top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemometrics : methods, applications, and new research / / Aderval S. Luna, editor
Chemometrics : methods, applications, and new research / / Aderval S. Luna, editor
Pubbl/distr/stampa New York : , : Nova Publishers, , 2017
Descrizione fisica 1 online resource (247 pages) : illustrations (some color)
Disciplina 543.01/5195
Collana Analytical Chemistry and Microchemistry
Soggetto topico Chemometrics
Chemistry - Mathematics
Analytical chemistry
ISBN 1-5361-0527-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910155231203321
New York : , : Nova Publishers, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemometrics for pattern recognition / / Richard Brereton
Chemometrics for pattern recognition / / Richard Brereton
Autore Brereton Richard G
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : Wiley, 2009
Descrizione fisica 1 online resource (524 p.)
Disciplina 543.01/5195
Soggetto topico Chemometrics
Pattern perception
ISBN 1-282-18631-0
9786612186318
0-470-74646-7
0-470-74647-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemometrics for Pattern Recognition; Contents; Acknowledgements; Preface; 1 Introduction; 1.1 Past, Present and Future; 1.2 About this Book; Bibliography; 2 Case Studies; 2.1 Introduction; 2.2 Datasets, Matrices and Vectors; 2.3 Case Study 1: Forensic Analysis of Banknotes; 2.4 Case Study 2: Near Infrared Spectroscopic Analysis of Food; 2.5 Case Study 3: Thermal Analysis of Polymers; 2.6 Case Study 4: Environmental Pollution using Headspace Mass Spectrometry; 2.7 Case Study 5: Human Sweat Analysed by Gas Chromatography Mass Spectrometry
2.8 Case Study 6: Liquid Chromatography Mass Spectrometry of Pharmaceutical Tablets2.9 Case Study 7: Atomic Spectroscopy for the Study of Hypertension; 2.10 Case Study 8: Metabolic Profiling of Mouse Urine by Gas Chromatography of Urine Extracts; 2.11 Case Study 9: Nuclear Magnetic Resonance Spectroscopy for Salival Analysis of the Effect of Mouthwash; 2.12 Case Study 10: Simulations; 2.13 Case Study 11: Null Dataset; 2.14 Case Study 12: GCMS and Microbiology of Mouse Scent Marks; Bibliography; 3 Exploratory Data Analysis; 3.1 Introduction; 3.2 Principal Components Analysis; 3.2.1 Background
3.2.2 Scores and Loadings3.2.3 Eigenvalues; 3.2.4 PCA Algorithm; 3.2.5 Graphical Representation; 3.3 Dissimilarity Indices, Principal Co-ordinates Analysis and Ranking; 3.3.1 Dissimilarity; 3.3.2 Principal Co-ordinates Analysis; 3.3.3 Ranking; 3.4 Self Organizing Maps; 3.4.1 Background; 3.4.2 SOM Algorithm; 3.4.3 Initialization; 3.4.4 Training; 3.4.5 Map Quality; 3.4.6 Visualization; Bibliography; 4 Preprocessing; 4.1 Introduction; 4.2 Data Scaling; 4.2.1 Transforming Individual Elements; 4.2.2 Row Scaling; 4.2.3 Column Scaling; 4.3 Multivariate Methods of Data Reduction
4.3.1 Largest Principal Components4.3.2 Discriminatory Principal Components; 4.3.3 Partial Least Squares Discriminatory Analysis Scores; 4.4 Strategies for Data Preprocessing; 4.4.1 Flow Charts; 4.4.2 Level 1; 4.4.3 Level 2; 4.4.4 Level 3; 4.4.5 Level 4; Bibliography; 5 Two Class Classifiers; 5.1 Introduction; 5.1.1 Two Class Classifiers; 5.1.2 Preprocessing; 5.1.3 Notation; 5.1.4 Autoprediction and Class Boundaries; 5.2 Euclidean Distance to Centroids; 5.3 Linear Discriminant Analysis; 5.4 Quadratic Discriminant Analysis; 5.5 Partial Least Squares Discriminant Analysis; 5.5.1 PLS Method
5.5.2 PLS Algorithm5.5.3 PLS-DA; 5.6 Learning Vector Quantization; 5.6.1 Voronoi Tesselation and Codebooks; 5.6.2 LVQ1; 5.6.3 LVQ3; 5.6.4 LVQ Illustration and Summary of Parameters; 5.7 Support Vector Machines; 5.7.1 Linear Learning Machines; 5.7.2 Kernels; 5.7.3 Controlling Complexity and Soft Margin SVMs; 5.7.4 SVM Parameters; Bibliography; 6 One Class Classifiers; 6.1 Introduction; 6.2 Distance Based Classifiers; 6.3 PC Based Models and SIMCA; 6.4 Indicators of Significance; 6.4.1 Gaussian Density Estimators and Chi-Squared; 6.4.2 Hotelling's T2; 6.4.3 D-Statistic
6.4.4 Q-Statistic or Squared Prediction Error
Record Nr. UNINA-9910139922803321
Brereton Richard G  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui