Introduction to mathematical elasticity [[electronic resource] /] / Leonid P. Lebedev, Michael J. Cloud
| Introduction to mathematical elasticity [[electronic resource] /] / Leonid P. Lebedev, Michael J. Cloud |
| Autore | Lebedev L. P |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2009 |
| Descrizione fisica | 1 online resource (317 p.) |
| Disciplina |
531.382
531.3820151 531/.3820151 |
| Altri autori (Persone) | CloudMichael J |
| Soggetto topico | Elasticity |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-75812-8
9786612758126 981-4273-73-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword; Preface; Some Notation; 1. Models and Ideas of Classical Mechanics; 1.1 Orientation; 1.2 Some Words on the Fundamentals of Our Subject; 1.3 Metric Spaces and Spaces of Particles; 1.4 Vectors and Vector Spaces; 1.5 Normed Spaces and Inner Product Spaces; 1.6 Forces; 1.7 Equilibrium and Motion of a Rigid Body; 1.8 D'Alembert's Principle; 1.9 The Motion of a System of Particles; 1.10 The Rigid Body; 1.11 Motion of a System of Particles; Comparison of Trajectories; Notion of Operator; 1.12 Matrix Operators and Matrix Equations; 1.13 Complete Spaces; 1.14 Completion Theorem
1.15 Lebesgue Integration and the Lp Spaces1.16 Orthogonal Decomposition of Hilbert Space; 1.17 Work and Energy; 1.18 Virtual Work Principle; 1.19 Lagrange's Equations of the Second Kind; 1.20 Problem of Minimum of a Functional; 1.21 Hamilton's Principle; 1.22 Energy Conservation Revisited; 2. Simple Elastic Models; 2.1 Introduction; 2.2 Two Main Principles of Equilibrium and Motion for Bodies in Continuum Mechanics; 2.3 Equilibrium of a Spring; 2.4 Equilibrium of a String; 2.5 Equilibrium Boundary Value Problems for a String 2.6 Generalized Formulation of the Equilibrium Problem for a String2.7 Virtual Work Principle for a String; 2.8 Riesz Representation Theorem; 2.9 Generalized Setup of the Dirichlet Problem for a String; 2.10 First Theorems of Imbedding; 2.11 Generalized Setup of the Dirichlet Problem for a String, Continued; 2.12 Neumann Problem for the String; 2.13 The Generalized Solution of Linear Mechanical Problems and the Principle of Minimum Total Energy; 2.14 Nonlinear Model of a Membrane; 2.15 Linear Membrane Theory: Poisson's Equation 2.16 Generalized Setup of the Dirichlet Problem for a Linear Membrane2.17 Other Membrane Equilibrium Problems; 2.18 Banach's Contraction Mapping Principle; 3. Theory of Elasticity: Statics and Dynamics; 3.1 Introduction; 3.2 An Elastic Bar Under Stretching; 3.3 Bending of a beam; 3.4 Generalized Solutions to the Equilibrium Problem for a Beam; 3.5 Generalized Setup: Rough Qualitative Discussion; 3.6 Pressure and Stresses; 3.7 Vectors and Tensors; 3.8 The Cauchy Stress Tensor, Continued; 3.9 Basic Tensor Calculus in Curvilinear Coordinates; 3.10 Euler and Lagrange Descriptions of Continua 3.11 Strain Tensors3.12 The Virtual Work Principle; 3.13 Hooke's Law in Three Dimensions; 3.14 The Equilibrium Equations of Linear Elasticity in Displacements; 3.15 Virtual Work Principle in Linear Elasticity; 3.16 Generalized Setup of Elasticity Problems; 3.17 Existence Theorem for an Elastic Body; 3.18 Equilibrium of a Free Elastic Body; 3.19 Variational Methods for Equilibrium Problems; 3.20 A Brief but Important Remark; 3.21 Countable Sets and Separable Spaces; 3.22 Fourier Series; 3.23 Problem of Vibration for Elastic Structures; 3.24 Self-Adjointness of A and Its Consequences 3.25 Compactness of A |
| Record Nr. | UNINA-9910455858903321 |
Lebedev L. P
|
||
| Hackensack, N.J., : World Scientific, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to mathematical elasticity [[electronic resource] /] / Leonid P. Lebedev, Michael J. Cloud
| Introduction to mathematical elasticity [[electronic resource] /] / Leonid P. Lebedev, Michael J. Cloud |
| Autore | Lebedev L. P |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2009 |
| Descrizione fisica | 1 online resource (317 p.) |
| Disciplina |
531.382
531.3820151 531/.3820151 |
| Altri autori (Persone) | CloudMichael J |
| Soggetto topico | Elasticity |
| ISBN |
1-282-75812-8
9786612758126 981-4273-73-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword; Preface; Some Notation; 1. Models and Ideas of Classical Mechanics; 1.1 Orientation; 1.2 Some Words on the Fundamentals of Our Subject; 1.3 Metric Spaces and Spaces of Particles; 1.4 Vectors and Vector Spaces; 1.5 Normed Spaces and Inner Product Spaces; 1.6 Forces; 1.7 Equilibrium and Motion of a Rigid Body; 1.8 D'Alembert's Principle; 1.9 The Motion of a System of Particles; 1.10 The Rigid Body; 1.11 Motion of a System of Particles; Comparison of Trajectories; Notion of Operator; 1.12 Matrix Operators and Matrix Equations; 1.13 Complete Spaces; 1.14 Completion Theorem
1.15 Lebesgue Integration and the Lp Spaces1.16 Orthogonal Decomposition of Hilbert Space; 1.17 Work and Energy; 1.18 Virtual Work Principle; 1.19 Lagrange's Equations of the Second Kind; 1.20 Problem of Minimum of a Functional; 1.21 Hamilton's Principle; 1.22 Energy Conservation Revisited; 2. Simple Elastic Models; 2.1 Introduction; 2.2 Two Main Principles of Equilibrium and Motion for Bodies in Continuum Mechanics; 2.3 Equilibrium of a Spring; 2.4 Equilibrium of a String; 2.5 Equilibrium Boundary Value Problems for a String 2.6 Generalized Formulation of the Equilibrium Problem for a String2.7 Virtual Work Principle for a String; 2.8 Riesz Representation Theorem; 2.9 Generalized Setup of the Dirichlet Problem for a String; 2.10 First Theorems of Imbedding; 2.11 Generalized Setup of the Dirichlet Problem for a String, Continued; 2.12 Neumann Problem for the String; 2.13 The Generalized Solution of Linear Mechanical Problems and the Principle of Minimum Total Energy; 2.14 Nonlinear Model of a Membrane; 2.15 Linear Membrane Theory: Poisson's Equation 2.16 Generalized Setup of the Dirichlet Problem for a Linear Membrane2.17 Other Membrane Equilibrium Problems; 2.18 Banach's Contraction Mapping Principle; 3. Theory of Elasticity: Statics and Dynamics; 3.1 Introduction; 3.2 An Elastic Bar Under Stretching; 3.3 Bending of a beam; 3.4 Generalized Solutions to the Equilibrium Problem for a Beam; 3.5 Generalized Setup: Rough Qualitative Discussion; 3.6 Pressure and Stresses; 3.7 Vectors and Tensors; 3.8 The Cauchy Stress Tensor, Continued; 3.9 Basic Tensor Calculus in Curvilinear Coordinates; 3.10 Euler and Lagrange Descriptions of Continua 3.11 Strain Tensors3.12 The Virtual Work Principle; 3.13 Hooke's Law in Three Dimensions; 3.14 The Equilibrium Equations of Linear Elasticity in Displacements; 3.15 Virtual Work Principle in Linear Elasticity; 3.16 Generalized Setup of Elasticity Problems; 3.17 Existence Theorem for an Elastic Body; 3.18 Equilibrium of a Free Elastic Body; 3.19 Variational Methods for Equilibrium Problems; 3.20 A Brief but Important Remark; 3.21 Countable Sets and Separable Spaces; 3.22 Fourier Series; 3.23 Problem of Vibration for Elastic Structures; 3.24 Self-Adjointness of A and Its Consequences 3.25 Compactness of A |
| Record Nr. | UNINA-9910780722603321 |
Lebedev L. P
|
||
| Hackensack, N.J., : World Scientific, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes
| Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes |
| Autore | Marsden, Jerrold E. |
| Pubbl/distr/stampa | New York : Dover, 1994 |
| Descrizione fisica | XVIII, 556 p. : ill. ; 24 cm. |
| Disciplina | 531.3820151 |
| Altri autori (Persone) | Hughes, Thomas J. R. |
| ISBN | 04-86678-65-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0056338 |
Marsden, Jerrold E.
|
||
| New York : Dover, 1994 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes
| Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes |
| Autore | Marsden, Jerrold E. |
| Pubbl/distr/stampa | New York, : Dover, 1994 |
| Descrizione fisica | XVIII, 556 p. : ill. ; 24 cm |
| Disciplina | 531.3820151 |
| Altri autori (Persone) | Hughes, Thomas J. R. |
| ISBN | 04-86678-65-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0056338 |
Marsden, Jerrold E.
|
||
| New York, : Dover, 1994 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J. R. Hughes
| Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J. R. Hughes |
| Autore | Marsden, Jerrold E. |
| Pubbl/distr/stampa | New York, : Dover, 1994 |
| Descrizione fisica | XVIII, 556 p. : ill. ; 24 cm |
| Disciplina |
531.01
531.3820151 |
| Altri autori (Persone) | Hughes, Thomas J. R. |
| Collana | Dover books on advanced mathematics |
| Soggetto topico | Elasticità |
| ISBN |
0486678652
9780486678658 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-TO00573628 |
Marsden, Jerrold E.
|
||
| New York, : Dover, 1994 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes
| Mathematical foundations of elasticity / Jerrold E. Marsden, Thomas J.R. Hughes |
| Autore | Marsden, Jerrold E. |
| Pubbl/distr/stampa | New York, : Dover, 1994 |
| Descrizione fisica | XVIII, 556 p. : ill. ; 24 cm |
| Disciplina | 531.3820151 |
| Altri autori (Persone) | Hughes, Thomas J. R. |
| ISBN | 04-86678-65-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00056338 |
Marsden, Jerrold E.
|
||
| New York, : Dover, 1994 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||