top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Beautiful models : 70 years of exactly solved quantum many-body problems / Bill Sutherland
Beautiful models : 70 years of exactly solved quantum many-body problems / Bill Sutherland
Autore Sutherland, Bill
Pubbl/distr/stampa River Edge, N.J. : World Scientific, c2004
Descrizione fisica xv, 381 p. : ill. (some col.) ; 24 cm
Disciplina 530.14/4
Soggetto topico Many-body problem - Numerical solutions
ISBN 9789812388971 (pbk.)
Classificazione LC QC174.17.P7
53.3.11
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002858559707536
Sutherland, Bill  
River Edge, N.J. : World Scientific, c2004
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910146412203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910822436203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2002
Descrizione fisica 1 online resource (428 p.)
Disciplina 530.14/4
Altri autori (Persone) FabrociniA
FantoniS (Stefano)
KrotscheckEckhard
Collana Series on advances in quantum many-body theory
Soggetto topico Many-body problem
Soggetto genere / forma Electronic books.
ISBN 981-277-707-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; PREFACE ; Chapter 1 DENSITY FUNCTIONAL THEORY ; 1. Introduction ; 1.1. Units and notation ; 1.2. Hartree-Fock theory ; 1.3. Homogeneous electron gas ; 1.3.1. Free electrons ; 1.3.2. Exchange energy ; 2. What is density functional theory? ; 2.1. Hohenberg-Kohn theorem
2.2. A simple example: the Thomas-Fermi theory 2.2.1. Variational equation of Thomas-Fermi theory ; 2.2.2. Thomas-Fermi atom ; 2.2.3. An example ; 3. Kohn-Sham theory ; 3.1. Local density approximation ; 3.2. Spin and the local spin density approximation
3.3. The generalized gradient approximation 4. Numerical methods for the Kohn-Sham equation ; 4.0.1. Exact exchange ; 4.0.2. 0(N) methods ; 5. Some applications and limitations of DFT ; 5.1. Two examples of condensed matter ; 5.2. Vibrations ; 5.3. NMR chemical shifts
6. Limitations of DFT 7. Time-dependent density functional theory: the equations ; 7.1. Optical properties ; 7.1.1. f-sum rule ; 7.2. Methods to solve the TDDFT equations ; 7.2.1. Linear response formula ; 7.3. Dynamic polarizability ; 7.4. Dielectric function
8. TDDFT: numerical aspects 8.1. Configuration matrix method ; 8.2. Linear response method ; 8.3. Sternheimer method ; 8.4. Real time method ; 9. Applications of TDDFT ; 9.1. Simple metal clusters ; 9.2. Carbon structures ; 9.3. Diamond ; 9.4. Other applications
9.5. Limitations
Record Nr. UNINA-9910458625303321
River Edge, NJ, : World Scientific, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2002
Descrizione fisica 1 online resource (428 p.)
Disciplina 530.14/4
Altri autori (Persone) FabrociniA
FantoniS (Stefano)
KrotscheckEckhard
Collana Series on advances in quantum many-body theory
Soggetto topico Many-body problem
ISBN 981-277-707-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; PREFACE ; Chapter 1 DENSITY FUNCTIONAL THEORY ; 1. Introduction ; 1.1. Units and notation ; 1.2. Hartree-Fock theory ; 1.3. Homogeneous electron gas ; 1.3.1. Free electrons ; 1.3.2. Exchange energy ; 2. What is density functional theory? ; 2.1. Hohenberg-Kohn theorem
2.2. A simple example: the Thomas-Fermi theory 2.2.1. Variational equation of Thomas-Fermi theory ; 2.2.2. Thomas-Fermi atom ; 2.2.3. An example ; 3. Kohn-Sham theory ; 3.1. Local density approximation ; 3.2. Spin and the local spin density approximation
3.3. The generalized gradient approximation 4. Numerical methods for the Kohn-Sham equation ; 4.0.1. Exact exchange ; 4.0.2. 0(N) methods ; 5. Some applications and limitations of DFT ; 5.1. Two examples of condensed matter ; 5.2. Vibrations ; 5.3. NMR chemical shifts
6. Limitations of DFT 7. Time-dependent density functional theory: the equations ; 7.1. Optical properties ; 7.1.1. f-sum rule ; 7.2. Methods to solve the TDDFT equations ; 7.2.1. Linear response formula ; 7.3. Dynamic polarizability ; 7.4. Dielectric function
8. TDDFT: numerical aspects 8.1. Configuration matrix method ; 8.2. Linear response method ; 8.3. Sternheimer method ; 8.4. Real time method ; 9. Applications of TDDFT ; 9.1. Simple metal clusters ; 9.2. Carbon structures ; 9.3. Diamond ; 9.4. Other applications
9.5. Limitations
Record Nr. UNINA-9910784869303321
River Edge, NJ, : World Scientific, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Introduction to modern methods of quantum many-body theory and their applications [[electronic resource] /] / editors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2002
Descrizione fisica 1 online resource (428 p.)
Disciplina 530.14/4
Altri autori (Persone) FabrociniA
FantoniS (Stefano)
KrotscheckEckhard
Collana Series on advances in quantum many-body theory
Soggetto topico Many-body problem
ISBN 981-277-707-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; PREFACE ; Chapter 1 DENSITY FUNCTIONAL THEORY ; 1. Introduction ; 1.1. Units and notation ; 1.2. Hartree-Fock theory ; 1.3. Homogeneous electron gas ; 1.3.1. Free electrons ; 1.3.2. Exchange energy ; 2. What is density functional theory? ; 2.1. Hohenberg-Kohn theorem
2.2. A simple example: the Thomas-Fermi theory 2.2.1. Variational equation of Thomas-Fermi theory ; 2.2.2. Thomas-Fermi atom ; 2.2.3. An example ; 3. Kohn-Sham theory ; 3.1. Local density approximation ; 3.2. Spin and the local spin density approximation
3.3. The generalized gradient approximation 4. Numerical methods for the Kohn-Sham equation ; 4.0.1. Exact exchange ; 4.0.2. 0(N) methods ; 5. Some applications and limitations of DFT ; 5.1. Two examples of condensed matter ; 5.2. Vibrations ; 5.3. NMR chemical shifts
6. Limitations of DFT 7. Time-dependent density functional theory: the equations ; 7.1. Optical properties ; 7.1.1. f-sum rule ; 7.2. Methods to solve the TDDFT equations ; 7.2.1. Linear response formula ; 7.3. Dynamic polarizability ; 7.4. Dielectric function
8. TDDFT: numerical aspects 8.1. Configuration matrix method ; 8.2. Linear response method ; 8.3. Sternheimer method ; 8.4. Real time method ; 9. Applications of TDDFT ; 9.1. Simple metal clusters ; 9.2. Carbon structures ; 9.3. Diamond ; 9.4. Other applications
9.5. Limitations
Record Nr. UNINA-9910810695803321
River Edge, NJ, : World Scientific, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems [[electronic resource] /] / Ian Snook
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems [[electronic resource] /] / Ian Snook
Autore Snook Ian
Pubbl/distr/stampa Boston, : Elsevier, 2006
Descrizione fisica 1 online resource (321 p.)
Disciplina 530.14/4
Soggetto topico Langevin equations
Brownian movements
Random dynamical systems
Physics
Soggetto genere / forma Electronic books.
ISBN 1-280-74716-1
9786610747160
0-08-046792-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems; Copyright page; Contents; Preface; Notation; A. Potential Energy Functions; B. Symbols Used; C. Operations; Chapter 1. Background, Mechanics and Statistical Mechanics; 1.1 Background; 1.2 The Mechanical Description of a System of Particles; 1.3 Summary; 1.4. Conclusions; References; Chapter 2. The Equation of Motion for a Typical Particle at Equilibrium:The Mori-Zwanzig Approach; 2.1 The Projection Operator; 2.2 The Generalised Langevin Equation
2.3 The Generalised Langevin Equation in Terms of the Velocity2.4 Equation of Motion for the Velocity Autocorrelation Function; 2.5 The Langevin Equation Derived from the Mori Approach: The Brownian Limit; 2.6 Generalisation to any Set of Dynamical Variables; 2.7 Memory Functions Derivation of Expressions for Linear Transport Coefficients; 2.8 Correlation Function Expression for the Coefficient of Newtonian Viscosity; 2.9 Summary; 2.10 Conclusions; References; Chapter 3. Approximate Methods to Calculate Correlation Functions and Mori-Zwanzig Memory Functions; 3.1 Taylor Series Expansion
3.2 Spectra3.3 Mori ́s Continued Fraction Method; 3.4 Use of Information Theory; 3.5 Perturbation Theories; 3.6 Mode Coupling Theory; 3.7 Macroscopic Hydrodynamic Theory; 3.8 Memory Functions Calculated by the Molecular-Dynamics Method; 3.9 Conclusions; References; Chapter 4. The Generalised Langevin Equation in Non-Equilibrium; 4.1 Derivation of Generalised Langevin Equation in Non-Equilibrium; 4.2 Langevin Equation for a Single Brownian Particle in a Shearing Fluid; 4.3 Conclusions; References; Chapter 5. The Langevin Equation and the Brownian Limit
5.1 A Dilute Suspension - One Large Particle in a Background5.2 Many-Body Langevin Equation; 5.3 Generalisation to Non-Equilibrium; 5.4 The Fokker-Planck Equation and the Diffusive Limit; 5.5 Approach to the Brownian Limit and Limitations; 5.6 Summary; 5.7 Conclusions; References; Chapter 6. Langevin and Generalised Langevin Dynamics; 6.1 Extensions of the GLE to Collections of Particles; 6.2 Numerical Solution of the Langevin Equation; 6.3 Higher-Order BD Schemes for the Langevin Equation; 6.4 Generalised Langevin Equation; 6.5 Systems in an External Field
6.6 Boundary Conditions in Simulations6.7 Conclusions; References; Chapter 7. Brownian Dynamics; 7.1 Fundamentals; 7.2 Calculation of Hydrodynamic Interactions; 7.3 Alternative Approaches to Treat Hydrodynamic Interactions; 7.4 Brownian Dynamics Algorithms; 7.5 Brownian Dynamics in a Shear Field; 7.6 Limitations of the BD Method; 7.7 Alternatives to BD Simulations; 7.8 Conclusions; References; Chapter 8. Polymer Dynamics; 8.1 Toxvaerd Approach; 8.2 Direct Use of Brownian Dynamics; 8.3 Rigid Systems; 8.4 Conclusions; References
Chapter 9. Theories Based on Distribution Functions, Master Equations and Stochastic Equations
Record Nr. UNINA-9910457244703321
Snook Ian  
Boston, : Elsevier, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems [[electronic resource] /] / Ian Snook
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems [[electronic resource] /] / Ian Snook
Autore Snook Ian
Pubbl/distr/stampa Boston, : Elsevier, 2006
Descrizione fisica 1 online resource (321 p.)
Disciplina 530.14/4
Soggetto topico Langevin equations
Brownian movements
Random dynamical systems
Physics
ISBN 1-280-74716-1
9786610747160
0-08-046792-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems; Copyright page; Contents; Preface; Notation; A. Potential Energy Functions; B. Symbols Used; C. Operations; Chapter 1. Background, Mechanics and Statistical Mechanics; 1.1 Background; 1.2 The Mechanical Description of a System of Particles; 1.3 Summary; 1.4. Conclusions; References; Chapter 2. The Equation of Motion for a Typical Particle at Equilibrium:The Mori-Zwanzig Approach; 2.1 The Projection Operator; 2.2 The Generalised Langevin Equation
2.3 The Generalised Langevin Equation in Terms of the Velocity2.4 Equation of Motion for the Velocity Autocorrelation Function; 2.5 The Langevin Equation Derived from the Mori Approach: The Brownian Limit; 2.6 Generalisation to any Set of Dynamical Variables; 2.7 Memory Functions Derivation of Expressions for Linear Transport Coefficients; 2.8 Correlation Function Expression for the Coefficient of Newtonian Viscosity; 2.9 Summary; 2.10 Conclusions; References; Chapter 3. Approximate Methods to Calculate Correlation Functions and Mori-Zwanzig Memory Functions; 3.1 Taylor Series Expansion
3.2 Spectra3.3 Mori ́s Continued Fraction Method; 3.4 Use of Information Theory; 3.5 Perturbation Theories; 3.6 Mode Coupling Theory; 3.7 Macroscopic Hydrodynamic Theory; 3.8 Memory Functions Calculated by the Molecular-Dynamics Method; 3.9 Conclusions; References; Chapter 4. The Generalised Langevin Equation in Non-Equilibrium; 4.1 Derivation of Generalised Langevin Equation in Non-Equilibrium; 4.2 Langevin Equation for a Single Brownian Particle in a Shearing Fluid; 4.3 Conclusions; References; Chapter 5. The Langevin Equation and the Brownian Limit
5.1 A Dilute Suspension - One Large Particle in a Background5.2 Many-Body Langevin Equation; 5.3 Generalisation to Non-Equilibrium; 5.4 The Fokker-Planck Equation and the Diffusive Limit; 5.5 Approach to the Brownian Limit and Limitations; 5.6 Summary; 5.7 Conclusions; References; Chapter 6. Langevin and Generalised Langevin Dynamics; 6.1 Extensions of the GLE to Collections of Particles; 6.2 Numerical Solution of the Langevin Equation; 6.3 Higher-Order BD Schemes for the Langevin Equation; 6.4 Generalised Langevin Equation; 6.5 Systems in an External Field
6.6 Boundary Conditions in Simulations6.7 Conclusions; References; Chapter 7. Brownian Dynamics; 7.1 Fundamentals; 7.2 Calculation of Hydrodynamic Interactions; 7.3 Alternative Approaches to Treat Hydrodynamic Interactions; 7.4 Brownian Dynamics Algorithms; 7.5 Brownian Dynamics in a Shear Field; 7.6 Limitations of the BD Method; 7.7 Alternatives to BD Simulations; 7.8 Conclusions; References; Chapter 8. Polymer Dynamics; 8.1 Toxvaerd Approach; 8.2 Direct Use of Brownian Dynamics; 8.3 Rigid Systems; 8.4 Conclusions; References
Chapter 9. Theories Based on Distribution Functions, Master Equations and Stochastic Equations
Record Nr. UNINA-9910784596303321
Snook Ian  
Boston, : Elsevier, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems / / Ian Snook
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems / / Ian Snook
Autore Snook Ian
Edizione [1st ed.]
Pubbl/distr/stampa Boston, : Elsevier, 2006
Descrizione fisica 1 online resource (321 p.)
Disciplina 530.14/4
530.144
Soggetto topico Langevin equations
Brownian movements
Random dynamical systems
Physics
ISBN 1-280-74716-1
9786610747160
0-08-046792-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems; Copyright page; Contents; Preface; Notation; A. Potential Energy Functions; B. Symbols Used; C. Operations; Chapter 1. Background, Mechanics and Statistical Mechanics; 1.1 Background; 1.2 The Mechanical Description of a System of Particles; 1.3 Summary; 1.4. Conclusions; References; Chapter 2. The Equation of Motion for a Typical Particle at Equilibrium:The Mori-Zwanzig Approach; 2.1 The Projection Operator; 2.2 The Generalised Langevin Equation
2.3 The Generalised Langevin Equation in Terms of the Velocity2.4 Equation of Motion for the Velocity Autocorrelation Function; 2.5 The Langevin Equation Derived from the Mori Approach: The Brownian Limit; 2.6 Generalisation to any Set of Dynamical Variables; 2.7 Memory Functions Derivation of Expressions for Linear Transport Coefficients; 2.8 Correlation Function Expression for the Coefficient of Newtonian Viscosity; 2.9 Summary; 2.10 Conclusions; References; Chapter 3. Approximate Methods to Calculate Correlation Functions and Mori-Zwanzig Memory Functions; 3.1 Taylor Series Expansion
3.2 Spectra3.3 Mori ́s Continued Fraction Method; 3.4 Use of Information Theory; 3.5 Perturbation Theories; 3.6 Mode Coupling Theory; 3.7 Macroscopic Hydrodynamic Theory; 3.8 Memory Functions Calculated by the Molecular-Dynamics Method; 3.9 Conclusions; References; Chapter 4. The Generalised Langevin Equation in Non-Equilibrium; 4.1 Derivation of Generalised Langevin Equation in Non-Equilibrium; 4.2 Langevin Equation for a Single Brownian Particle in a Shearing Fluid; 4.3 Conclusions; References; Chapter 5. The Langevin Equation and the Brownian Limit
5.1 A Dilute Suspension - One Large Particle in a Background5.2 Many-Body Langevin Equation; 5.3 Generalisation to Non-Equilibrium; 5.4 The Fokker-Planck Equation and the Diffusive Limit; 5.5 Approach to the Brownian Limit and Limitations; 5.6 Summary; 5.7 Conclusions; References; Chapter 6. Langevin and Generalised Langevin Dynamics; 6.1 Extensions of the GLE to Collections of Particles; 6.2 Numerical Solution of the Langevin Equation; 6.3 Higher-Order BD Schemes for the Langevin Equation; 6.4 Generalised Langevin Equation; 6.5 Systems in an External Field
6.6 Boundary Conditions in Simulations6.7 Conclusions; References; Chapter 7. Brownian Dynamics; 7.1 Fundamentals; 7.2 Calculation of Hydrodynamic Interactions; 7.3 Alternative Approaches to Treat Hydrodynamic Interactions; 7.4 Brownian Dynamics Algorithms; 7.5 Brownian Dynamics in a Shear Field; 7.6 Limitations of the BD Method; 7.7 Alternatives to BD Simulations; 7.8 Conclusions; References; Chapter 8. Polymer Dynamics; 8.1 Toxvaerd Approach; 8.2 Direct Use of Brownian Dynamics; 8.3 Rigid Systems; 8.4 Conclusions; References
Chapter 9. Theories Based on Distribution Functions, Master Equations and Stochastic Equations
Record Nr. UNINA-9910823047403321
Snook Ian  
Boston, : Elsevier, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microscopic Quantum Many-Body Theories and Their Applications [[electronic resource] ] : Proceedings of a European Summer School, Held at Valencia, Spain, 8–19 September 1997 / / edited by Jesus Navarro, Artur Polls
Microscopic Quantum Many-Body Theories and Their Applications [[electronic resource] ] : Proceedings of a European Summer School, Held at Valencia, Spain, 8–19 September 1997 / / edited by Jesus Navarro, Artur Polls
Edizione [1st ed. 1998.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1998
Descrizione fisica 1 online resource (XIII, 386 p. 4 illus.)
Disciplina 530.14/4
Collana Lecture Notes in Physics
Soggetto topico Atoms
Physics
Physical chemistry
Quantum computers
Spintronics
Quantum physics
Atomic, Molecular, Optical and Plasma Physics
Physical Chemistry
Mathematical Methods in Physics
Numerical and Computational Physics, Simulation
Quantum Information Technology, Spintronics
Quantum Physics
ISBN 3-540-69787-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The coupled cluster method -- Atomic and molecular applications of the coupled cluster method -- A thermal cluster-cumulant theory -- Correlated basis function theory for fermion systems -- Inhomogeneous quantum liquids: Statics, dynamics, and thermodynamics -- Some applications of correlated basis function theories in finite and infinite nuclear systems -- Monte carlo methods in quantum many-body theories -- Monte carlo calculations of nuclei -- Diffusion Monte Carlo for excited states: Application to liquid helium.
Record Nr. UNINA-9910257403203321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui