Active plasmonics and tuneable plasmonic materials [[electronic resource] /] / edited by Anatoly V. Zayats, Stefan Maier |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013 |
Descrizione fisica | 1 online resource (336 pages) |
Disciplina | 530.4/4 |
Altri autori (Persone) |
ZayatsA. V (Anatoly V.)
MaierStefan A |
Collana | A Wiley-Science Wise Co-Publication |
Soggetto topico |
Plasmons (Physics)
Metamaterials |
ISBN |
1-118-63439-X
1-118-63442-X 1-118-63445-4 |
Classificazione | SCI074000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Active Plasmonics and Tuneable Plasmonic Metamaterials; Contents; Preface; Contributors; 1 Spaser, Plasmonic Amplification, and Loss Compensation; 1.1 Introduction to Spasers and Spasing; 1.2 Spaser Fundamentals; 1.2.1 Brief Overview of the Latest Progress in Spasers; 1.3 Quantum Theory of Spaser; 1.3.1 Surface Plasmon Eigenmodes and Their Quantization; 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser; 1.3.3 Equations for CW Regime; 1.3.4 Spaser operation in CW Mode; 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier
1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime1.4 Compensation of Loss by Gain and Spasing; 1.4.1 Introduction to Loss Compensation by Gain; 1.4.2 Permittivity of Nanoplasmonic Metamaterial; 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials; 1.4.4 Conditions of Loss Compensation by Gain and Spasing; 1.4.5 Discussion of Spasing and Loss Compensation by Gain; 1.4.6 Discussion of Published Research on Spasing and Loss Compensations; Acknowledgments; References; 2 Nonlinear Effects in Plasmonic Systems; 2.1 Introduction 2.2 Metallic Nonlinearities-Basic Effects and Models2.2.1 Local Nonlinearity-Transients by Carrier Heating; 2.2.2 Plasma Nonlinearity-The Ponderomotive Force; 2.2.3 Parametric Process in Metals; 2.2.4 Metal Damage and Ablation; 2.3 Nonlinear Propagation of Surface Plasmon Polaritons; 2.3.1 Nonlinear SPP Modes; 2.3.2 Plasmon Solitons; 2.3.3 Nonlinear Plasmonic Waveguide Couplers; 2.4 Localized Surface Plasmon Nonlinearity; 2.4.1 Cavities and Nonlinear Interactions Enhancement; 2.4.2 Enhancement of Nonlinear Vacuum Effects; 2.4.3 High Harmonic Generation 2.4.4 Localized Field Enhancement Limitations2.5 Summary; Acknowledgments; References; 3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics; 3.1 Introduction; 3.2 Nanorod Metamaterial Geometry; 3.3 Optical Properties; 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes; 3.3.2 Effective Medium Theory of the Nanorod Metamaterial; 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects; 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab; 3.4 Nonlinear Effects in Nanorod Metamaterials 3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials; 3.5 Molecular Plasmonics in Metamaterials; 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals; 3.7 Conclusion; References; 4 Transformation Optics for Plasmonics; 4.1 Introduction; 4.2 The Conformal Transformation Approach; 4.2.1 A Set of Canonic Plasmonic Structures; 4.2.2 Perfect Singular Structures; 4.2.3 Singular Plasmonic Structures; 4.2.3.1 Conformal Mapping of Singular Structures 4.2.3.2 Conformal Mapping of Blunt-Ended Singular Structures |
Record Nr. | UNINA-9910139249303321 |
Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Active plasmonics and tuneable plasmonic materials / / edited by Anatoly V. Zayats, Stefan Maier |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013 |
Descrizione fisica | 1 online resource (336 pages) |
Disciplina | 530.4/4 |
Altri autori (Persone) |
ZayatsA. V (Anatoly V.)
MaierStefan A |
Collana | A Wiley-Science Wise Co-Publication |
Soggetto topico |
Plasmons (Physics)
Metamaterials |
ISBN |
1-118-63439-X
1-118-63442-X 1-118-63445-4 |
Classificazione | SCI074000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Active Plasmonics and Tuneable Plasmonic Metamaterials; Contents; Preface; Contributors; 1 Spaser, Plasmonic Amplification, and Loss Compensation; 1.1 Introduction to Spasers and Spasing; 1.2 Spaser Fundamentals; 1.2.1 Brief Overview of the Latest Progress in Spasers; 1.3 Quantum Theory of Spaser; 1.3.1 Surface Plasmon Eigenmodes and Their Quantization; 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser; 1.3.3 Equations for CW Regime; 1.3.4 Spaser operation in CW Mode; 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier
1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime1.4 Compensation of Loss by Gain and Spasing; 1.4.1 Introduction to Loss Compensation by Gain; 1.4.2 Permittivity of Nanoplasmonic Metamaterial; 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials; 1.4.4 Conditions of Loss Compensation by Gain and Spasing; 1.4.5 Discussion of Spasing and Loss Compensation by Gain; 1.4.6 Discussion of Published Research on Spasing and Loss Compensations; Acknowledgments; References; 2 Nonlinear Effects in Plasmonic Systems; 2.1 Introduction 2.2 Metallic Nonlinearities-Basic Effects and Models2.2.1 Local Nonlinearity-Transients by Carrier Heating; 2.2.2 Plasma Nonlinearity-The Ponderomotive Force; 2.2.3 Parametric Process in Metals; 2.2.4 Metal Damage and Ablation; 2.3 Nonlinear Propagation of Surface Plasmon Polaritons; 2.3.1 Nonlinear SPP Modes; 2.3.2 Plasmon Solitons; 2.3.3 Nonlinear Plasmonic Waveguide Couplers; 2.4 Localized Surface Plasmon Nonlinearity; 2.4.1 Cavities and Nonlinear Interactions Enhancement; 2.4.2 Enhancement of Nonlinear Vacuum Effects; 2.4.3 High Harmonic Generation 2.4.4 Localized Field Enhancement Limitations2.5 Summary; Acknowledgments; References; 3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics; 3.1 Introduction; 3.2 Nanorod Metamaterial Geometry; 3.3 Optical Properties; 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes; 3.3.2 Effective Medium Theory of the Nanorod Metamaterial; 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects; 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab; 3.4 Nonlinear Effects in Nanorod Metamaterials 3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials; 3.5 Molecular Plasmonics in Metamaterials; 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals; 3.7 Conclusion; References; 4 Transformation Optics for Plasmonics; 4.1 Introduction; 4.2 The Conformal Transformation Approach; 4.2.1 A Set of Canonic Plasmonic Structures; 4.2.2 Perfect Singular Structures; 4.2.3 Singular Plasmonic Structures; 4.2.3.1 Conformal Mapping of Singular Structures 4.2.3.2 Conformal Mapping of Blunt-Ended Singular Structures |
Record Nr. | UNINA-9910813110903321 |
Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaos, complexity and transport [[electronic resource] ] : theory and applications : proceedings of the CCT '07, Marseille, France, 23-27 May 2011 / / edited by Xavier Leoncini, Marc Leonetti |
Pubbl/distr/stampa | Hackensack, NJ ; ; Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (273 p.) |
Disciplina |
005.446
530.4/4 |
Altri autori (Persone) |
LeonciniXavier
LéonettiM (Marc) |
Soggetto topico |
Chaotic behavior in systems
Transport theory Nonlinear theories Fluid dynamics |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4405-64-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Part A Classical Hamiltonian Dynamics; Resonant interaction of charged particles with electromagnetic waves A. A. Vasiliev, A. V. Artemyev, A. I. Neishtadt, D. L. Vainchtein and L. M. Zelenyi; 1. Introduction; 2. Main equations; 3. Single wave (non-relativistic case); 3.1. Normal propagation; 3.2. Oblique propagation; 4. Effects of the second wave; 4.1. Parallel propagation; 4.2. Nonparallel propagation; 5. Relativistic case; 6. Discussion and conclusions; Acknowledgments; References
Superrelativistic charged particles acceleration by electromagnetic waves: Self-consistent model A. V. Artemyev, L. M. Zelenyi, and V. L. Krasovsky1. Introduction; 2. Wave-particle interaction; 3. Self-consistent approach; 4. Discussion and conclusions; Acknowledgments; References; Control of atomic transport using autoresonance D. V. Makarov, M. Yu. Uleysky and S. V. Prants; 1. Introduction; 2. Basic equations; 3. Classical dynamics; 4. Numerical simulation; 4.1. Classical autoresonance; 4.2. Quantum autoresonance; 5. Conclusion; Acknowledgments; References Lagrangian tools to monitor chaotic transport and mixing in the ocean S. V. Prants, M. V. Budyansky and M. Yu. Uleysky1. Introduction; 2. Lagrangian and dynamical systems methods to study transport and mixing in the ocean; 3. Transport and mixing in marine bays; 4. Transport and mixing in the Kuroshio Extension region; 5. Conclusion; References; Stochastic treatment of finite-N fluctuations in the approach towards equilibrium for mean field models W. Ettoumi and M.-C. Firpo; 1. Introduction; 2. General framework; 2.1. N-body Hamiltonian 2.2. From Kramers-Moyal expansion to the Fokker-Planck equation3. Quasistationary states; 3.1. Botzmann-Gibbs expectations; 3.2. How to recognize QSSs?; 3.3. Large-time disintegration of QSSs; 4. Stochastic hypothesis; 5. A practical example: The Hamiltonian Mean Field model; 5.1. Averaging the Fokker-Planck equation; 5.2. Destruction of the inner structure; 6. Conclusion; References; Anomalous transport and phase space structures B. Meziani, O. Ourrad and X. Leoncini; 1. Introduction; 2. Motion in two waves; 3. Decay of particles into islands of stability; 4. Conclusion; Acknowledgements ReferencesPart B Nonlinear and Quantum Physics; Nonlinear kinetic modeling of stimulated Raman scattering in a plasma D. Benisti; 1. Introduction; 2. Collisionless dissipation beyond Landau damping; 3. Self-optimization of stimulated Raman scattering; 4. Derivation of Raman reflectivity using an envelope code; 5. Conclusion; References; Occurrence of mixed-mode oscillations in a dusty plasma M. Mikikian, H. Tawidian, T. Lecas and O. Vallee; 1. Introduction; 2. Instabilities in dusty plasmas; 3. Mixed-Mode Oscillations; 4. Evidence of MMOs in dusty plasmas; 5. State transition 6. State alternation |
Record Nr. | UNINA-9910465493903321 |
Hackensack, NJ ; ; Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaos, complexity and transport [[electronic resource] ] : theory and applications : proceedings of the CCT '07, Marseille, France, 23-27 May 2011 / / edited by Xavier Leoncini, Marc Leonetti |
Pubbl/distr/stampa | Hackensack, NJ ; ; Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (273 p.) |
Disciplina |
005.446
530.4/4 |
Altri autori (Persone) |
LeonciniXavier
LéonettiM (Marc) |
Soggetto topico |
Chaotic behavior in systems
Transport theory Nonlinear theories Fluid dynamics |
ISBN | 981-4405-64-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Part A Classical Hamiltonian Dynamics; Resonant interaction of charged particles with electromagnetic waves A. A. Vasiliev, A. V. Artemyev, A. I. Neishtadt, D. L. Vainchtein and L. M. Zelenyi; 1. Introduction; 2. Main equations; 3. Single wave (non-relativistic case); 3.1. Normal propagation; 3.2. Oblique propagation; 4. Effects of the second wave; 4.1. Parallel propagation; 4.2. Nonparallel propagation; 5. Relativistic case; 6. Discussion and conclusions; Acknowledgments; References
Superrelativistic charged particles acceleration by electromagnetic waves: Self-consistent model A. V. Artemyev, L. M. Zelenyi, and V. L. Krasovsky1. Introduction; 2. Wave-particle interaction; 3. Self-consistent approach; 4. Discussion and conclusions; Acknowledgments; References; Control of atomic transport using autoresonance D. V. Makarov, M. Yu. Uleysky and S. V. Prants; 1. Introduction; 2. Basic equations; 3. Classical dynamics; 4. Numerical simulation; 4.1. Classical autoresonance; 4.2. Quantum autoresonance; 5. Conclusion; Acknowledgments; References Lagrangian tools to monitor chaotic transport and mixing in the ocean S. V. Prants, M. V. Budyansky and M. Yu. Uleysky1. Introduction; 2. Lagrangian and dynamical systems methods to study transport and mixing in the ocean; 3. Transport and mixing in marine bays; 4. Transport and mixing in the Kuroshio Extension region; 5. Conclusion; References; Stochastic treatment of finite-N fluctuations in the approach towards equilibrium for mean field models W. Ettoumi and M.-C. Firpo; 1. Introduction; 2. General framework; 2.1. N-body Hamiltonian 2.2. From Kramers-Moyal expansion to the Fokker-Planck equation3. Quasistationary states; 3.1. Botzmann-Gibbs expectations; 3.2. How to recognize QSSs?; 3.3. Large-time disintegration of QSSs; 4. Stochastic hypothesis; 5. A practical example: The Hamiltonian Mean Field model; 5.1. Averaging the Fokker-Planck equation; 5.2. Destruction of the inner structure; 6. Conclusion; References; Anomalous transport and phase space structures B. Meziani, O. Ourrad and X. Leoncini; 1. Introduction; 2. Motion in two waves; 3. Decay of particles into islands of stability; 4. Conclusion; Acknowledgements ReferencesPart B Nonlinear and Quantum Physics; Nonlinear kinetic modeling of stimulated Raman scattering in a plasma D. Benisti; 1. Introduction; 2. Collisionless dissipation beyond Landau damping; 3. Self-optimization of stimulated Raman scattering; 4. Derivation of Raman reflectivity using an envelope code; 5. Conclusion; References; Occurrence of mixed-mode oscillations in a dusty plasma M. Mikikian, H. Tawidian, T. Lecas and O. Vallee; 1. Introduction; 2. Instabilities in dusty plasmas; 3. Mixed-Mode Oscillations; 4. Evidence of MMOs in dusty plasmas; 5. State transition 6. State alternation |
Record Nr. | UNINA-9910792082903321 |
Hackensack, NJ ; ; Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaos, complexity and transport : theory and applications : proceedings of the CCT '07, Marseille, France, 23-27 May 2011 / / edited by Xavier Leoncini, Marc Leonetti |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, NJ ; ; Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (273 p.) |
Disciplina |
005.446
530.4/4 |
Altri autori (Persone) |
LeonciniXavier
LeonettiM (Marc) |
Soggetto topico |
Chaotic behavior in systems
Transport theory Nonlinear theories Fluid dynamics |
ISBN | 981-4405-64-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Part A Classical Hamiltonian Dynamics; Resonant interaction of charged particles with electromagnetic waves A. A. Vasiliev, A. V. Artemyev, A. I. Neishtadt, D. L. Vainchtein and L. M. Zelenyi; 1. Introduction; 2. Main equations; 3. Single wave (non-relativistic case); 3.1. Normal propagation; 3.2. Oblique propagation; 4. Effects of the second wave; 4.1. Parallel propagation; 4.2. Nonparallel propagation; 5. Relativistic case; 6. Discussion and conclusions; Acknowledgments; References
Superrelativistic charged particles acceleration by electromagnetic waves: Self-consistent model A. V. Artemyev, L. M. Zelenyi, and V. L. Krasovsky1. Introduction; 2. Wave-particle interaction; 3. Self-consistent approach; 4. Discussion and conclusions; Acknowledgments; References; Control of atomic transport using autoresonance D. V. Makarov, M. Yu. Uleysky and S. V. Prants; 1. Introduction; 2. Basic equations; 3. Classical dynamics; 4. Numerical simulation; 4.1. Classical autoresonance; 4.2. Quantum autoresonance; 5. Conclusion; Acknowledgments; References Lagrangian tools to monitor chaotic transport and mixing in the ocean S. V. Prants, M. V. Budyansky and M. Yu. Uleysky1. Introduction; 2. Lagrangian and dynamical systems methods to study transport and mixing in the ocean; 3. Transport and mixing in marine bays; 4. Transport and mixing in the Kuroshio Extension region; 5. Conclusion; References; Stochastic treatment of finite-N fluctuations in the approach towards equilibrium for mean field models W. Ettoumi and M.-C. Firpo; 1. Introduction; 2. General framework; 2.1. N-body Hamiltonian 2.2. From Kramers-Moyal expansion to the Fokker-Planck equation3. Quasistationary states; 3.1. Botzmann-Gibbs expectations; 3.2. How to recognize QSSs?; 3.3. Large-time disintegration of QSSs; 4. Stochastic hypothesis; 5. A practical example: The Hamiltonian Mean Field model; 5.1. Averaging the Fokker-Planck equation; 5.2. Destruction of the inner structure; 6. Conclusion; References; Anomalous transport and phase space structures B. Meziani, O. Ourrad and X. Leoncini; 1. Introduction; 2. Motion in two waves; 3. Decay of particles into islands of stability; 4. Conclusion; Acknowledgements ReferencesPart B Nonlinear and Quantum Physics; Nonlinear kinetic modeling of stimulated Raman scattering in a plasma D. Benisti; 1. Introduction; 2. Collisionless dissipation beyond Landau damping; 3. Self-optimization of stimulated Raman scattering; 4. Derivation of Raman reflectivity using an envelope code; 5. Conclusion; References; Occurrence of mixed-mode oscillations in a dusty plasma M. Mikikian, H. Tawidian, T. Lecas and O. Vallee; 1. Introduction; 2. Instabilities in dusty plasmas; 3. Mixed-Mode Oscillations; 4. Evidence of MMOs in dusty plasmas; 5. State transition 6. State alternation |
Record Nr. | UNINA-9910820570203321 |
Hackensack, NJ ; ; Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamical Systems, Plasmas and Gravitation [[electronic resource] ] : Selected Papers from a Conference Held in Orléans la Source, France, 22–24 June 1997 / / edited by P.G.L. Leach, S.E. Bouquet, J.-L. Rouet, E. Fijalkow |
Edizione | [1st ed. 1999.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1999 |
Descrizione fisica | 1 online resource (XII, 404 p. 61 illus.) |
Disciplina | 530.4/4 |
Collana | Lecture Notes in Physics |
Soggetto topico |
Physics
Fluids Statistical physics Dynamical systems Atoms Gravitation Mathematical Methods in Physics Numerical and Computational Physics, Simulation Fluid- and Aerodynamics Complex Systems Atomic, Molecular, Optical and Plasma Physics Classical and Quantum Gravitation, Relativity Theory |
ISBN | 3-540-49251-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | General introduction -- Honouring marc feix -- Interaction of a ultra-high-intensity electromagnetic pulse with an overdense plasma -- Plasma accelerator simulations using semi-lagrangian 1D and 2D Vlasov code -- 2D vlasov-eulerian simulations: Extension to the relativistic case -- A limiting case of averaging compactness lemmas motivated by the kinetic formulation of some classical systems of fluid mechanics -- Expansion of a negative ion plasma into vacuum -- A presentation of the diffusion velocity method -- Finite-difference schemes for the diffusion equation -- 1, 2, 3 plasmas! -- The notion of integrability for time-dependent Hamiltonian systems: Illustration from the relativistic motion of a charged particle in an electromagnetic field -- Stochastisation of phases in four-wave interaction -- Light bullets propagation in saturating nonlinear optical medium -- The dynamics of some quantum open systems with short-range nonlinearities -- Global dynamics of fusion plasmas -- The Jeans’ criterion and the gravitational instability -- Recent progress in studies of one-dimensional gravitating systems -- Fluctuations of the kinetic energy and stability of coherent structures in a one-dimensional gravitating gas: Numerical simulation -- Structure formation in the one-dimensional gravitational gas -- Interaction forces and space symmetry -- Cellular automaton explosion models -- Acoustic earth imaging by seismic migration -- Integrability and alegbraic solutions for the 2-D lotka-Volterra system -- Isochronous centers of cubic reversible systems -- On the polynomial first integrals of the (a, b, c) Lotka-Volterra system -- Local integrability for nilpotent critical point -- Lie symmetries of generalized Ermakov systems -- Hamilton’s principal function and integration by quadratures for an N-degree-of-freedom non - autonomous system given N invertible invariants in involution -- Hierarchies of similarity symmetries and singularity analysis -- Area preserving flows on compact connected surfaces -- A lattice model for tropical rain forests -- Periodic solutions and associated limit cycle for the generalised Chazy equation -- A branch and bound algorithm for the flow-shop scheduling problem -- On the linear third-order differential equation -- Telecommunication network optimisation and statistical physics -- A study of the analytical and local semiclassical Wigner distribution -- Quantum transition and irreversibility -- Pioneering in plasma simulation. |
Record Nr. | UNINA-9910257384003321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamical Systems, Plasmas and Gravitation [[electronic resource] ] : Selected Papers from a Conference Held in Orléans la Source, France, 22–24 June 1997 / / edited by P.G.L. Leach, S.E. Bouquet, J.-L. Rouet, E. Fijalkow |
Edizione | [1st ed. 1999.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1999 |
Descrizione fisica | 1 online resource (XII, 404 p. 61 illus.) |
Disciplina | 530.4/4 |
Collana | Lecture Notes in Physics |
Soggetto topico |
Physics
Fluids Statistical physics Dynamical systems Atoms Gravitation Mathematical Methods in Physics Numerical and Computational Physics, Simulation Fluid- and Aerodynamics Complex Systems Atomic, Molecular, Optical and Plasma Physics Classical and Quantum Gravitation, Relativity Theory |
ISBN | 3-540-49251-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | General introduction -- Honouring marc feix -- Interaction of a ultra-high-intensity electromagnetic pulse with an overdense plasma -- Plasma accelerator simulations using semi-lagrangian 1D and 2D Vlasov code -- 2D vlasov-eulerian simulations: Extension to the relativistic case -- A limiting case of averaging compactness lemmas motivated by the kinetic formulation of some classical systems of fluid mechanics -- Expansion of a negative ion plasma into vacuum -- A presentation of the diffusion velocity method -- Finite-difference schemes for the diffusion equation -- 1, 2, 3 plasmas! -- The notion of integrability for time-dependent Hamiltonian systems: Illustration from the relativistic motion of a charged particle in an electromagnetic field -- Stochastisation of phases in four-wave interaction -- Light bullets propagation in saturating nonlinear optical medium -- The dynamics of some quantum open systems with short-range nonlinearities -- Global dynamics of fusion plasmas -- The Jeans’ criterion and the gravitational instability -- Recent progress in studies of one-dimensional gravitating systems -- Fluctuations of the kinetic energy and stability of coherent structures in a one-dimensional gravitating gas: Numerical simulation -- Structure formation in the one-dimensional gravitational gas -- Interaction forces and space symmetry -- Cellular automaton explosion models -- Acoustic earth imaging by seismic migration -- Integrability and alegbraic solutions for the 2-D lotka-Volterra system -- Isochronous centers of cubic reversible systems -- On the polynomial first integrals of the (a, b, c) Lotka-Volterra system -- Local integrability for nilpotent critical point -- Lie symmetries of generalized Ermakov systems -- Hamilton’s principal function and integration by quadratures for an N-degree-of-freedom non - autonomous system given N invertible invariants in involution -- Hierarchies of similarity symmetries and singularity analysis -- Area preserving flows on compact connected surfaces -- A lattice model for tropical rain forests -- Periodic solutions and associated limit cycle for the generalised Chazy equation -- A branch and bound algorithm for the flow-shop scheduling problem -- On the linear third-order differential equation -- Telecommunication network optimisation and statistical physics -- A study of the analytical and local semiclassical Wigner distribution -- Quantum transition and irreversibility -- Pioneering in plasma simulation. |
Record Nr. | UNISA-996466683403316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Eulerian codes for the numerical solution of the kinetic equations of plasmas [[electronic resource] /] / Magdi Shoucri, editor |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2011 |
Descrizione fisica | 1 online resource (378 p.) |
Disciplina | 530.4/4 |
Altri autori (Persone) | ShoucriMagdi Mounir <1961-> |
Collana | Physics research and technology |
Soggetto topico |
Kinetic theory of gases - Mathematics
Plasma (Ionized gases) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-61324-561-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""EULERIAN CODES FOR THE NUMERICALSOLUTION OF THE KINETIC EQUATIONSOF PLASMAS""; ""CONTENTS""; ""EDITOR�S FOREWORD""; ""DEDICATION""; ""SPLITTING METHODS FOR VLASOV-MAXWELLEQUATIONS IN PLASMA SIMULATIONS""; ""Abstract""; ""IntroductiON""; ""Splitting Scheme""; ""Langmuir Soliton""; ""A. Electron Heating by Langmuir Soliton""; ""B. Propagation of Langmuir Soliton""; ""Electron Cyclotron Wave""; ""Conclusion""; ""References""; ""A VLASOV APPROACH TO COLLISIONLESS SPACEAND LABORATORY PLASMAS""; ""Abstract""; ""1. Introduction""
""2. The Vlasov�Maxwell Equations as a Hamiltonian Flow onPhase Space""""3. Commonly Used Numerical Schemes""; ""3.1. Particle Methods""; ""3.3. A Comparison between Numerical Techniques""; ""4. The Vlasov Equation""; ""4.1. A Multi-advection Equation""; ""4.2. The Particles Motion, Electrostatic Limit""; ""4.3. Splitting Scheme""; ""4.4. Discrete Representation of the Distribution Function on FunctionalSpaces""; ""4.5. Discontinuous Galerkin Schemes""; ""4.6. Van Leer Interpolation""; ""4.7. Splines Interpolation""; ""4.8. Fourier Decomposition""; ""4.9. Semi-Lagrangian Methods"" ""5. An Application: The Weibel Instability""""Acknowledgements""; ""References""; ""EULERIAN CONSERVATIVE ADVECTION SCHEMESFOR VLASOV SOLVERS""; ""Abstract""; ""1. Introduction""; ""2. 1D Electrostatic Problems""; ""2.1. The Codes Tested""; ""2.2. 1D Electrostatic Test Problems""; ""2.3. Summary of 1D Electrostatic Tests""; ""3. Electromagnetic Problems""; ""3.1. 1D Relativistic EM Vlasov Solvers""; ""3.2. 2D Relativistic EM Vlasov Solvers""; ""4. Solving Amp`ere instead of Poisson""; ""5. Electrostatic Problems with Dissipation, Krook Collisionsand a Particle Source""; ""6. Conclusion"" ""References""""EULERIAN-LAGRANGIAN KINETIC SIMULATIONSOF LASER-PLASMA INTERACTIONS""; ""Abstract""; ""Introduction""; ""2. ELVIS Equations and Numerical Method""; ""2.1. Model and Geometry""; ""2.2. Structure of the Timestep""; ""2.3. f Advection: Cubic Splines""; ""2.4. Krook Operator""; ""2.5. Solving for Ex""; ""2.6. Advance of Transverse Fields E±, vys""; ""3. Electrostatic Application: Langmuir-Wave Dispersion""; ""4. Application to Raman Scattering""; ""4.1. Kinetic Inflation and Electron Acoustic Scatter (no Krook Operator)""; ""4.2. Inclusion of a Krook Operator"" ""4.3. Inclusion of Seed Bandwidth""""5. Conclusion""; ""Acknowledgments""; ""References""; ""GYROKINETIC VLASOV SIMULATIONSFOR TURBULENT TRANSPORTIN MAGNETIZED PLASMAS""; ""Abstract""; ""1. Introduction""; ""2. Vlasov Simulation Methods Based on Symplectic Integrators""; ""2.1. Generalization of Splitting Scheme""; ""2.2. Verification of Generalized Splitting Scheme""; ""2.3. Application to Drift Kinetic System""; ""2.4. Verification of Nondissipative Scheme for Drift Kinetic Systems""; ""3. Turbulent Transport and Fine-Scale Distribution Functions"" ""3.1. Steady and Quasisteady States of Plasma Turbulence"" |
Record Nr. | UNINA-9910456795403321 |
Hauppauge, N.Y., : Nova Science Publishers, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Eulerian codes for the numerical solution of the kinetic equations of plasmas [[electronic resource] /] / Magdi Shoucri, editor |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2011 |
Descrizione fisica | 1 online resource (378 p.) |
Disciplina | 530.4/4 |
Altri autori (Persone) | ShoucriMagdi Mounir <1961-> |
Collana | Physics research and technology |
Soggetto topico |
Kinetic theory of gases - Mathematics
Plasma (Ionized gases) |
ISBN | 1-61324-561-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""EULERIAN CODES FOR THE NUMERICALSOLUTION OF THE KINETIC EQUATIONSOF PLASMAS""; ""CONTENTS""; ""EDITOR�S FOREWORD""; ""DEDICATION""; ""SPLITTING METHODS FOR VLASOV-MAXWELLEQUATIONS IN PLASMA SIMULATIONS""; ""Abstract""; ""IntroductiON""; ""Splitting Scheme""; ""Langmuir Soliton""; ""A. Electron Heating by Langmuir Soliton""; ""B. Propagation of Langmuir Soliton""; ""Electron Cyclotron Wave""; ""Conclusion""; ""References""; ""A VLASOV APPROACH TO COLLISIONLESS SPACEAND LABORATORY PLASMAS""; ""Abstract""; ""1. Introduction""
""2. The Vlasov�Maxwell Equations as a Hamiltonian Flow onPhase Space""""3. Commonly Used Numerical Schemes""; ""3.1. Particle Methods""; ""3.3. A Comparison between Numerical Techniques""; ""4. The Vlasov Equation""; ""4.1. A Multi-advection Equation""; ""4.2. The Particles Motion, Electrostatic Limit""; ""4.3. Splitting Scheme""; ""4.4. Discrete Representation of the Distribution Function on FunctionalSpaces""; ""4.5. Discontinuous Galerkin Schemes""; ""4.6. Van Leer Interpolation""; ""4.7. Splines Interpolation""; ""4.8. Fourier Decomposition""; ""4.9. Semi-Lagrangian Methods"" ""5. An Application: The Weibel Instability""""Acknowledgements""; ""References""; ""EULERIAN CONSERVATIVE ADVECTION SCHEMESFOR VLASOV SOLVERS""; ""Abstract""; ""1. Introduction""; ""2. 1D Electrostatic Problems""; ""2.1. The Codes Tested""; ""2.2. 1D Electrostatic Test Problems""; ""2.3. Summary of 1D Electrostatic Tests""; ""3. Electromagnetic Problems""; ""3.1. 1D Relativistic EM Vlasov Solvers""; ""3.2. 2D Relativistic EM Vlasov Solvers""; ""4. Solving Amp`ere instead of Poisson""; ""5. Electrostatic Problems with Dissipation, Krook Collisionsand a Particle Source""; ""6. Conclusion"" ""References""""EULERIAN-LAGRANGIAN KINETIC SIMULATIONSOF LASER-PLASMA INTERACTIONS""; ""Abstract""; ""Introduction""; ""2. ELVIS Equations and Numerical Method""; ""2.1. Model and Geometry""; ""2.2. Structure of the Timestep""; ""2.3. f Advection: Cubic Splines""; ""2.4. Krook Operator""; ""2.5. Solving for Ex""; ""2.6. Advance of Transverse Fields E±, vys""; ""3. Electrostatic Application: Langmuir-Wave Dispersion""; ""4. Application to Raman Scattering""; ""4.1. Kinetic Inflation and Electron Acoustic Scatter (no Krook Operator)""; ""4.2. Inclusion of a Krook Operator"" ""4.3. Inclusion of Seed Bandwidth""""5. Conclusion""; ""Acknowledgments""; ""References""; ""GYROKINETIC VLASOV SIMULATIONSFOR TURBULENT TRANSPORTIN MAGNETIZED PLASMAS""; ""Abstract""; ""1. Introduction""; ""2. Vlasov Simulation Methods Based on Symplectic Integrators""; ""2.1. Generalization of Splitting Scheme""; ""2.2. Verification of Generalized Splitting Scheme""; ""2.3. Application to Drift Kinetic System""; ""2.4. Verification of Nondissipative Scheme for Drift Kinetic Systems""; ""3. Turbulent Transport and Fine-Scale Distribution Functions"" ""3.1. Steady and Quasisteady States of Plasma Turbulence"" |
Record Nr. | UNINA-9910781680003321 |
Hauppauge, N.Y., : Nova Science Publishers, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Eulerian codes for the numerical solution of the kinetic equations of plasmas [[electronic resource] /] / Magdi Shoucri, editor |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2011 |
Descrizione fisica | 1 online resource (378 p.) |
Disciplina | 530.4/4 |
Altri autori (Persone) | ShoucriMagdi Mounir <1961-> |
Collana | Physics research and technology |
Soggetto topico |
Kinetic theory of gases - Mathematics
Plasma (Ionized gases) |
ISBN | 1-61324-561-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""EULERIAN CODES FOR THE NUMERICALSOLUTION OF THE KINETIC EQUATIONSOF PLASMAS""; ""CONTENTS""; ""EDITOR�S FOREWORD""; ""DEDICATION""; ""SPLITTING METHODS FOR VLASOV-MAXWELLEQUATIONS IN PLASMA SIMULATIONS""; ""Abstract""; ""IntroductiON""; ""Splitting Scheme""; ""Langmuir Soliton""; ""A. Electron Heating by Langmuir Soliton""; ""B. Propagation of Langmuir Soliton""; ""Electron Cyclotron Wave""; ""Conclusion""; ""References""; ""A VLASOV APPROACH TO COLLISIONLESS SPACEAND LABORATORY PLASMAS""; ""Abstract""; ""1. Introduction""
""2. The Vlasov�Maxwell Equations as a Hamiltonian Flow onPhase Space""""3. Commonly Used Numerical Schemes""; ""3.1. Particle Methods""; ""3.3. A Comparison between Numerical Techniques""; ""4. The Vlasov Equation""; ""4.1. A Multi-advection Equation""; ""4.2. The Particles Motion, Electrostatic Limit""; ""4.3. Splitting Scheme""; ""4.4. Discrete Representation of the Distribution Function on FunctionalSpaces""; ""4.5. Discontinuous Galerkin Schemes""; ""4.6. Van Leer Interpolation""; ""4.7. Splines Interpolation""; ""4.8. Fourier Decomposition""; ""4.9. Semi-Lagrangian Methods"" ""5. An Application: The Weibel Instability""""Acknowledgements""; ""References""; ""EULERIAN CONSERVATIVE ADVECTION SCHEMESFOR VLASOV SOLVERS""; ""Abstract""; ""1. Introduction""; ""2. 1D Electrostatic Problems""; ""2.1. The Codes Tested""; ""2.2. 1D Electrostatic Test Problems""; ""2.3. Summary of 1D Electrostatic Tests""; ""3. Electromagnetic Problems""; ""3.1. 1D Relativistic EM Vlasov Solvers""; ""3.2. 2D Relativistic EM Vlasov Solvers""; ""4. Solving Amp`ere instead of Poisson""; ""5. Electrostatic Problems with Dissipation, Krook Collisionsand a Particle Source""; ""6. Conclusion"" ""References""""EULERIAN-LAGRANGIAN KINETIC SIMULATIONSOF LASER-PLASMA INTERACTIONS""; ""Abstract""; ""Introduction""; ""2. ELVIS Equations and Numerical Method""; ""2.1. Model and Geometry""; ""2.2. Structure of the Timestep""; ""2.3. f Advection: Cubic Splines""; ""2.4. Krook Operator""; ""2.5. Solving for Ex""; ""2.6. Advance of Transverse Fields E±, vys""; ""3. Electrostatic Application: Langmuir-Wave Dispersion""; ""4. Application to Raman Scattering""; ""4.1. Kinetic Inflation and Electron Acoustic Scatter (no Krook Operator)""; ""4.2. Inclusion of a Krook Operator"" ""4.3. Inclusion of Seed Bandwidth""""5. Conclusion""; ""Acknowledgments""; ""References""; ""GYROKINETIC VLASOV SIMULATIONSFOR TURBULENT TRANSPORTIN MAGNETIZED PLASMAS""; ""Abstract""; ""1. Introduction""; ""2. Vlasov Simulation Methods Based on Symplectic Integrators""; ""2.1. Generalization of Splitting Scheme""; ""2.2. Verification of Generalized Splitting Scheme""; ""2.3. Application to Drift Kinetic System""; ""2.4. Verification of Nondissipative Scheme for Drift Kinetic Systems""; ""3. Turbulent Transport and Fine-Scale Distribution Functions"" ""3.1. Steady and Quasisteady States of Plasma Turbulence"" |
Record Nr. | UNINA-9910808336603321 |
Hauppauge, N.Y., : Nova Science Publishers, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|