4.1: Mécanique : généralités, historique / sous la direction scientifique de Paul Appell |
Pubbl/distr/stampa | Sceaux, : J. Gabay, [1991] |
Descrizione fisica | 292 col. ; 18 x 25 cm |
Disciplina |
510
531.01515 |
Soggetto topico |
Matematica - Enciclopedie e dizionari
Meccanica analitica |
ISBN | 2876471140 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNISANNIO-NAP0409722 |
Sceaux, : J. Gabay, [1991] | ||
![]() | ||
Lo trovi qui: Univ. del Sannio | ||
|
An introduction to mathematical modeling : a course in mechanics / J. Tinsley Oden |
Autore | ODEN, John Tinsley <1936-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | Testo elettronico (PDF) (XIV, 350 p.) |
Disciplina | 531.01515 |
Collana | Wiley series in computational mechanics |
Soggetto topico | Meccanica analitica |
ISBN | 9781118105733 |
Formato | Risorse elettroniche ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996448452003316 |
ODEN, John Tinsley <1936->
![]() |
||
Hoboken, N.J., : Wiley, 2011 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Analytical Mechanics : A Concise Textbook |
Autore | Cecotti Sergio |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (354 pages) |
Disciplina | 531.01515 |
Collana | UNITEXT for Physics Series |
ISBN | 3-031-59264-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910890188003321 |
Cecotti Sergio
![]() |
||
Cham : , : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytical Mechanics / / by Carl S. Helrich |
Autore | Helrich Carl S |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XV, 349 p. 58 illus.) |
Disciplina | 531.01515 |
Collana | Undergraduate Lecture Notes in Physics |
Soggetto topico |
Mechanics
Physics Mechanics, Applied Classical Mechanics Mathematical Methods in Physics Theoretical and Applied Mechanics |
ISBN | 3-319-44491-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | History -- Lagrangian Mechanics -- Hamiltonian Mechanics -- Solid Bodies -- Hamilton-Jacobi Approach -- Complex Systems -- Chaos in Dynamical Systems -- Special Relativity -- Appendices -- Differential of S -- Hamilton-Jacobi Equation -- With Variables p, q, q -- Zero-Component Lemma -- Maxwell Equations from Field Strength Tensor -- Differential Operators -- Answers to Selected Exercises. . |
Record Nr. | UNINA-9910254597703321 |
Helrich Carl S
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytical Mechanics : Classical, Lagrangian and Hamiltonian Mechanics, Stability Theory, Special Relativity / / by Valter Moretti |
Autore | Moretti Valter |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (848 pages) |
Disciplina | 531.01515 |
Collana | La Matematica per il 3+2 |
Soggetto topico |
Mathematics
Mechanics, Applied Mechanics Mathematical physics Engineering Mechanics Classical Mechanics Theoretical, Mathematical and Computational Physics Mecànica analítica |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato | Mathematics |
ISBN | 3-031-27612-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 The Space and Time of Classical Physics -- 2 The Spacetime of Classical Physics and Classical Kinematics -- 3 Newtonian dynamics: a conceptual critical review -- 4 Balance equations and first integrals in Mechanics -- 5 Introduction to Rigid Body Mechanics -- 6 Introduction to stability theory with applications to Mechanics -- 7 Foundations of Lagrangian Mechanics -- 8 Symmetries and conservation laws in Lagrangian Mechanics -- 9 Advanced topics in Lagrangian Mechanics -- 10 Mathematical introduction to Special Relativity and the relativistic Lagrangian formulation -- 11 Fundamentals of Hamiltonian Mechanic -- 12 Canonical Hamiltonian theory, Hamiltonian symmetries and Hamilton-Jacobi theory -- 13 Hamiltonian symplectic structures: an introduction -- 14 Complement: elements of the theory of ordinary differential equations -- 15 Complement: the physical principles at the foundations of Special Relativity -- Appendix A: elements of Topology, Analysis, Linear Algebra and Geometry -- Appendix B: advanced topics in Differential Geometry -- Appendix C: Solutions and/or hints to suggested exercises. |
Record Nr. | UNINA-9910734832003321 |
Moretti Valter
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytical mechanics for relativity and quantum mechanics [[electronic resource] /] / Oliver Davis Johns |
Autore | Johns Oliver Davis |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2005 |
Descrizione fisica | 1 online resource (618 p.) |
Disciplina |
530.11
531.01515 |
Collana | Oxford Graduate Texts |
Soggetto topico |
Mechanics, Analytic
Quantum theory |
Soggetto genere / forma | Electronic books. |
ISBN |
0-19-152429-8
1-282-36571-1 1-4356-0925-5 9786612365713 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Dedication; Preface; Acknowledgments; PART I: INTRODUCTION: THE TRADITIONAL THEORY; 1 Basic Dynamics of Point Particles and Collections; 1.1 Newton's Space and Time; 1.2 Single Point Particle; 1.3 Collective Variables; 1.4 The Law of Momentum for Collections; 1.5 The Law of Angular Momentum for Collections; 1.6 "Derivations" of the Axioms; 1.7 The Work-Energy Theorem for Collections; 1.8 Potential and Total Energy for Collections; 1.9 The Center of Mass; 1.10 Center of Mass and Momentum; 1.11 Center of Mass and Angular Momentum; 1.12 Center of Mass and Torque
1.13 Change of Angular Momentum1.14 Center of Mass and the Work-Energy Theorems; 1.15 Center of Mass as a Point Particle; 1.16 Special Results for Rigid Bodies; 1.17 Exercises; 2 Introduction to Lagrangian Mechanics; 2.1 Configuration Space; 2.2 Newton's Second Law in Lagrangian Form; 2.3 A Simple Example; 2.4 Arbitrary Generalized Coordinates; 2.5 Generalized Velocities in the q-System; 2.6 Generalized Forces in the q-System; 2.7 The Lagrangian Expressed in the q-System; 2.8 Two Important Identities; 2.9 Invariance of the Lagrange Equations; 2.10 Relation Between Any Two Systems 2.11 More of the Simple Example2.12 Generalized Momenta in the q-System; 2.13 Ignorable Coordinates; 2.14 Some Remarks About Units; 2.15 The Generalized Energy Function; 2.16 The Generalized Energy and the Total Energy; 2.17 Velocity Dependent Potentials; 2.18 Exercises; 3 Lagrangian Theory of Constraints; 3.1 Constraints Defined; 3.2 Virtual Displacement; 3.3 Virtual Work; 3.4 Form of the Forces of Constraint; 3.5 General Lagrange Equations with Constraints; 3.6 An Alternate Notation for Holonomic Constraints; 3.7 Example of the General Method; 3.8 Reduction of Degrees of Freedom 3.9 Example of a Reduction3.10 Example of a Simpler Reduction Method; 3.11 Recovery of the Forces of Constraint; 3.12 Example of a Recovery; 3.13 Generalized Energy Theorem with Constraints; 3.14 Tractable Non-Holonomic Constraints; 3.15 Exercises; 4 Introduction to Hamiltonian Mechanics; 4.1 Phase Space; 4.2 Hamilton Equations; 4.3 An Example of the Hamilton Equations; 4.4 Non-Potential and Constraint Forces; 4.5 Reduced Hamiltonian; 4.6 Poisson Brackets; 4.7 The Schroedinger Equation; 4.8 The Ehrenfest Theorem; 4.9 Exercises; 5 The Calculus of Variations; 5.1 Paths in an N-Dimensional Space 5.2 Variations of Coordinates5.3 Variations of Functions; 5.4 Variation of a Line Integral; 5.5 Finding Extremum Paths; 5.6 Example of an Extremum Path Calculation; 5.7 Invariance and Homogeneity; 5.8 The Brachistochrone Problem; 5.9 Calculus of Variations with Constraints; 5.10 An Example with Constraints; 5.11 Reduction of Degrees of Freedom; 5.12 Example of a Reduction; 5.13 Example of a Better Reduction; 5.14 The Coordinate Parametric Method; 5.15 Comparison of the Methods; 5.16 Exercises; 6 Hamilton's Principle; 6.1 Hamilton's Principle in Lagrangian Form 6.2 Hamilton's Principle with Constraints |
Record Nr. | UNINA-9910465790403321 |
Johns Oliver Davis
![]() |
||
Oxford, : Oxford University Press, 2005 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytical mechanics for relativity and quantum mechanics [[electronic resource] /] / Oliver Davis Johns |
Autore | Johns Oliver Davis |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2005 |
Descrizione fisica | 1 online resource (618 p.) |
Disciplina |
530.11
531.01515 |
Collana | Oxford Graduate Texts |
Soggetto topico |
Mechanics, Analytic
Quantum theory |
ISBN |
0-19-152429-8
1-282-36571-1 1-4356-0925-5 9786612365713 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Dedication; Preface; Acknowledgments; PART I: INTRODUCTION: THE TRADITIONAL THEORY; 1 Basic Dynamics of Point Particles and Collections; 1.1 Newton's Space and Time; 1.2 Single Point Particle; 1.3 Collective Variables; 1.4 The Law of Momentum for Collections; 1.5 The Law of Angular Momentum for Collections; 1.6 "Derivations" of the Axioms; 1.7 The Work-Energy Theorem for Collections; 1.8 Potential and Total Energy for Collections; 1.9 The Center of Mass; 1.10 Center of Mass and Momentum; 1.11 Center of Mass and Angular Momentum; 1.12 Center of Mass and Torque
1.13 Change of Angular Momentum1.14 Center of Mass and the Work-Energy Theorems; 1.15 Center of Mass as a Point Particle; 1.16 Special Results for Rigid Bodies; 1.17 Exercises; 2 Introduction to Lagrangian Mechanics; 2.1 Configuration Space; 2.2 Newton's Second Law in Lagrangian Form; 2.3 A Simple Example; 2.4 Arbitrary Generalized Coordinates; 2.5 Generalized Velocities in the q-System; 2.6 Generalized Forces in the q-System; 2.7 The Lagrangian Expressed in the q-System; 2.8 Two Important Identities; 2.9 Invariance of the Lagrange Equations; 2.10 Relation Between Any Two Systems 2.11 More of the Simple Example2.12 Generalized Momenta in the q-System; 2.13 Ignorable Coordinates; 2.14 Some Remarks About Units; 2.15 The Generalized Energy Function; 2.16 The Generalized Energy and the Total Energy; 2.17 Velocity Dependent Potentials; 2.18 Exercises; 3 Lagrangian Theory of Constraints; 3.1 Constraints Defined; 3.2 Virtual Displacement; 3.3 Virtual Work; 3.4 Form of the Forces of Constraint; 3.5 General Lagrange Equations with Constraints; 3.6 An Alternate Notation for Holonomic Constraints; 3.7 Example of the General Method; 3.8 Reduction of Degrees of Freedom 3.9 Example of a Reduction3.10 Example of a Simpler Reduction Method; 3.11 Recovery of the Forces of Constraint; 3.12 Example of a Recovery; 3.13 Generalized Energy Theorem with Constraints; 3.14 Tractable Non-Holonomic Constraints; 3.15 Exercises; 4 Introduction to Hamiltonian Mechanics; 4.1 Phase Space; 4.2 Hamilton Equations; 4.3 An Example of the Hamilton Equations; 4.4 Non-Potential and Constraint Forces; 4.5 Reduced Hamiltonian; 4.6 Poisson Brackets; 4.7 The Schroedinger Equation; 4.8 The Ehrenfest Theorem; 4.9 Exercises; 5 The Calculus of Variations; 5.1 Paths in an N-Dimensional Space 5.2 Variations of Coordinates5.3 Variations of Functions; 5.4 Variation of a Line Integral; 5.5 Finding Extremum Paths; 5.6 Example of an Extremum Path Calculation; 5.7 Invariance and Homogeneity; 5.8 The Brachistochrone Problem; 5.9 Calculus of Variations with Constraints; 5.10 An Example with Constraints; 5.11 Reduction of Degrees of Freedom; 5.12 Example of a Reduction; 5.13 Example of a Better Reduction; 5.14 The Coordinate Parametric Method; 5.15 Comparison of the Methods; 5.16 Exercises; 6 Hamilton's Principle; 6.1 Hamilton's Principle in Lagrangian Form 6.2 Hamilton's Principle with Constraints |
Record Nr. | UNINA-9910792248503321 |
Johns Oliver Davis
![]() |
||
Oxford, : Oxford University Press, 2005 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytical mechanics for relativity and quantum mechanics / Oliver Davis Johns |
Autore | Johns, Oliver Davis |
Pubbl/distr/stampa | Oxford ; New York : Oxford University Press, 2005 |
Descrizione fisica | xx, 597 p. : ill. ; 25 cm |
Disciplina | 531.01515 |
Collana | Oxford graduate texts |
Soggetto topico | Mechanics, Analytic |
ISBN | 019856726X |
Classificazione |
AMS 70-01
LC QA808.5.J64 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001382939707536 |
Johns, Oliver Davis
![]() |
||
Oxford ; New York : Oxford University Press, 2005 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Classical mechanics / Tom W.B. Kibble, Frank H. Berkshire |
Autore | Kibble, T. W. B. |
Edizione | [5. ed.] |
Pubbl/distr/stampa | River Edge, NJ : Imperial College Press, 2004 |
Descrizione fisica | xx, 478 p. : ill. ; 23 cm |
Disciplina | 531.01515 |
Altri autori (Persone) | Berkshire, Frank H. |
Soggetto topico | Mechanics, Analytic |
ISBN |
1860944248 (hbk. : alk. paper)
1860944248 (alk. paper) 1860944353 (pbk. : alk paper) |
Classificazione |
LC QA805
53.1.3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001775989707536 |
Kibble, T. W. B.
![]() |
||
River Edge, NJ : Imperial College Press, 2004 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Computational Mechanics : international conference on computational methods in nonlinear mechanics, Austin, Texas, 1974 / edited by J. T. Oden |
Autore | International conference on computational methods in nonlinear mechanics : <1974 |
Pubbl/distr/stampa | Berlin [etc.] : Springer, 1975 |
Descrizione fisica | VI, 328 p. ; 25 cm. |
Disciplina | 531.01515 |
Collana | Lecture notes in mathematics |
Soggetto topico | Meccanica analitica - Congressi |
ISBN | 3-540-07169-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNIBAS-000014775 |
International conference on computational methods in nonlinear mechanics : <1974
![]() |
||
Berlin [etc.] : Springer, 1975 | ||
![]() | ||
Lo trovi qui: Univ. della Basilicata | ||
|