4 th EPS liquid state conference on the hydrodynamics of dispersed media : Arcachon - France, 24-27 mai 1988 : abstracts / editors A.M. Cazabat...[et al.]
| 4 th EPS liquid state conference on the hydrodynamics of dispersed media : Arcachon - France, 24-27 mai 1988 : abstracts / editors A.M. Cazabat...[et al.] |
| Autore | EPS liquid state conference on the hydrodynamics : <4.; : <1988 |
| Pubbl/distr/stampa | s.l. : European physical society, copyr. 1987 |
| Descrizione fisica | 162 p. : ill. ; 21 cm |
| Disciplina | 532.5 |
| Collana | Europhysics conference abstracts |
| Soggetto topico | Idrodinamica - Congressi - 1988 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990003267290203316 |
EPS liquid state conference on the hydrodynamics : <4.; : <1988
|
||
| s.l. : European physical society, copyr. 1987 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
An introduction to hydrodynamics and water waves / Bernard Le Mehaute
| An introduction to hydrodynamics and water waves / Bernard Le Mehaute |
| Autore | Le Méhauté, Bernard |
| Pubbl/distr/stampa | New York [etc.] : Springer-Verlag, 1976 |
| Descrizione fisica | VIII, 315 p., 1 c. di tav. ripieg. ; 24x23 cm. |
| Disciplina | 532.5 |
| Soggetto non controllato | Idrodinamica |
| ISBN | 3-540-07232-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNIPARTHENOPE-000026503 |
Le Méhauté, Bernard
|
||
| New York [etc.] : Springer-Verlag, 1976 | ||
| Lo trovi qui: Univ. Parthenope | ||
| ||
Applications of group-theoretical methods in hydrodynamics / by V. K. Andreev ... [et al.]
| Applications of group-theoretical methods in hydrodynamics / by V. K. Andreev ... [et al.] |
| Pubbl/distr/stampa | Dordrecht [Netherlands] ; Boston : Kluwer Academic, c1998 |
| Descrizione fisica | xii, 396 p. ; 25 cm |
| Disciplina | 532.5 |
| Altri autori (Persone) | Andreev, Viktor Konstantinovichauthor |
| Collana | Mathematics and its applications ; 450 |
| Soggetto topico |
Hydrodynamics - Mathematics
Group theory Differential equations - Numerical solutions |
| ISBN | 9789048150830 |
| Classificazione |
AMS 35-02
AMS 35Q30 AMS 35Q35 AMS 58J70 AMS 76-02 LC QC151.A66 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991002040139707536 |
| Dordrecht [Netherlands] ; Boston : Kluwer Academic, c1998 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Complex dynamics of glass-forming liquids [[electronic resource] ] : a mode-coupling theory / / Wolfgang Götze
| Complex dynamics of glass-forming liquids [[electronic resource] ] : a mode-coupling theory / / Wolfgang Götze |
| Autore | Götze Wolfgang <1937-> |
| Pubbl/distr/stampa | Oxford ; ; New York, : Oxford University Press, 2009 |
| Descrizione fisica | 1 online resource (654 p.) |
| Disciplina |
532.5
532/.0533 |
| Collana | International series of monographs on physics |
| Soggetto topico |
Viscosity
Mode-coupling theory Equations of motion Complex fluids Molecular dynamics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
0-19-965614-2
9786611975722 1-281-97572-9 0-19-155304-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 Glassy dynamics of liquids-facets of the phenomenon; 1.1 Stretching of the dynamics; 1.2 Power-law relaxation; 1.3 Superposition principles; 1.4 Two-step relaxation through a plateau; 1.5 The cage effect; 1.6 Crossover phenomena; 1.7 Hard-sphere systems: the paradigms; 1.8 Hard-sphere systems with short-range attraction; 2 Correlation functions; 2.1 The evolution of dynamical variables; 2.2 Correlation-function description of the dynamics; 2.3 Spectral representations; 2.4 Memory-kernel descriptions of correlators; 2.4.1 Zwanzig-Mori equations
2.4.2 Models for correlation functions2.5 Linear-response theory; 2.6 The arrested parts of correlation functions; 3 Elements of liquid dynamics; 3.1 Preliminaries; 3.1.1 Homogeneous isotropic systems without chirality; 3.1.2 Densities and density fluctuations; 3.2 Tagged-particle dynamics; 3.2.1 Basic concepts and general equations; 3.2.2 Tagged-particle diffusion; 3.2.3 The friction coefficient; 3.2.4 The cage effect and glassy-dynamics precursors of the velocity correlations; 3.3 Densities and currents in simple liquids; 3.3.1 Definitions and general equations 3.3.2 Transverse-current diffusion3.3.3 The generalized-hydrodynamics description of transverse-current correlations; 3.3.4 Visco-elastic features and glassy-dynamics precursors of the transverse-current correlators; 3.3.5 Representations of the density correlators in terms of relaxation kernels; 3.3.6 Sound waves and heat diffusion; 3.3.7 Visco-elastic features and glassy-dynamics precursors of the density-fluctuation correlators; 4 Foundations of the mode-coupling theory for the evolution of glassy dynamics in liquids; 4.1 Self-consistent-current-relaxation approaches 4.1.1 The factorization ansatz4.1.2 Self-consistency equations for density correlators; 4.2 A mode-coupling theory; 4.2.1 Equations of motion and fixed-point equations; 4.2.2 Mode-coupling-theory models; 4.2.3 The basic version of microscopic mode-coupling theories; 4.2.4 An elementary mode-coupling-theory model; 4.3 Glass-transition singularities; 4.3.1 Regular and critical states; 4.3.2 Examples for bifurcation diagrams; 4.3.3 Classification of the critical states; 4.3.4 Correlation arrest near A[sub(2)] singularities; 4.3.5 Density-fluctuation arrest in hard-sphere-like systems 4.3.6 Arrest in systems with short-ranged-attraction4.4 Dynamics near glass-transition singularities; 4.4.1 Relaxation through plateaus; 4.4.2 Below-plateau relaxation; 4.4.3 Structure and structure relaxation; 4.4.4 Descriptions of some glassy-dynamics data; 5 Extensions of the mode-coupling theory for the evolution of glassy dynamics of liquids; 5.1 Extensions of the MCT for simple systems; 5.1.1 MCT equations for the glassy shear dynamics; 5.1.2 Glassy-relaxation features of shear correlations; 5.1.3 MCT equations for the tagged-particle dynamics 5.1.4 Idealized transitions from diffusion to localization |
| Record Nr. | UNINA-9910465116403321 |
Götze Wolfgang <1937->
|
||
| Oxford ; ; New York, : Oxford University Press, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computer simulation of dynamics phenomena / M. L. Wilkins
| Computer simulation of dynamics phenomena / M. L. Wilkins |
| Autore | Wilkins, Mark L. <1922- > |
| Pubbl/distr/stampa | Berlin : Springer-Verlag, 1999 |
| Descrizione fisica | XVI, 246 p. 130 fig. ; 24 cm |
| Disciplina | 532.5 |
| Collana | Scietific computation |
| ISBN | 3-540-63070-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990000865180403321 |
Wilkins, Mark L. <1922- >
|
||
| Berlin : Springer-Verlag, 1999 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Corso di oleodinamica / A. Bucciarelli, H. Speich
| Corso di oleodinamica / A. Bucciarelli, H. Speich |
| Autore | Bucciarelli, Aurelio |
| Edizione | [2. ed. riveduta ed aggiornata] |
| Pubbl/distr/stampa | Milano, : Tecniche nuove, stampa1970 |
| Descrizione fisica | 123 p. : ill. ; 30 cm + 1 errata corrige |
| Disciplina |
532
532.5 |
| Altri autori (Persone) | Speich, Hanno |
| Soggetto topico | Oleodinamica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISANNIO-SBL0373936 |
Bucciarelli, Aurelio
|
||
| Milano, : Tecniche nuove, stampa1970 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Etudes sur les forces moléculaires dans les liquides en miuvement et application à l'hydrodynamique / Kleitz
| Etudes sur les forces moléculaires dans les liquides en miuvement et application à l'hydrodynamique / Kleitz |
| Pubbl/distr/stampa | Paris : Dunod, 1873 |
| Descrizione fisica | XV, 240 p. : ill. ; 33 cm |
| Disciplina | 532.5 |
| Soggetto non controllato | Idrodinamica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNINA-990000087190403321 |
| Paris : Dunod, 1873 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flow-induced vibration handbook for nuclear and process equipment / / edited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher
| Flow-induced vibration handbook for nuclear and process equipment / / edited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
| Descrizione fisica | 1 online resource (494 pages) |
| Disciplina | 532.5 |
| Collana | Wiley-ASME Press Ser. |
| Soggetto topico |
Nuclear power plants - Piping - Vibration
Chemical plants - Piping - Vibration Pressure vessels - Vibration Pressure vessels - Fluid dynamics Piping - Fluid dynamics Hydrodynamics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-81097-3
1-119-81099-X 1-119-81098-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Contributors -- Chapter 1 Introduction and Typical Vibration Problems -- 1.1 Introduction -- 1.2 Some Typical Component Failures -- 1.3 Dynamics of Process System Components -- 1.3.1 Multi-Span Heat Exchanger Tubes -- 1.3.2 Other Nuclear and Process Components -- Notes -- References -- Chapter 2 Flow-Induced Vibration of Nuclear and Process Equipment: An Overview -- 2.1 Introduction -- 2.1.1 Flow-Induced Vibration Overview -- 2.1.2 Scope of a Vibration Analysis -- 2.2 Flow Calculations -- 2.2.1 Flow Parameter Definition -- 2.2.2 Simple Flow Path Approach -- 2.2.3 Comprehensive 3-D Approach -- 2.2.4 Two-Phase Flow Regime -- 2.3 Dynamic Parameters -- 2.3.1 Hydrodynamic Mass -- 2.3.2 Damping -- 2.4 Vibration Excitation Mechanisms -- 2.4.1 Fluidelastic Instability -- 2.4.2 Random Turbulence Excitation -- 2.4.3 Periodic Wake Shedding -- 2.4.4 Acoustic Resonance -- 2.4.5 Susceptibility to Resonance -- 2.5 Vibration Response Prediction -- 2.5.1 Fluidelastic Instability -- 2.5.2 Random Turbulence Excitation -- 2.5.3 Periodic Wake Shedding -- 2.5.4 Acoustic Resonance -- 2.5.5 Example of Vibration Analysis -- 2.6 Fretting-Wear Damage Considerations -- 2.6.1 Fretting-Wear Assessment -- 2.6.2 Fretting-Wear Coefficients -- 2.6.3 Wear Depth Calculations -- 2.7 Acceptance Criteria -- 2.7.1 Fluidelastic Instability -- 2.7.2 Random Turbulence Excitation -- 2.7.3 Periodic Wake Shedding -- 2.7.4 Tube-to-Support Clearance -- 2.7.5 Acoustic Resonance -- 2.7.6 Two-Phase Flow Regimes -- Note -- References -- Chapter 3 Flow Considerations -- 3.1 Definition of the Problem -- 3.2 Nature of the Flow -- 3.2.1 Introduction -- 3.2.2 Flow Parameter Definitions -- 3.2.3 Vertical Bubbly Flow -- 3.2.4 Flow Around Bluff Bodies -- 3.2.5 Shell-Side Flow in Tube Bundles.
3.2.6 Air-Water versus Steam-Water Flows -- 3.2.7 Effect of Nucleate Boiling Noise -- 3.2.8 Summary -- 3.3 Simplified Flow Calculation -- 3.4 Multi-Dimensional Thermalhydraulic Analysis -- 3.4.1 Steam Generator -- 3.4.2 Other Heat Exchangers -- Acronyms -- Nomenclature -- Subscripts -- Notes -- References -- Chapter 4 Hydrodynamic Mass, Natural Frequencies and Mode Shapes -- 4.1 Introduction -- 4.2 Total Tube Mass -- 4.2.1 Single-Phase Flow -- 4.2.2 Two-Phase Flow -- 4.3 Free Vibration Analysis of Straight Tubes -- 4.3.1 Free Vibration Analysis of a Single-Span Tube -- 4.3.2 Free Vibration Analysis of a Two-Span Tube -- 4.3.3 Free Vibration Analysis of a Multi-Span Tube -- 4.4 Basic Theory for Curved Tubes -- 4.4.1 Theory of Curved Tube In-Plane Free Vibration -- 4.4.2 Theory of Curved Tube Out-of-Plane Free Vibration -- 4.5 Free Vibration Analysis of U-Tubes -- 4.5.1 Setting Boundary Conditions for the In-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.2 Development of the In-Plane Eigenvalue Matrix for a Symmetric U-Tube -- 4.5.3 Generation of Eigenvalue Matrices for Out-of-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.4 Free Vibration Analysis of U-Tubes Which Do Not Possess Geometric Similarity -- 4.6 Concluding Remarks -- Nomenclature -- References -- Chapter 5 Damping of Cylindrical Structures in Single-Phase Fluids -- 5.1 Introduction -- 5.2 Energy Dissipation Mechanisms -- 5.3 Approach -- 5.4 Damping in Gases -- 5.4.1 Effect of Number of Supports -- 5.4.2 Effect of Frequency -- 5.4.3 Vibration Amplitude -- 5.4.4 Effect of Diameter or Mass -- 5.4.5 Effect of Side Loads -- 5.4.6 Effect of Higher Modes -- 5.4.7 Effect of Support Thickness -- 5.4.8 Effect of Clearance -- 5.5 Design Recommendations for Damping in Gases -- 5.6 Damping in Liquids -- 5.6.1 Tube-to-Fluid Viscous Damping. 5.6.2 Damping at the Supports -- 5.6.3 Squeeze-Film Damping -- 5.6.4 Damping due to Sliding -- 5.6.5 Semi-Empirical Formulation of Tube-Support Damping -- 5.7 Discussion -- 5.8 Design Recommendations for Damping in Liquids -- 5.8.1 Simple Criterion Based on Available Data -- 5.8.2 Criterion Based on the Formulation of Energy Dissipation Mechanisms -- Nomenclature -- Subscript -- References -- Chapter 6 Damping of Cylindrical Structures in Two-Phase Flow -- 6.1 Introduction -- 6.2 Sources of Information -- 6.3 Approach -- 6.4 Two-Phase Flow Conditions -- 6.4.1 Definition of Two-Phase Flow Parameters -- 6.4.2 Flow Regime -- 6.5 Parametric Dependence Study -- 6.5.1 Effect of Flow Velocity -- 6.5.2 Effect of Void Fraction -- 6.5.3 Effect of Confinement -- 6.5.4 Effect of Tube Mass -- 6.5.5 Effect of Tube Vibration Frequency -- 6.5.6 Effect of Tube Bundle Configuration -- 6.5.7 Effect of Motion of Surrounding Tubes -- 6.5.8 Effect of Flow Regime -- 6.5.9 Effect of Fluid Properties -- 6.6 Development of Design Guidelines -- 6.7 Discussion -- 6.7.1 Damping Formulation -- 6.7.2 Two-Phase Damping Mechanisms -- 6.8 Summary Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 7 Fluidelastic Instability of Tube Bundles in Single-Phase Flow -- 7.1 Introduction -- 7.2 Nature of Fluidelastic Instability -- 7.3 Fluidelastic Instability: Analytical Modelling -- 7.4 Fluidelastic Instability: Semi-Empirical Models -- 7.5 Approach -- 7.6 Important Definitions -- 7.6.1 Tube Bundle Configurations -- 7.6.2 Flow Velocity Definition -- 7.6.3 Critical Velocity for Fluidelastic Instability -- 7.6.4 Damping -- 7.6.5 Tube Frequency -- 7.7 Parametric Dependence Study -- 7.7.1 Flexible versus Rigid Tube Bundles -- 7.7.2 Damping -- 7.7.3 Pitch-to-Diameter Ratio, P/D -- 7.7.4 Fluidelastic Instability Formulation -- 7.8 Development of Design Guidelines. 7.9 In-Plane Fluidelastic Instability -- 7.10 Axial Flow Fluidelastic Instability -- 7.11 Concluding Remarks -- Nomenclature -- Subscript -- References -- Chapter 8 Fluidelastic Instability of Tube Bundles in Two-Phase Flow -- 8.1 Introduction -- 8.2 Previous Research -- 8.2.1 Flow-Induced Vibration in Two-Phase Axial Flow -- 8.2.2 Flow-Induced Vibration in Two-Phase Cross Flow -- 8.2.3 Damping Studies -- 8.3 Fluidelastic Instability Mechanisms in Two-Phase Cross Flow -- 8.4 Fluidelastic Instability Experiments in Air-Water Cross Flow -- 8.4.1 Initial Experiments in Air-Water Cross Flow -- 8.4.2 Behavior in Intermittent Flow -- 8.4.3 Effect of Bundle Geometry -- 8.4.4 Flexible versus Rigid Tube Bundle Behavior -- 8.4.5 Hydrodynamic Coupling -- 8.5 Analysis of the Fluidelastic Instability Results -- 8.5.1 Defining Critical Mass Flux and Instability Constant -- 8.5.2 Comparison with Results of Other Researchers -- 8.5.3 Summary of Air-Water Tests -- 8.6 Tube Bundle Vibration in Two-Phase Freon Cross Flow -- 8.6.1 Introductory Remarks -- 8.6.2 Background Information -- 8.6.3 Experiments in Freon Cross Flow -- 8.7 Freon Test Results and Discussion -- 8.7.1 Results and Analysis -- 8.7.2 Proposed Explanations -- 8.7.3 Concluding Remarks -- 8.7.4 Summary Findings -- 8.8 Fluidelastic Instability of U-Tubes in Air-Water Cross Flow -- 8.8.1 Experimental Considerations -- 8.8.2 U-Tube Dynamics -- 8.8.3 Vibration Response -- 8.8.4 Out-of-Plane Vibration -- 8.8.5 In-Plane Vibration -- 8.9 In-Plane (In-Flow) Fluidelastic Instability -- 8.9.1 In-Flow Experiments in a Wind Tunnel -- 8.9.2 In-Flow Experiments in Two-Phase Cross Flow -- 8.9.3 Single-Tube Fluidelastic Instability Results -- 8.9.4 Single Flexible Column and Central Cluster Fluidelastic Instability Results -- 8.9.5 Two Partially Flexible Columns. 8.9.6 In-Flow Fluidelastic Instability Results and Discussion. -- 8.10 Design Recommendations -- 8.10.1 Design Guidelines -- 8.10.2 Fluidelastic Instability with Intermittent Flow -- 8.11 Fluidelastic Instability in Two-Phase Axial Flow -- 8.12 Concluding Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 9 Random Turbulence Excitation in Single-Phase Flow -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Equation of Motion -- 9.2.2 Derivation of the Mean-Square Response -- 9.2.3 Simplification of Tube Vibration Response -- 9.2.4 Integration of the Transfer Function -- 9.2.5 Use of the Simplified Expression in Developing Design Guidelines -- 9.3 Literature Search -- 9.4 Approach Taken -- 9.5 Discussion of Parameters -- 9.5.1 Directional Dependence (Lift versus Drag) -- 9.5.2 Bundle Orientation -- 9.5.3 Pitch-to-Diameter Ratio (P/D) -- 9.5.4 Upstream Turbulence -- 9.5.5 Fluid Density (Gas versus Liquid) -- 9.5.6 Summary -- 9.6 Design Guidelines -- 9.7 Random Turbulence Excitation in Axial Flow -- Nomenclature -- References -- Chapter 10 Random Turbulence Excitation Forces Due to Two-Phase Flow -- 10.1 Introduction -- 10.2 Background -- 10.3 Approach Taken to Data Reduction -- 10.4 Scaling Factor for Frequency -- 10.4.1 Definition of a Velocity Scale -- 10.4.2 Definition of a Length Scale -- 10.4.3 Dimensionless Reduced Frequency -- 10.4.4 Effect of Frequency -- 10.5 Scaling Factor for Power Spectral Density -- 10.5.1 Effect of Flow Regime -- 10.5.2 Effect of Void Fraction -- 10.5.3 Effect of Mass Flux -- 10.5.4 Effect of Tube Diameter -- 10.5.5 Effect of Correlation Length -- 10.5.6 Effect of Bundle and Tube-Support Geometry -- 10.5.7 Effect of Two-Phase Mixture -- 10.5.8 Effect of Nucleate Boiling -- 10.6 Dimensionless Power Spectral Density -- 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra. 10.7.1 Bubbly Flow. |
| Record Nr. | UNINA-9910555092203321 |
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flow-induced vibration handbook for nuclear and process equipment / / edited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher
| Flow-induced vibration handbook for nuclear and process equipment / / edited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
| Descrizione fisica | 1 online resource (494 pages) |
| Disciplina | 532.5 |
| Collana | Wiley-ASME Press |
| Soggetto topico |
Nuclear power plants - Piping - Vibration
Chemical plants - Piping - Vibration Pressure vessels - Vibration Pressure vessels - Fluid dynamics Piping - Fluid dynamics Hydrodynamics |
| ISBN |
1-5231-5515-9
1-119-81097-3 1-119-81099-X 1-119-81098-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Contributors -- Chapter 1 Introduction and Typical Vibration Problems -- 1.1 Introduction -- 1.2 Some Typical Component Failures -- 1.3 Dynamics of Process System Components -- 1.3.1 Multi-Span Heat Exchanger Tubes -- 1.3.2 Other Nuclear and Process Components -- Notes -- References -- Chapter 2 Flow-Induced Vibration of Nuclear and Process Equipment: An Overview -- 2.1 Introduction -- 2.1.1 Flow-Induced Vibration Overview -- 2.1.2 Scope of a Vibration Analysis -- 2.2 Flow Calculations -- 2.2.1 Flow Parameter Definition -- 2.2.2 Simple Flow Path Approach -- 2.2.3 Comprehensive 3-D Approach -- 2.2.4 Two-Phase Flow Regime -- 2.3 Dynamic Parameters -- 2.3.1 Hydrodynamic Mass -- 2.3.2 Damping -- 2.4 Vibration Excitation Mechanisms -- 2.4.1 Fluidelastic Instability -- 2.4.2 Random Turbulence Excitation -- 2.4.3 Periodic Wake Shedding -- 2.4.4 Acoustic Resonance -- 2.4.5 Susceptibility to Resonance -- 2.5 Vibration Response Prediction -- 2.5.1 Fluidelastic Instability -- 2.5.2 Random Turbulence Excitation -- 2.5.3 Periodic Wake Shedding -- 2.5.4 Acoustic Resonance -- 2.5.5 Example of Vibration Analysis -- 2.6 Fretting-Wear Damage Considerations -- 2.6.1 Fretting-Wear Assessment -- 2.6.2 Fretting-Wear Coefficients -- 2.6.3 Wear Depth Calculations -- 2.7 Acceptance Criteria -- 2.7.1 Fluidelastic Instability -- 2.7.2 Random Turbulence Excitation -- 2.7.3 Periodic Wake Shedding -- 2.7.4 Tube-to-Support Clearance -- 2.7.5 Acoustic Resonance -- 2.7.6 Two-Phase Flow Regimes -- Note -- References -- Chapter 3 Flow Considerations -- 3.1 Definition of the Problem -- 3.2 Nature of the Flow -- 3.2.1 Introduction -- 3.2.2 Flow Parameter Definitions -- 3.2.3 Vertical Bubbly Flow -- 3.2.4 Flow Around Bluff Bodies -- 3.2.5 Shell-Side Flow in Tube Bundles.
3.2.6 Air-Water versus Steam-Water Flows -- 3.2.7 Effect of Nucleate Boiling Noise -- 3.2.8 Summary -- 3.3 Simplified Flow Calculation -- 3.4 Multi-Dimensional Thermalhydraulic Analysis -- 3.4.1 Steam Generator -- 3.4.2 Other Heat Exchangers -- Acronyms -- Nomenclature -- Subscripts -- Notes -- References -- Chapter 4 Hydrodynamic Mass, Natural Frequencies and Mode Shapes -- 4.1 Introduction -- 4.2 Total Tube Mass -- 4.2.1 Single-Phase Flow -- 4.2.2 Two-Phase Flow -- 4.3 Free Vibration Analysis of Straight Tubes -- 4.3.1 Free Vibration Analysis of a Single-Span Tube -- 4.3.2 Free Vibration Analysis of a Two-Span Tube -- 4.3.3 Free Vibration Analysis of a Multi-Span Tube -- 4.4 Basic Theory for Curved Tubes -- 4.4.1 Theory of Curved Tube In-Plane Free Vibration -- 4.4.2 Theory of Curved Tube Out-of-Plane Free Vibration -- 4.5 Free Vibration Analysis of U-Tubes -- 4.5.1 Setting Boundary Conditions for the In-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.2 Development of the In-Plane Eigenvalue Matrix for a Symmetric U-Tube -- 4.5.3 Generation of Eigenvalue Matrices for Out-of-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.4 Free Vibration Analysis of U-Tubes Which Do Not Possess Geometric Similarity -- 4.6 Concluding Remarks -- Nomenclature -- References -- Chapter 5 Damping of Cylindrical Structures in Single-Phase Fluids -- 5.1 Introduction -- 5.2 Energy Dissipation Mechanisms -- 5.3 Approach -- 5.4 Damping in Gases -- 5.4.1 Effect of Number of Supports -- 5.4.2 Effect of Frequency -- 5.4.3 Vibration Amplitude -- 5.4.4 Effect of Diameter or Mass -- 5.4.5 Effect of Side Loads -- 5.4.6 Effect of Higher Modes -- 5.4.7 Effect of Support Thickness -- 5.4.8 Effect of Clearance -- 5.5 Design Recommendations for Damping in Gases -- 5.6 Damping in Liquids -- 5.6.1 Tube-to-Fluid Viscous Damping. 5.6.2 Damping at the Supports -- 5.6.3 Squeeze-Film Damping -- 5.6.4 Damping due to Sliding -- 5.6.5 Semi-Empirical Formulation of Tube-Support Damping -- 5.7 Discussion -- 5.8 Design Recommendations for Damping in Liquids -- 5.8.1 Simple Criterion Based on Available Data -- 5.8.2 Criterion Based on the Formulation of Energy Dissipation Mechanisms -- Nomenclature -- Subscript -- References -- Chapter 6 Damping of Cylindrical Structures in Two-Phase Flow -- 6.1 Introduction -- 6.2 Sources of Information -- 6.3 Approach -- 6.4 Two-Phase Flow Conditions -- 6.4.1 Definition of Two-Phase Flow Parameters -- 6.4.2 Flow Regime -- 6.5 Parametric Dependence Study -- 6.5.1 Effect of Flow Velocity -- 6.5.2 Effect of Void Fraction -- 6.5.3 Effect of Confinement -- 6.5.4 Effect of Tube Mass -- 6.5.5 Effect of Tube Vibration Frequency -- 6.5.6 Effect of Tube Bundle Configuration -- 6.5.7 Effect of Motion of Surrounding Tubes -- 6.5.8 Effect of Flow Regime -- 6.5.9 Effect of Fluid Properties -- 6.6 Development of Design Guidelines -- 6.7 Discussion -- 6.7.1 Damping Formulation -- 6.7.2 Two-Phase Damping Mechanisms -- 6.8 Summary Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 7 Fluidelastic Instability of Tube Bundles in Single-Phase Flow -- 7.1 Introduction -- 7.2 Nature of Fluidelastic Instability -- 7.3 Fluidelastic Instability: Analytical Modelling -- 7.4 Fluidelastic Instability: Semi-Empirical Models -- 7.5 Approach -- 7.6 Important Definitions -- 7.6.1 Tube Bundle Configurations -- 7.6.2 Flow Velocity Definition -- 7.6.3 Critical Velocity for Fluidelastic Instability -- 7.6.4 Damping -- 7.6.5 Tube Frequency -- 7.7 Parametric Dependence Study -- 7.7.1 Flexible versus Rigid Tube Bundles -- 7.7.2 Damping -- 7.7.3 Pitch-to-Diameter Ratio, P/D -- 7.7.4 Fluidelastic Instability Formulation -- 7.8 Development of Design Guidelines. 7.9 In-Plane Fluidelastic Instability -- 7.10 Axial Flow Fluidelastic Instability -- 7.11 Concluding Remarks -- Nomenclature -- Subscript -- References -- Chapter 8 Fluidelastic Instability of Tube Bundles in Two-Phase Flow -- 8.1 Introduction -- 8.2 Previous Research -- 8.2.1 Flow-Induced Vibration in Two-Phase Axial Flow -- 8.2.2 Flow-Induced Vibration in Two-Phase Cross Flow -- 8.2.3 Damping Studies -- 8.3 Fluidelastic Instability Mechanisms in Two-Phase Cross Flow -- 8.4 Fluidelastic Instability Experiments in Air-Water Cross Flow -- 8.4.1 Initial Experiments in Air-Water Cross Flow -- 8.4.2 Behavior in Intermittent Flow -- 8.4.3 Effect of Bundle Geometry -- 8.4.4 Flexible versus Rigid Tube Bundle Behavior -- 8.4.5 Hydrodynamic Coupling -- 8.5 Analysis of the Fluidelastic Instability Results -- 8.5.1 Defining Critical Mass Flux and Instability Constant -- 8.5.2 Comparison with Results of Other Researchers -- 8.5.3 Summary of Air-Water Tests -- 8.6 Tube Bundle Vibration in Two-Phase Freon Cross Flow -- 8.6.1 Introductory Remarks -- 8.6.2 Background Information -- 8.6.3 Experiments in Freon Cross Flow -- 8.7 Freon Test Results and Discussion -- 8.7.1 Results and Analysis -- 8.7.2 Proposed Explanations -- 8.7.3 Concluding Remarks -- 8.7.4 Summary Findings -- 8.8 Fluidelastic Instability of U-Tubes in Air-Water Cross Flow -- 8.8.1 Experimental Considerations -- 8.8.2 U-Tube Dynamics -- 8.8.3 Vibration Response -- 8.8.4 Out-of-Plane Vibration -- 8.8.5 In-Plane Vibration -- 8.9 In-Plane (In-Flow) Fluidelastic Instability -- 8.9.1 In-Flow Experiments in a Wind Tunnel -- 8.9.2 In-Flow Experiments in Two-Phase Cross Flow -- 8.9.3 Single-Tube Fluidelastic Instability Results -- 8.9.4 Single Flexible Column and Central Cluster Fluidelastic Instability Results -- 8.9.5 Two Partially Flexible Columns. 8.9.6 In-Flow Fluidelastic Instability Results and Discussion. -- 8.10 Design Recommendations -- 8.10.1 Design Guidelines -- 8.10.2 Fluidelastic Instability with Intermittent Flow -- 8.11 Fluidelastic Instability in Two-Phase Axial Flow -- 8.12 Concluding Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 9 Random Turbulence Excitation in Single-Phase Flow -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Equation of Motion -- 9.2.2 Derivation of the Mean-Square Response -- 9.2.3 Simplification of Tube Vibration Response -- 9.2.4 Integration of the Transfer Function -- 9.2.5 Use of the Simplified Expression in Developing Design Guidelines -- 9.3 Literature Search -- 9.4 Approach Taken -- 9.5 Discussion of Parameters -- 9.5.1 Directional Dependence (Lift versus Drag) -- 9.5.2 Bundle Orientation -- 9.5.3 Pitch-to-Diameter Ratio (P/D) -- 9.5.4 Upstream Turbulence -- 9.5.5 Fluid Density (Gas versus Liquid) -- 9.5.6 Summary -- 9.6 Design Guidelines -- 9.7 Random Turbulence Excitation in Axial Flow -- Nomenclature -- References -- Chapter 10 Random Turbulence Excitation Forces Due to Two-Phase Flow -- 10.1 Introduction -- 10.2 Background -- 10.3 Approach Taken to Data Reduction -- 10.4 Scaling Factor for Frequency -- 10.4.1 Definition of a Velocity Scale -- 10.4.2 Definition of a Length Scale -- 10.4.3 Dimensionless Reduced Frequency -- 10.4.4 Effect of Frequency -- 10.5 Scaling Factor for Power Spectral Density -- 10.5.1 Effect of Flow Regime -- 10.5.2 Effect of Void Fraction -- 10.5.3 Effect of Mass Flux -- 10.5.4 Effect of Tube Diameter -- 10.5.5 Effect of Correlation Length -- 10.5.6 Effect of Bundle and Tube-Support Geometry -- 10.5.7 Effect of Two-Phase Mixture -- 10.5.8 Effect of Nucleate Boiling -- 10.6 Dimensionless Power Spectral Density -- 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra. 10.7.1 Bubbly Flow. |
| Record Nr. | UNINA-9910830140103321 |
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fluid transients : in hydro-elettric engineering pratice / Charles Jaeger
| Fluid transients : in hydro-elettric engineering pratice / Charles Jaeger |
| Autore | Jaeger, Charles |
| Pubbl/distr/stampa | Glasgow ; London : Blackie & Son Limited, c1977 |
| Descrizione fisica | XVI, 413 p. : ill. ; 24 cm. |
| Disciplina |
532.5
621.312.134 |
| Soggetto topico | Idrodinamica |
| ISBN | 0-216-90225-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNIBAS-000013310 |
Jaeger, Charles
|
||
| Glasgow ; London : Blackie & Son Limited, c1977 | ||
| Lo trovi qui: Univ. della Basilicata | ||
| ||