactions Summary 361 APPENDIX (A COLLECTION OF IMPORTANT TOOLS) 364 General Bibliography 364 Abbreviations Used in This Text 365 Functional Group Glossary 366 Composite pKa Chart 369 Bond Strength Table 372 Generic Classification Guide 373 Flow Charts for the Classification of Electron Sources and Sinks 375 Pathway Summary 375 Trends Guide 380 Major Routes Summary 384 Major Decisions Guide 388 Thermodynamics and Kinetics 390 Generation of Alternate Paths, Reaction Cubes 390 Organic Structure Elucidation Strategies 393 Notes on Nomenclature 399 HINTS TO PROBLEMS FROM CHAPTERS 8, 9, AND 10 404 INDEX 407.
Record Nr. UNINA-9910463159703321
Scudder Paul H  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electron flow in organic chemistry [[electronic resource] ] : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Electron flow in organic chemistry [[electronic resource] ] : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Autore Scudder Paul H
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xv, 432 p. : ill
Disciplina 547/.128
Soggetto topico Charge exchange
Chemical bonds
Chemistry, Organic
ISBN 1118355016
9781118355015
Classificazione 437
547/.128
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1 BONDING AND ELECTRON DISTRIBUTION 1 1.1 The Decision-Based Approach To Organic Chemistry 2 1.2 Ionic And Covalent Bonding 6 1.3 Lewis Structures And Resonance Forms 8 1.4 Curved-Arrow Notation 11 1.5 Nomenclature And Abbreviations 16 1.6 An Orbital View Of Bonding (Supplemental) 18 1.7 The Shapes Of Molecules 21 1.8 Molecular Repulsions, Attractions, And Hydrogen Bonding 25 1.9 Conjugation, Vinylogy, Aromaticity 27 1.10 Summary 30 2 THE PROCESS OF BOND FORMATION 34 2.1 Energetics Control Knowledge 35 2.2 Orbital Overlap In Covalent Bond Formation 35 2.3 Orbital Interaction Diagrams 38 2.4 Polarizability And Hard And Soft Acid?Base Theory 41 2.5 Thermodynamics, Position Of Equilibrium 43 2.6 Kinetics, Rate Of Reaction 47 2.7 Solvent Stabilization Of Ions 53 2.8 Enzymatic Catalysis - Lessons From Biochemistry 55 2.9 Summary 57 3 PROTON TRANSFER AND THE PRINCIPLES OF STABILITY 61 3.1 Introduction To Proton Transfer 62 3.2 Ranking Of Acids And Bases, The pKa Chart 63 3.3 Structural Factors That Influence Acid Strength 66 3.4 Structural Factors That Influence Base Strength 70 3.5 Carbon Acids & Ranking Of Electron-Withdrawing Groups 71 3.6 Calculation Of Keq For Proton Transfer 76 3.7 Proton Transfer Mechanisms 77 3.8 Common Errors 81 3.9 Proton Transfer Product Predictions 82 3.10 Summary 83 4 IMPORTANT REACTION ARCHETYPES 88 4.1 Introduction To Reaction Archetypes 89 4.2 Nucleophilic Substitution At A Tetrahedral Center 89 4.3 Elimination Reactions Create Pi Bonds 110 4.4 Addition Reactions To Polarized Multiple Bonds 124 4.5 Nucleophilic Substitution At A Trigonal Planar Center 133 4.6 Electrophilic Substitution At A Trigonal Planar Center 140 4.7 Rearrangements To An Electrophilic Carbon 144 4.8 Reaction Archetype Summary 146 5 CLASSIFICATION OF ELECTRON SOURCES 151 5.1 Generalized Ranking Of Electron Sources 151 5.2 Nonbonding Electrons 152 5.3 Electron-Rich Sigma Bonds 154 5.4 Electron-Rich Pi Bonds 155 5.5 Simple Pi Bonds 156 5.6 Aromatic Rings 159 5.7 Summary Of Generic Electron Sources 160 6 CLASSIFICATION OF ELECTRON SINKS 166 6.1 Generalized Ranking Of Electron Sinks 166 6.2 Electron-Deficient Species 167 6.3 Weak Single Bonds 168 6.4 Polarized Multiple Bonds Without Leaving Groups 170 6.5 Polarized Multiple Bonds With Leaving Groups 172 6.6 Summary Of Generic Electron Sinks 173 7 THE ELECTRON FLOW PATHWAYS 179 7.1 The Dozen Most Common Pathways 180 7.2 Six Minor Pathways 191 7.3 Common Path Combinations 197 7.4 Variations On A Theme 201 7.5 Twelve Major Paths Summary And Crosschecks 208 8 INTERACTION OF ELECTRON SOURCES AND SINKS 213 8.1 Source And Sink Correlation Matrix 214 8.2 H-A Sinks Reacting With Common Sources 214 8.3 Y?L Sinks Reacting With Common Sources 218 8.4 sp3 C?L Sinks Reacting With Common Sources 222 8.5 C=Y Sinks Reacting With Common Sources 227 8.6 R?C?Y Sinks Reacting With Common Sources 233 8.7 C=C?Ewg Sinks Reacting With Common Sources 235 8.8 L?C=Y Sinks Reacting With Common Sources 237 8.9 Miscellaneous Reactions 240 8.10 Metal Ions As Electron Sinks 242 8.11 Rearrangements To An Electrophilic Center 243 8.12 Nu-L Reactions 244 8.13 Product Matrix Summary 248 9 DECISIONS, DECISIONS 251 9.1 Decision Point Recognition 252 9.2 Multiple Additions 252 9.3 Regiochemistry & Stereochemistry Of Enolate Formation 254 9.4 Ambident Nucleophiles 255 9.5 Substitution Vs. Elimination 258 9.6 Ambident Electrophiles 262 9.7 Intermolecular Vs. Intramolecular 263 9.8 To Migrate Or Not To An Electrophilic Center 264 9.8 Summary 266 10 CHOOSING THE MOST PROBABLE PATH 269 10.1 Problem-Solving In General 270 10.2 General Mechanistic Cross-Checks 274 10.3 The Path-Selection Process 276 10.4 Reaction Mechanism Strategies 278 10.5 Worked Mechanism Examples 279 10.6 Product Prediction Strategies 297 10.7 Worked Product Prediction Examples 297 10.8 Methods For Testing Mechanisms 313 10.9 Lessons from Biochemical Mechanisms 319 10.10 Summary 321 11 ONE-ELECTRON PROCESSES 326 11.1 Radical Structure And Stability 326 11.2 Radical Path Initiation 329 11.3 Major Paths For Radicals Reacting With Neutrals 330 11.4 Unimolecular Radical Paths 332 11.5 Termination Radical Paths 333 11.6 Radical Path Combinations 333 11.7 Approaches To Radical Mechanisms 336 11.8 Single Electron Transfer, S.E.T., And Charged Radicals 338 11.9 Dissolving Metal Reductions 339 11.10 Electron Transfer Initiated Processes 340 11.11 One-Electron Path Summary 340 12 QUALITATIVE M.O. THEORY & PERICYCLIC REACTIONS 343 12.1 Review Of Orbitals As Standing Waves 344 12.2 Molecular Orbital Theory For Linear Pi Systems 344 12.3 Molecular Orbital Theory For Cyclic Conjugated PI Systems 348 12.4 Perturbation Of The HOMO And LUMO 351 12.5 Delocalization Of Sigma Electrons (Supplemental) 352 12.6 Concerted Pericyclic Cycloaddition Reactions 353 12.7 Concerted Pericyclic Electrocyclic Reactions 357 12.8 Concerted Pericyclic Sigmatropic Rearrangements 359 12.9 Pericyclic Reactions Summary 361 APPENDIX (A COLLECTION OF IMPORTANT TOOLS) 364 General Bibliography 364 Abbreviations Used in This Text 365 Functional Group Glossary 366 Composite pKa Chart 369 Bond Strength Table 372 Generic Classification Guide 373 Flow Charts for the Classification of Electron Sources and Sinks 375 Pathway Summary 375 Trends Guide 380 Major Routes Summary 384 Major Decisions Guide 388 Thermodynamics and Kinetics 390 Generation of Alternate Paths, Reaction Cubes 390 Organic Structure Elucidation Strategies 393 Notes on Nomenclature 399 HINTS TO PROBLEMS FROM CHAPTERS 8, 9, AND 10 404 INDEX 407.
Record Nr. UNINA-9910795948903321
Scudder Paul H  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electron flow in organic chemistry : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Electron flow in organic chemistry : a decision-based guide to organic mechanisms / / Paul H. Scudder, New College of Florida
Autore Scudder Paul H
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xv, 432 p. : ill
Disciplina 547/.128
Soggetto topico Charge exchange
Chemical bonds
Chemistry, Organic
ISBN 1118355016
9781118355015
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: 1 BONDING AND ELECTRON DISTRIBUTION 1 1.1 The Decision-Based Approach To Organic Chemistry 2 1.2 Ionic And Covalent Bonding 6 1.3 Lewis Structures And Resonance Forms 8 1.4 Curved-Arrow Notation 11 1.5 Nomenclature And Abbreviations 16 1.6 An Orbital View Of Bonding (Supplemental) 18 1.7 The Shapes Of Molecules 21 1.8 Molecular Repulsions, Attractions, And Hydrogen Bonding 25 1.9 Conjugation, Vinylogy, Aromaticity 27 1.10 Summary 30 2 THE PROCESS OF BOND FORMATION 34 2.1 Energetics Control Knowledge 35 2.2 Orbital Overlap In Covalent Bond Formation 35 2.3 Orbital Interaction Diagrams 38 2.4 Polarizability And Hard And Soft Acid?Base Theory 41 2.5 Thermodynamics, Position Of Equilibrium 43 2.6 Kinetics, Rate Of Reaction 47 2.7 Solvent Stabilization Of Ions 53 2.8 Enzymatic Catalysis - Lessons From Biochemistry 55 2.9 Summary 57 3 PROTON TRANSFER AND THE PRINCIPLES OF STABILITY 61 3.1 Introduction To Proton Transfer 62 3.2 Ranking Of Acids And Bases, The pKa Chart 63 3.3 Structural Factors That Influence Acid Strength 66 3.4 Structural Factors That Influence Base Strength 70 3.5 Carbon Acids & Ranking Of Electron-Withdrawing Groups 71 3.6 Calculation Of Keq For Proton Transfer 76 3.7 Proton Transfer Mechanisms 77 3.8 Common Errors 81 3.9 Proton Transfer Product Predictions 82 3.10 Summary 83 4 IMPORTANT REACTION ARCHETYPES 88 4.1 Introduction To Reaction Archetypes 89 4.2 Nucleophilic Substitution At A Tetrahedral Center 89 4.3 Elimination Reactions Create Pi Bonds 110 4.4 Addition Reactions To Polarized Multiple Bonds 124 4.5 Nucleophilic Substitution At A Trigonal Planar Center 133 4.6 Electrophilic Substitution At A Trigonal Planar Center 140 4.7 Rearrangements To An Electrophilic Carbon 144 4.8 Reaction Archetype Summary 146 5 CLASSIFICATION OF ELECTRON SOURCES 151 5.1 Generalized Ranking Of Electron Sources 151 5.2 Nonbonding Electrons 152 5.3 Electron-Rich Sigma Bonds 154 5.4 Electron-Rich Pi Bonds 155 5.5 Simple Pi Bonds 156 5.6 Aromatic Rings 159 5.7 Summary Of Generic Electron Sources 160 6 CLASSIFICATION OF ELECTRON SINKS 166 6.1 Generalized Ranking Of Electron Sinks 166 6.2 Electron-Deficient Species 167 6.3 Weak Single Bonds 168 6.4 Polarized Multiple Bonds Without Leaving Groups 170 6.5 Polarized Multiple Bonds With Leaving Groups 172 6.6 Summary Of Generic Electron Sinks 173 7 THE ELECTRON FLOW PATHWAYS 179 7.1 The Dozen Most Common Pathways 180 7.2 Six Minor Pathways 191 7.3 Common Path Combinations 197 7.4 Variations On A Theme 201 7.5 Twelve Major Paths Summary And Crosschecks 208 8 INTERACTION OF ELECTRON SOURCES AND SINKS 213 8.1 Source And Sink Correlation Matrix 214 8.2 H-A Sinks Reacting With Common Sources 214 8.3 Y?L Sinks Reacting With Common Sources 218 8.4 sp3 C?L Sinks Reacting With Common Sources 222 8.5 C=Y Sinks Reacting With Common Sources 227 8.6 R?C?Y Sinks Reacting With Common Sources 233 8.7 C=C?Ewg Sinks Reacting With Common Sources 235 8.8 L?C=Y Sinks Reacting With Common Sources 237 8.9 Miscellaneous Reactions 240 8.10 Metal Ions As Electron Sinks 242 8.11 Rearrangements To An Electrophilic Center 243 8.12 Nu-L Reactions 244 8.13 Product Matrix Summary 248 9 DECISIONS, DECISIONS 251 9.1 Decision Point Recognition 252 9.2 Multiple Additions 252 9.3 Regiochemistry & Stereochemistry Of Enolate Formation 254 9.4 Ambident Nucleophiles 255 9.5 Substitution Vs. Elimination 258 9.6 Ambident Electrophiles 262 9.7 Intermolecular Vs. Intramolecular 263 9.8 To Migrate Or Not To An Electrophilic Center 264 9.8 Summary 266 10 CHOOSING THE MOST PROBABLE PATH 269 10.1 Problem-Solving In General 270 10.2 General Mechanistic Cross-Checks 274 10.3 The Path-Selection Process 276 10.4 Reaction Mechanism Strategies 278 10.5 Worked Mechanism Examples 279 10.6 Product Prediction Strategies 297 10.7 Worked Product Prediction Examples 297 10.8 Methods For Testing Mechanisms 313 10.9 Lessons from Biochemical Mechanisms 319 10.10 Summary 321 11 ONE-ELECTRON PROCESSES 326 11.1 Radical Structure And Stability 326 11.2 Radical Path Initiation 329 11.3 Major Paths For Radicals Reacting With Neutrals 330 11.4 Unimolecular Radical Paths 332 11.5 Termination Radical Paths 333 11.6 Radical Path Combinations 333 11.7 Approaches To Radical Mechanisms 336 11.8 Single Electron Transfer, S.E.T., And Charged Radicals 338 11.9 Dissolving Metal Reductions 339 11.10 Electron Transfer Initiated Processes 340 11.11 One-Electron Path Summary 340 12 QUALITATIVE M.O. THEORY & PERICYCLIC REACTIONS 343 12.1 Review Of Orbitals As Standing Waves 344 12.2 Molecular Orbital Theory For Linear Pi Systems 344 12.3 Molecular Orbital Theory For Cyclic Conjugated PI Systems 348 12.4 Perturbation Of The HOMO And LUMO 351 12.5 Delocalization Of Sigma Electrons (Supplemental) 352 12.6 Concerted Pericyclic Cycloaddition Reactions 353 12.7 Concerted Pericyclic Electrocyclic Reactions 357 12.8 Concerted Pericyclic Sigmatropic Rearrangements 359 12.9 Pericyclic Reactions Summary 361 APPENDIX (A COLLECTION OF IMPORTANT TOOLS) 364 General Bibliography 364 Abbreviations Used in This Text 365 Functional Group Glossary 366 Composite pKa Chart 369 Bond Strength Table 372 Generic Classification Guide 373 Flow Charts for the Classification of Electron Sources and Sinks 375 Pathway Summary 375 Trends Guide 380 Major Routes Summary 384 Major Decisions Guide 388 Thermodynamics and Kinetics 390 Generation of Alternate Paths, Reaction Cubes 390 Organic Structure Elucidation Strategies 393 Notes on Nomenclature 399 HINTS TO PROBLEMS FROM CHAPTERS 8, 9, AND 10 404 INDEX 407.
Record Nr. UNINA-9910813843203321
Scudder Paul H  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fragmentation : toward accurate calculations on complex molecular systems / / edited by Mark S. Gordon
Fragmentation : toward accurate calculations on complex molecular systems / / edited by Mark S. Gordon
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2017
Descrizione fisica 1 online resource (377 pages)
Disciplina 547/.128
Soggetto topico Fragmentation reactions
Electron configuration
ISBN 1-119-12926-5
1-119-12925-7
1-119-12927-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270896303321
Chichester, England : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fragmentation : toward accurate calculations on complex molecular systems / / edited by Mark S. Gordon
Fragmentation : toward accurate calculations on complex molecular systems / / edited by Mark S. Gordon
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2017
Descrizione fisica 1 online resource (377 pages)
Disciplina 547/.128
Soggetto topico Fragmentation reactions
Electron configuration
ISBN 1-119-12926-5
1-119-12925-7
1-119-12927-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910826991903321
Chichester, England : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orbital interaction theory of organic chemistry [[electronic resource] /] / by Arvi Rauk
Orbital interaction theory of organic chemistry [[electronic resource] /] / by Arvi Rauk
Autore Rauk Arvi <1942->
Edizione [2nd ed.]
Pubbl/distr/stampa New York, : Wiley-Interscience, 2001
Descrizione fisica 1 online resource (360 p.)
Disciplina 547.128
547/.128
Soggetto topico Molecular orbitals
Physical organic chemistry
Soggetto genere / forma Electronic books.
ISBN 1-280-26470-5
9786610264704
0-470-35106-3
0-471-46184-9
0-471-22041-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; PREFACE; 1 SYMMETRY AND STEREOCHEMISTRY; Purpose; Definition of a Group; Molecular Point Groups; Schoenflies Notation; Interrelations of Symmetry Elements; Type Classification; Isomerism and Measurements; Stereoisomerism of Molecules; Stereotopic Relationships of Groups in Molecules; Asymmetric Synthesis and Stereochemistry; NMR and Stereochemistry; Symmetry and Structural Parameters; Note on Hybridization; Symmetry and Orbitals; Atomic Orbitals; Molecular and Group Orbitals; In What Combination?; 2 MOLECULAR ORBITAL THEORY; Introduction; Electronic Schrödinger Equation (A.1)
Fock Equations (A.42)The Basis Set (STO-3G, 6-31G*, and All That); Orbital Energies and Orbitals; Representation of MOs; Total Energies and the Hartree-Fock Limit; Successes and Failures of Hartree-Fock Theory; Beyond Hartree-Fock; Density Functional Theory; Geometry Optimization; Normal Coordinates and Harmonic Frequency Analysis; Zero Point Vibrational Energies; 3 ORBITAL INTERACTION THEORY; Relationship to Hartree-Fock Equations; Hückel Approximation; Orbital Energies and Total Electronic Energy; Case Study of a Two-Orbital Interaction; Case 1: ε[sub(A)] = ε[sub(B)], S[sub(AB)] = 0
Case 2: ε[sub(A)] = ε[sub(B)], [sub(AB)] > 0, [sub(AB)] « 1Case 3: ε[sub(A)] > ε[sub(B)], S[sub(AB)] = 0; Case 4: ε[sub(A)] > ε[sub(B)], S[sup(AB)] > 0; Effect of Overlap; Energetic Effect of Overlap; Orbital Effect of Overlap; First Look at Bonding; Relationship to Perturbation Theory; Generalizations for Intermolecular Interactions; Energy and Charge Distribution Changes from Orbital Interaction; Four-Electron, Two-Orbital Interaction; Three-Electron, Two-Orbital Interaction; Two-Electron, Two-Orbital Interaction; One-Electron, Two-Orbital Interaction; Zero-Electron, Two-Orbital Interaction
Interactions between Molecules: Many Electrons, Many OrbitalsGeneral Principles Governing the Magnitude of h[sub(AB)] and S[sub(AB)]; Interactions of MOs; Electrostatic Effects; Group Orbitals; Zero-Coordinated Atoms; Monocoordinated Atoms; Dicoordinated Atoms; Tricoordinated Atoms; Tetracoordinated Atoms; Assumptions for Application of Qualitative MO Theory; Example: Carbonyl Group; Construction of Interaction Diagram; Interpretation of Interaction Diagram; Chemical Reactivity; Why Does It Work and When Might it Not?; 4 SIGMA BONDS AND ORBITAL INTERACTION THEORY
C-X σ Bonds: X = C, N, O, F and X = F, Cl, Br, Iσ Bonds: Homolytic versus Heterolytic Cleavage; Heterolytic Cleavage of σ Bonds Involving C or H; Homolytic Cleavage of σ Bonds Involving C or H; Homonuclear σ Bonds C-C, N-N, O-O, F-F, Cl-Cl, Br-Br, and I-I; Interactions of σ Bonds; σ Bonds as Electron Donors or Acceptors; σ Bonds as Electron Acceptors; As a σ Acceptor; As a π Acceptor; σ Bonds as Electron Donors; As a σ Donor; As a π Donor; Bonding in Cyclopropane; 5 SIMPLE HÜCKEL MOLECULAR ORBITAL THEORY; Simple Hückel Assumptions
Charge and Bond Order in SHMO Theory: (S[sub(AB)] = 0, One Orbital per Atom)
Record Nr. UNINA-9910143189503321
Rauk Arvi <1942->  
New York, : Wiley-Interscience, 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orbital interaction theory of organic chemistry [[electronic resource] /] / by Arvi Rauk
Orbital interaction theory of organic chemistry [[electronic resource] /] / by Arvi Rauk
Autore Rauk Arvi <1942->
Edizione [2nd ed.]
Pubbl/distr/stampa New York, : Wiley-Interscience, 2001
Descrizione fisica 1 online resource (360 p.)
Disciplina 547.128
547/.128
Soggetto topico Molecular orbitals
Physical organic chemistry
ISBN 1-280-26470-5
9786610264704
0-470-35106-3
0-471-46184-9
0-471-22041-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; PREFACE; 1 SYMMETRY AND STEREOCHEMISTRY; Purpose; Definition of a Group; Molecular Point Groups; Schoenflies Notation; Interrelations of Symmetry Elements; Type Classification; Isomerism and Measurements; Stereoisomerism of Molecules; Stereotopic Relationships of Groups in Molecules; Asymmetric Synthesis and Stereochemistry; NMR and Stereochemistry; Symmetry and Structural Parameters; Note on Hybridization; Symmetry and Orbitals; Atomic Orbitals; Molecular and Group Orbitals; In What Combination?; 2 MOLECULAR ORBITAL THEORY; Introduction; Electronic Schrödinger Equation (A.1)
Fock Equations (A.42)The Basis Set (STO-3G, 6-31G*, and All That); Orbital Energies and Orbitals; Representation of MOs; Total Energies and the Hartree-Fock Limit; Successes and Failures of Hartree-Fock Theory; Beyond Hartree-Fock; Density Functional Theory; Geometry Optimization; Normal Coordinates and Harmonic Frequency Analysis; Zero Point Vibrational Energies; 3 ORBITAL INTERACTION THEORY; Relationship to Hartree-Fock Equations; Hückel Approximation; Orbital Energies and Total Electronic Energy; Case Study of a Two-Orbital Interaction; Case 1: ε[sub(A)] = ε[sub(B)], S[sub(AB)] = 0
Case 2: ε[sub(A)] = ε[sub(B)], [sub(AB)] > 0, [sub(AB)] « 1Case 3: ε[sub(A)] > ε[sub(B)], S[sub(AB)] = 0; Case 4: ε[sub(A)] > ε[sub(B)], S[sup(AB)] > 0; Effect of Overlap; Energetic Effect of Overlap; Orbital Effect of Overlap; First Look at Bonding; Relationship to Perturbation Theory; Generalizations for Intermolecular Interactions; Energy and Charge Distribution Changes from Orbital Interaction; Four-Electron, Two-Orbital Interaction; Three-Electron, Two-Orbital Interaction; Two-Electron, Two-Orbital Interaction; One-Electron, Two-Orbital Interaction; Zero-Electron, Two-Orbital Interaction
Interactions between Molecules: Many Electrons, Many OrbitalsGeneral Principles Governing the Magnitude of h[sub(AB)] and S[sub(AB)]; Interactions of MOs; Electrostatic Effects; Group Orbitals; Zero-Coordinated Atoms; Monocoordinated Atoms; Dicoordinated Atoms; Tricoordinated Atoms; Tetracoordinated Atoms; Assumptions for Application of Qualitative MO Theory; Example: Carbonyl Group; Construction of Interaction Diagram; Interpretation of Interaction Diagram; Chemical Reactivity; Why Does It Work and When Might it Not?; 4 SIGMA BONDS AND ORBITAL INTERACTION THEORY
C-X σ Bonds: X = C, N, O, F and X = F, Cl, Br, Iσ Bonds: Homolytic versus Heterolytic Cleavage; Heterolytic Cleavage of σ Bonds Involving C or H; Homolytic Cleavage of σ Bonds Involving C or H; Homonuclear σ Bonds C-C, N-N, O-O, F-F, Cl-Cl, Br-Br, and I-I; Interactions of σ Bonds; σ Bonds as Electron Donors or Acceptors; σ Bonds as Electron Acceptors; As a σ Acceptor; As a π Acceptor; σ Bonds as Electron Donors; As a σ Donor; As a π Donor; Bonding in Cyclopropane; 5 SIMPLE HÜCKEL MOLECULAR ORBITAL THEORY; Simple Hückel Assumptions
Charge and Bond Order in SHMO Theory: (S[sub(AB)] = 0, One Orbital per Atom)
Record Nr. UNINA-9910831075703321
Rauk Arvi <1942->  
New York, : Wiley-Interscience, 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Orbital interaction theory of organic chemistry / / by Arvi Rauk
Orbital interaction theory of organic chemistry / / by Arvi Rauk
Autore Rauk Arvi <1942->
Edizione [2nd ed.]
Pubbl/distr/stampa New York, : Wiley-Interscience, 2001
Descrizione fisica 1 online resource (360 p.)
Disciplina 547/.128
Soggetto topico Molecular orbitals
Physical organic chemistry
ISBN 1-280-26470-5
9786610264704
0-470-35106-3
0-471-46184-9
0-471-22041-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; PREFACE; 1 SYMMETRY AND STEREOCHEMISTRY; Purpose; Definition of a Group; Molecular Point Groups; Schoenflies Notation; Interrelations of Symmetry Elements; Type Classification; Isomerism and Measurements; Stereoisomerism of Molecules; Stereotopic Relationships of Groups in Molecules; Asymmetric Synthesis and Stereochemistry; NMR and Stereochemistry; Symmetry and Structural Parameters; Note on Hybridization; Symmetry and Orbitals; Atomic Orbitals; Molecular and Group Orbitals; In What Combination?; 2 MOLECULAR ORBITAL THEORY; Introduction; Electronic Schrödinger Equation (A.1)
Fock Equations (A.42)The Basis Set (STO-3G, 6-31G*, and All That); Orbital Energies and Orbitals; Representation of MOs; Total Energies and the Hartree-Fock Limit; Successes and Failures of Hartree-Fock Theory; Beyond Hartree-Fock; Density Functional Theory; Geometry Optimization; Normal Coordinates and Harmonic Frequency Analysis; Zero Point Vibrational Energies; 3 ORBITAL INTERACTION THEORY; Relationship to Hartree-Fock Equations; Hückel Approximation; Orbital Energies and Total Electronic Energy; Case Study of a Two-Orbital Interaction; Case 1: ε[sub(A)] = ε[sub(B)], S[sub(AB)] = 0
Case 2: ε[sub(A)] = ε[sub(B)], [sub(AB)] > 0, [sub(AB)] « 1Case 3: ε[sub(A)] > ε[sub(B)], S[sub(AB)] = 0; Case 4: ε[sub(A)] > ε[sub(B)], S[sup(AB)] > 0; Effect of Overlap; Energetic Effect of Overlap; Orbital Effect of Overlap; First Look at Bonding; Relationship to Perturbation Theory; Generalizations for Intermolecular Interactions; Energy and Charge Distribution Changes from Orbital Interaction; Four-Electron, Two-Orbital Interaction; Three-Electron, Two-Orbital Interaction; Two-Electron, Two-Orbital Interaction; One-Electron, Two-Orbital Interaction; Zero-Electron, Two-Orbital Interaction
Interactions between Molecules: Many Electrons, Many OrbitalsGeneral Principles Governing the Magnitude of h[sub(AB)] and S[sub(AB)]; Interactions of MOs; Electrostatic Effects; Group Orbitals; Zero-Coordinated Atoms; Monocoordinated Atoms; Dicoordinated Atoms; Tricoordinated Atoms; Tetracoordinated Atoms; Assumptions for Application of Qualitative MO Theory; Example: Carbonyl Group; Construction of Interaction Diagram; Interpretation of Interaction Diagram; Chemical Reactivity; Why Does It Work and When Might it Not?; 4 SIGMA BONDS AND ORBITAL INTERACTION THEORY
C-X σ Bonds: X = C, N, O, F and X = F, Cl, Br, Iσ Bonds: Homolytic versus Heterolytic Cleavage; Heterolytic Cleavage of σ Bonds Involving C or H; Homolytic Cleavage of σ Bonds Involving C or H; Homonuclear σ Bonds C-C, N-N, O-O, F-F, Cl-Cl, Br-Br, and I-I; Interactions of σ Bonds; σ Bonds as Electron Donors or Acceptors; σ Bonds as Electron Acceptors; As a σ Acceptor; As a π Acceptor; σ Bonds as Electron Donors; As a σ Donor; As a π Donor; Bonding in Cyclopropane; 5 SIMPLE HÜCKEL MOLECULAR ORBITAL THEORY; Simple Hückel Assumptions
Charge and Bond Order in SHMO Theory: (S[sub(AB)] = 0, One Orbital per Atom)
Record Nr. UNINA-9910877714603321
Rauk Arvi <1942->  
New York, : Wiley-Interscience, 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui