top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (317 p.)
Disciplina 530.13/8
Altri autori (Persone) BellomoN
GatignolRenée
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory
Finite element method
Differential equations - Asymptotic theory
Soggetto genere / forma Electronic books.
ISBN 1-281-94792-X
9786611947927
981-279-690-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; Preface ; Chapter 1. From the Boltzmann Equation to Discretized Kinetic Models ; 1.1 Introduction ; 1.2 The Nonlinear Boltzmann Equation ; 1.3 The Discrete and Semicontinuous Boltzmann Equation ; 1.4 Plan of the Lecture Notes ; 1.5 References
Chapter 2. Discrete Velocity Models for Gas Mixtures 2.1 Introduction ; 2.2 DVM for mixtures ; 2.3 Models with a finite number of velocities and the problem of spurious invariants ; 2.4 Constructing DVM with arbitrarily many velocities ; 2.5 Concluding remarks ; 2.6 References
Chapter 3. Discrete Velocity Models with Multiple Collisions 3.1 Introduction ; 3.2 Discrete Models with Multiple Collisions ; 3.3 Macroscopic Description ; 3.4 Boundary Conditions for Discrete Models ; 3.5 Conclusion ; 3.6 References
Chapter 4. Discretization of the Boltzmann Equation and the Semicontinuous Model 4.1 Introduction ; 4.2 Splitting and Energy Formulation ; 4.3 Working in a Finite Energy Interval ; 4.4 Energy Discretization and Kinetic Model
4.5 Conservation and Euler Equations for the Discretized Model 4.6 Energy Formulation of the Collision Dynamics ; 4.7 Concluding Remarks ; 4.8 References ; Chapter 5. Semi-continuous Extended Kinetic Theory ; 5.1 Introduction ; 5.2 Continuous Kinetic Equations
5.3 Semi-continuous Kinetic Equations
Record Nr. UNINA-9910454085103321
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (317 p.)
Disciplina 530.13/8
Altri autori (Persone) BellomoN
GatignolRenée
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory
Finite element method
Differential equations - Asymptotic theory
ISBN 1-281-94792-X
9786611947927
981-279-690-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; Preface ; Chapter 1. From the Boltzmann Equation to Discretized Kinetic Models ; 1.1 Introduction ; 1.2 The Nonlinear Boltzmann Equation ; 1.3 The Discrete and Semicontinuous Boltzmann Equation ; 1.4 Plan of the Lecture Notes ; 1.5 References
Chapter 2. Discrete Velocity Models for Gas Mixtures 2.1 Introduction ; 2.2 DVM for mixtures ; 2.3 Models with a finite number of velocities and the problem of spurious invariants ; 2.4 Constructing DVM with arbitrarily many velocities ; 2.5 Concluding remarks ; 2.6 References
Chapter 3. Discrete Velocity Models with Multiple Collisions 3.1 Introduction ; 3.2 Discrete Models with Multiple Collisions ; 3.3 Macroscopic Description ; 3.4 Boundary Conditions for Discrete Models ; 3.5 Conclusion ; 3.6 References
Chapter 4. Discretization of the Boltzmann Equation and the Semicontinuous Model 4.1 Introduction ; 4.2 Splitting and Energy Formulation ; 4.3 Working in a Finite Energy Interval ; 4.4 Energy Discretization and Kinetic Model
4.5 Conservation and Euler Equations for the Discretized Model 4.6 Energy Formulation of the Collision Dynamics ; 4.7 Concluding Remarks ; 4.8 References ; Chapter 5. Semi-continuous Extended Kinetic Theory ; 5.1 Introduction ; 5.2 Continuous Kinetic Equations
5.3 Semi-continuous Kinetic Equations
Record Nr. UNINA-9910782280603321
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Lecture notes on the discretization of the Boltzmann equation [[electronic resource] /] / editors Nicola Bellomo, Renée Gatignol
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (317 p.)
Disciplina 530.13/8
Altri autori (Persone) BellomoN
GatignolRenée
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory
Finite element method
Differential equations - Asymptotic theory
ISBN 1-281-94792-X
9786611947927
981-279-690-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS ; Preface ; Chapter 1. From the Boltzmann Equation to Discretized Kinetic Models ; 1.1 Introduction ; 1.2 The Nonlinear Boltzmann Equation ; 1.3 The Discrete and Semicontinuous Boltzmann Equation ; 1.4 Plan of the Lecture Notes ; 1.5 References
Chapter 2. Discrete Velocity Models for Gas Mixtures 2.1 Introduction ; 2.2 DVM for mixtures ; 2.3 Models with a finite number of velocities and the problem of spurious invariants ; 2.4 Constructing DVM with arbitrarily many velocities ; 2.5 Concluding remarks ; 2.6 References
Chapter 3. Discrete Velocity Models with Multiple Collisions 3.1 Introduction ; 3.2 Discrete Models with Multiple Collisions ; 3.3 Macroscopic Description ; 3.4 Boundary Conditions for Discrete Models ; 3.5 Conclusion ; 3.6 References
Chapter 4. Discretization of the Boltzmann Equation and the Semicontinuous Model 4.1 Introduction ; 4.2 Splitting and Energy Formulation ; 4.3 Working in a Finite Energy Interval ; 4.4 Energy Discretization and Kinetic Model
4.5 Conservation and Euler Equations for the Discretized Model 4.6 Energy Formulation of the Collision Dynamics ; 4.7 Concluding Remarks ; 4.8 References ; Chapter 5. Semi-continuous Extended Kinetic Theory ; 5.1 Introduction ; 5.2 Continuous Kinetic Equations
5.3 Semi-continuous Kinetic Equations
Record Nr. UNINA-9910821245403321
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Autore Galler Martin <1977->
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (247 p.)
Disciplina 530.13/8
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory - Mathematics
Semiconductors - Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-281-90577-1
9786611905774
981-270-338-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 2. The Bloch-Boltzmann-Peierls Equations; 3. Multigroup Model Equations for Polar Semiconductors; 4. Particle Transport in Indium Phosphide; 5. Particle Transport in Gallium Arsenide; 6. Multigroup Equations for Degenerated Carrier Gases; 7. The Two-dimensional Electron Gas; 8. The Multigroup-WENO Solver for Semiconductor Device Simulation; 9. Simulation of Silicon Devices; 10. Simulation of Gallium Arsenide Devices; 11. Conclusion; Bibliography; Related Publications of the Author; Index
Record Nr. UNINA-9910450673803321
Galler Martin <1977->  
Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Autore Galler Martin <1977->
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (247 p.)
Disciplina 530.13/8
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory - Mathematics
Semiconductors - Mathematics
ISBN 1-281-90577-1
9786611905774
981-270-338-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 2. The Bloch-Boltzmann-Peierls Equations; 3. Multigroup Model Equations for Polar Semiconductors; 4. Particle Transport in Indium Phosphide; 5. Particle Transport in Gallium Arsenide; 6. Multigroup Equations for Degenerated Carrier Gases; 7. The Two-dimensional Electron Gas; 8. The Multigroup-WENO Solver for Semiconductor Device Simulation; 9. Simulation of Silicon Devices; 10. Simulation of Gallium Arsenide Devices; 11. Conclusion; Bibliography; Related Publications of the Author; Index
Record Nr. UNINA-9910783921603321
Galler Martin <1977->  
Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Multigroup equations for the description of the particle transport in semiconductors [[electronic resource] /] / Martin Galler
Autore Galler Martin <1977->
Edizione [1st ed.]
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (247 p.)
Disciplina 530.13/8
Collana Series on advances in mathematics for applied sciences
Soggetto topico Transport theory - Mathematics
Semiconductors - Mathematics
ISBN 1-281-90577-1
9786611905774
981-270-338-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 2. The Bloch-Boltzmann-Peierls Equations; 3. Multigroup Model Equations for Polar Semiconductors; 4. Particle Transport in Indium Phosphide; 5. Particle Transport in Gallium Arsenide; 6. Multigroup Equations for Degenerated Carrier Gases; 7. The Two-dimensional Electron Gas; 8. The Multigroup-WENO Solver for Semiconductor Device Simulation; 9. Simulation of Silicon Devices; 10. Simulation of Gallium Arsenide Devices; 11. Conclusion; Bibliography; Related Publications of the Author; Index
Record Nr. UNINA-9910817006203321
Galler Martin <1977->  
Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Autore Krantz William B. <1939->
Pubbl/distr/stampa [New York] : , : AIChE
Descrizione fisica 1 online resource (547pages)
Disciplina 511.4
530.13/8
Soggetto topico Transport theory - Mathematics
Chemical reactions - Mathematical models
Scaling laws (Statistical physics)
Approximation theory
Measurement
Soggetto genere / forma Electronic books.
ISBN 1-280-91685-0
9786610916856
0-470-12193-9
0-470-12192-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SCALING ANALYSIS IN MODELING TRANSPORT AND REACTION PROCESSES; CONTENTS; Preface; Acknowledgments; 1 Introduction; 1.1 Motivation for Using Scaling Analysis; 1.2 Organization of the Book; 2 Systematic Method for Scaling Analysis; 2.1 Introduction; 2.2 Mathematical Basis for Scaling Analysis; 2.3 Order-of-One Scaling Analysis; 2.4 Scaling Alternative for Dimensional Analysis; 2.5 Summary; 3 Applications in Fluid Dynamics; 3.1 Introduction; 3.2 Fully Developed Laminar Flow; 3.3 Creeping- and Lubrication-Flow Approximations; 3.4 Boundary-Layer-Flow Approximation
3.5 Quasi-Steady-State-Flow Approximation3.6 Flows with End and Sidewall Effects; 3.7 Free Surface Flow; 3.8 Porous Media Flow; 3.9 Compressible Fluid Flow; 3.10 Dimensional Analysis Correlation for the Terminal Velocity; 3.11 Summary; 3.E Example Problems; 3.P Practice Problems; 4 Applications in Heat Transfer; 4.1 Introduction; 4.2 Steady-State Heat Transfer with End Effects; 4.3 Film and Penetration Theory Approximations; 4.4 Small Biot Number Approximation; 4.5 Small Peclet Number Approximation; 4.6 Boundary-Layer or Large Peclet Number Approximation; 4.7 Heat Transfer with Phase Change
4.8 Temperature-Dependent Physical Properties4.9 Thermally Driven Free Convection: Boussinesq Approximation; 4.10 Dimensional Analysis Correlation for Cooking a Turkey; 4.11 Summary; 4.E Example Problems; 4.P Practice Problems; 5 Applications in Mass Transfer; 5.1 Introduction; 5.2 Film Theory Approximation; 5.3 Penetration Theory Approximation; 5.4 Small Peclet Number Approximation; 5.5 Small Damköhler Number Approximation; 5.6 Large Peclet Number Approximation; 5.7 Quasi-Steady-State Approximation; 5.8 Membrane Permeation with Nonconstant Diffusivity
5.9 Solutally Driven Free Convection Due to Evapotranspiration5.10 Dimensional Analysis for a Membrane-Lung Oxygenator; 5.11 Summary; 5.E Example Problems; 5.P Practice Problems; 6 Applications in Mass Transfer with Chemical Reaction; 6.1 Introduction; 6.2 Concept of the Microscale Element; 6.3 Scaling the Microscale Element; 6.4 Slow Reaction Regime; 6.5 Intermediate Reaction Regime; 6.6 Fast Reaction Regime; 6.7 Instantaneous Reaction Regime; 6.8 Scaling the Macroscale Element; 6.9 Kinetic Domain of the Slow Reaction Regime; 6.10 Diffusional Domain of the Slow Reaction Regime
6.11 Implications of Scaling Analysis for Reactor Design6.12 Mass-Transfer Coefficients for Reacting Systems; 6.13 Design of a Continuous Stirred Tank Reactor; 6.14 Design of a Packed Column Absorber; 6.15 Summary; 6.P Practice Problems; 7 Applications in Process Design; 7.1 Introduction; 7.2 Design of a Membrane Lung Oxygenator; 7.3 Pulsed Single-Bed Pressure-Swing Adsorption; 7.4 Thermally Induced Phase-Separation Process; 7.5 Fluid-Wall Aerosol Flow Reactor for Hydrogen Production; 7.6 Summary; 7.P Practice Problems; Appendix A Sign Convention for the Force on a Fluid Particle
Appendix B Generalized Form of the Transport Equations
Record Nr. UNINA-9910143413703321
Krantz William B. <1939->  
[New York] : , : AIChE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Autore Krantz William B. <1939->
Pubbl/distr/stampa [New York] : , : AIChE
Descrizione fisica 1 online resource (547pages)
Disciplina 511.4
530.13/8
Soggetto topico Transport theory - Mathematics
Chemical reactions - Mathematical models
Scaling laws (Statistical physics)
Approximation theory
Measurement
ISBN 1-280-91685-0
9786610916856
0-470-12193-9
0-470-12192-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SCALING ANALYSIS IN MODELING TRANSPORT AND REACTION PROCESSES; CONTENTS; Preface; Acknowledgments; 1 Introduction; 1.1 Motivation for Using Scaling Analysis; 1.2 Organization of the Book; 2 Systematic Method for Scaling Analysis; 2.1 Introduction; 2.2 Mathematical Basis for Scaling Analysis; 2.3 Order-of-One Scaling Analysis; 2.4 Scaling Alternative for Dimensional Analysis; 2.5 Summary; 3 Applications in Fluid Dynamics; 3.1 Introduction; 3.2 Fully Developed Laminar Flow; 3.3 Creeping- and Lubrication-Flow Approximations; 3.4 Boundary-Layer-Flow Approximation
3.5 Quasi-Steady-State-Flow Approximation3.6 Flows with End and Sidewall Effects; 3.7 Free Surface Flow; 3.8 Porous Media Flow; 3.9 Compressible Fluid Flow; 3.10 Dimensional Analysis Correlation for the Terminal Velocity; 3.11 Summary; 3.E Example Problems; 3.P Practice Problems; 4 Applications in Heat Transfer; 4.1 Introduction; 4.2 Steady-State Heat Transfer with End Effects; 4.3 Film and Penetration Theory Approximations; 4.4 Small Biot Number Approximation; 4.5 Small Peclet Number Approximation; 4.6 Boundary-Layer or Large Peclet Number Approximation; 4.7 Heat Transfer with Phase Change
4.8 Temperature-Dependent Physical Properties4.9 Thermally Driven Free Convection: Boussinesq Approximation; 4.10 Dimensional Analysis Correlation for Cooking a Turkey; 4.11 Summary; 4.E Example Problems; 4.P Practice Problems; 5 Applications in Mass Transfer; 5.1 Introduction; 5.2 Film Theory Approximation; 5.3 Penetration Theory Approximation; 5.4 Small Peclet Number Approximation; 5.5 Small Damköhler Number Approximation; 5.6 Large Peclet Number Approximation; 5.7 Quasi-Steady-State Approximation; 5.8 Membrane Permeation with Nonconstant Diffusivity
5.9 Solutally Driven Free Convection Due to Evapotranspiration5.10 Dimensional Analysis for a Membrane-Lung Oxygenator; 5.11 Summary; 5.E Example Problems; 5.P Practice Problems; 6 Applications in Mass Transfer with Chemical Reaction; 6.1 Introduction; 6.2 Concept of the Microscale Element; 6.3 Scaling the Microscale Element; 6.4 Slow Reaction Regime; 6.5 Intermediate Reaction Regime; 6.6 Fast Reaction Regime; 6.7 Instantaneous Reaction Regime; 6.8 Scaling the Macroscale Element; 6.9 Kinetic Domain of the Slow Reaction Regime; 6.10 Diffusional Domain of the Slow Reaction Regime
6.11 Implications of Scaling Analysis for Reactor Design6.12 Mass-Transfer Coefficients for Reacting Systems; 6.13 Design of a Continuous Stirred Tank Reactor; 6.14 Design of a Packed Column Absorber; 6.15 Summary; 6.P Practice Problems; 7 Applications in Process Design; 7.1 Introduction; 7.2 Design of a Membrane Lung Oxygenator; 7.3 Pulsed Single-Bed Pressure-Swing Adsorption; 7.4 Thermally Induced Phase-Separation Process; 7.5 Fluid-Wall Aerosol Flow Reactor for Hydrogen Production; 7.6 Summary; 7.P Practice Problems; Appendix A Sign Convention for the Force on a Fluid Particle
Appendix B Generalized Form of the Transport Equations
Record Nr. UNINA-9910830450603321
Krantz William B. <1939->  
[New York] : , : AIChE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Scaling analysis in modeling transport and reaction processes : a systematic approach to model building and the art of approximation / / William B. Krantz
Autore Krantz William B. <1939->
Pubbl/distr/stampa [New York] : , : AIChE
Descrizione fisica 1 online resource (547pages)
Disciplina 511.4
530.13/8
Soggetto topico Transport theory - Mathematics
Chemical reactions - Mathematical models
Scaling laws (Statistical physics)
Approximation theory
Measurement
ISBN 1-280-91685-0
9786610916856
0-470-12193-9
0-470-12192-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SCALING ANALYSIS IN MODELING TRANSPORT AND REACTION PROCESSES; CONTENTS; Preface; Acknowledgments; 1 Introduction; 1.1 Motivation for Using Scaling Analysis; 1.2 Organization of the Book; 2 Systematic Method for Scaling Analysis; 2.1 Introduction; 2.2 Mathematical Basis for Scaling Analysis; 2.3 Order-of-One Scaling Analysis; 2.4 Scaling Alternative for Dimensional Analysis; 2.5 Summary; 3 Applications in Fluid Dynamics; 3.1 Introduction; 3.2 Fully Developed Laminar Flow; 3.3 Creeping- and Lubrication-Flow Approximations; 3.4 Boundary-Layer-Flow Approximation
3.5 Quasi-Steady-State-Flow Approximation3.6 Flows with End and Sidewall Effects; 3.7 Free Surface Flow; 3.8 Porous Media Flow; 3.9 Compressible Fluid Flow; 3.10 Dimensional Analysis Correlation for the Terminal Velocity; 3.11 Summary; 3.E Example Problems; 3.P Practice Problems; 4 Applications in Heat Transfer; 4.1 Introduction; 4.2 Steady-State Heat Transfer with End Effects; 4.3 Film and Penetration Theory Approximations; 4.4 Small Biot Number Approximation; 4.5 Small Peclet Number Approximation; 4.6 Boundary-Layer or Large Peclet Number Approximation; 4.7 Heat Transfer with Phase Change
4.8 Temperature-Dependent Physical Properties4.9 Thermally Driven Free Convection: Boussinesq Approximation; 4.10 Dimensional Analysis Correlation for Cooking a Turkey; 4.11 Summary; 4.E Example Problems; 4.P Practice Problems; 5 Applications in Mass Transfer; 5.1 Introduction; 5.2 Film Theory Approximation; 5.3 Penetration Theory Approximation; 5.4 Small Peclet Number Approximation; 5.5 Small Damköhler Number Approximation; 5.6 Large Peclet Number Approximation; 5.7 Quasi-Steady-State Approximation; 5.8 Membrane Permeation with Nonconstant Diffusivity
5.9 Solutally Driven Free Convection Due to Evapotranspiration5.10 Dimensional Analysis for a Membrane-Lung Oxygenator; 5.11 Summary; 5.E Example Problems; 5.P Practice Problems; 6 Applications in Mass Transfer with Chemical Reaction; 6.1 Introduction; 6.2 Concept of the Microscale Element; 6.3 Scaling the Microscale Element; 6.4 Slow Reaction Regime; 6.5 Intermediate Reaction Regime; 6.6 Fast Reaction Regime; 6.7 Instantaneous Reaction Regime; 6.8 Scaling the Macroscale Element; 6.9 Kinetic Domain of the Slow Reaction Regime; 6.10 Diffusional Domain of the Slow Reaction Regime
6.11 Implications of Scaling Analysis for Reactor Design6.12 Mass-Transfer Coefficients for Reacting Systems; 6.13 Design of a Continuous Stirred Tank Reactor; 6.14 Design of a Packed Column Absorber; 6.15 Summary; 6.P Practice Problems; 7 Applications in Process Design; 7.1 Introduction; 7.2 Design of a Membrane Lung Oxygenator; 7.3 Pulsed Single-Bed Pressure-Swing Adsorption; 7.4 Thermally Induced Phase-Separation Process; 7.5 Fluid-Wall Aerosol Flow Reactor for Hydrogen Production; 7.6 Summary; 7.P Practice Problems; Appendix A Sign Convention for the Force on a Fluid Particle
Appendix B Generalized Form of the Transport Equations
Record Nr. UNINA-9910840748403321
Krantz William B. <1939->  
[New York] : , : AIChE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Autore Moskalets Michael V
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (297 p.)
Disciplina 530.13/8
Soggetto topico S-matrix theory
Transport theory
Soggetto genere / forma Electronic books.
ISBN 1-84816-835-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.4.6.1 Spectrum1.4.6.2 Circulating current; 2. Current noise; 2.1 Nature of a current noise; 2.1.1 Thermal noise; 2.1.2 Shot noise; 2.1.3 Combined noise; 2.2 Sample with continuous spectrum; 2.2.1 Current correlator; 2.2.2 Current correlator in the frequency domain; 2.2.2.1 Correlator for incoming currents; 2.2.2.2 Correlator for incoming and outgoing currents; 2.2.2.3 Correlator for outgoing currents; 2.2.3 Spectral noise power for energy-independent scattering; 2.2.4 Zero frequency noise power; 2.2.4.1 Noise power conservation law; 2.2.4.2 Sign rule for the noise power
2.2.4.3 Scatterer with two leads2.2.5 Fano factor; 3. Non-stationary scattering theory; 3.1 Schr dinger equation with a potential periodic in time; 3.1.1 Perturbation theory; 3.1.2 Floquet functions method; 3.1.3 Potential oscillating in time and uniform in space; 3.2 Floquet scattering matrix; 3.2.1 Floquet scattering matrix properties; 3.2.1.1 Unitarity; 3.2.1.2 Micro-reversibility; 3.3 Current operator; 3.3.1 Alternating current; 3.3.2 Direct current; 3.4 Adiabatic approximation for the Floquet scattering matrix; 3.4.1 Frozen scattering matrix; 3.4.2 Zeroth-order approximation
3.4.3 First-order approximation3.5 Beyond the adiabatic approximation; 3.5.1 Scattering matrix in mixed energy-time representation; 3.5.2 Dynamic point-like potential; 3.5.3 Dynamic double-barrier potential; 3.5.3.1 Adiabatic approximation; 3.5.4 Unitarity and the sum over trajectories; 3.5.5 Current and the sum over trajectories; 3.5.5.1 Temperature-independent contribution to generated current; 3.5.5.2 Contribution to generated current dependent on temperature; 3.5.5.3 Nature of two contributions to generated current; 4. Direct current generated by the dynamic scatterer
4.1 Steady particle flow4.1.1 Distribution function; 4.1.2 Adiabatic regime: Current linear in the pump frequency; 4.1.3 Current quadratic in the pump frequency; 4.2 Quantum pump effect; 4.2.1 Quasi-particle picture of direct current generation; 4.2.2 Interference mechanism of direct current generation; 4.3 Single-parameter adiabatic direct current generation; 5. Alternating current generated by the dynamic scatterer; 5.1 Adiabatic alternating current; 5.2 External AC bias; 5.2.1 Second quantization operators for incident and scattered electrons; 5.2.2 Alternating current
5.2.3 Direct current
Record Nr. UNINA-9910463733303321
Moskalets Michael V  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui