| Autore |
Koroliouk Dmitri
|
| Edizione | [1st ed.] |
| Pubbl/distr/stampa |
Newark : , : John Wiley & Sons, Incorporated, , 2024
|
| Descrizione fisica |
1 online resource (444 pages)
|
| Disciplina |
530.0285
|
| Altri autori (Persone) |
LyashkoSergiy
LimniosNikolaos
|
| Soggetto topico |
Mathematical models
Engineering mathematics
|
| ISBN |
9781394284344
1394284349
9781394284320
1394284322
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. The Hydrodynamic-type Equations and the Solitary Solutions -- 1.1. Introduction -- 1.2. The Korteweg-de Vries equation and the soliton solutions -- 1.3. The Korteweg-de Vries equation with a small perturbation -- 1.4. The linear WKB technique and its generalization -- 1.5. Acknowledgments -- 1.6. References -- Chapter 2. The Nonlinear WKB Technique and Asymptotic Soliton-like Solutions to the Korteweg-de Vries Equation with Variable Coefficients and Singular Perturbation -- 2.1. Introduction -- 2.2. Main notations and definitions -- 2.3. The structure of the asymptotic one-phase soliton-like solution -- 2.4. The KdV equation with quadratic singularity -- 2.5. Equations for the regular part of the asymptotics and their analysis -- 2.6. Equations for the singular part of the asymptotics and their analysis -- 2.6.1. The main term of the singular part -- 2.6.2. The higher terms of the singular part and the orthogonality condition -- 2.6.3. The orthogonality condition and the discontinuity curve -- 2.6.4. Prolongation of the singular terms from the discontinuity curve -- 2.7. Justification of the algorithm -- 2.8. Discussion and conclusion -- 2.9. Acknowledgments -- 2.10. References -- Chapter 3. Asymptotic Analysis of the vcKdV Equation with Weak Singularity -- 3.1. Introduction -- 3.2. The asymptotic soliton-like solutions -- 3.3. The examples of the asymptotic soliton-like solutions -- 3.3.1. The asymptotic step-wise solutions -- 3.3.2. The asymptotic solutions of soliton type -- 3.4. Discussion and conclusion -- 3.5. Acknowledgments -- 3.6. References -- Chapter 4. Modeling of Heterogeneous Fluid Dynamics with Phase Transitions and Porous Media -- 4.1. Introduction -- 4.2. The large particle method -- 4.3. The particle-in-cell method.
4.4. Modeling of heterogeneous fluid dynamics -- 4.5. Modeling of heterogeneous fluid dynamics with phase transitions -- 4.6. Modeling of viscous fluid dynamics and porous media -- 4.7. References -- Chapter 5. Mathematical Models and Control of Functionally Stable Technological Process -- 5.1. Introduction -- 5.2. Analysis of production process planning procedure -- 5.3. Mathematical model of the production process management system of an industrial enterprise -- 5.4. Control design -- 5.5. Algorithm of control of production process -- 5.6. Conclusion -- 5.7. Acknowledgments -- 5.8. References -- Chapter 6. Alternative Direction Multiblock Method with Nesterov Acceleration and Its Applications -- 6.1. Introduction -- 6.2. Proximal operators -- 6.3. ADMM (alternating direction method of multipliers) -- 6.4. Bregman iteration -- 6.5. Forward-backward envelope (FBE) -- 6.6. Douglas-Rachford envelope (DRE) -- 6.7. Proximal algorithms for complex functions -- 6.8. Fast alternative directions methods -- 6.9. Numerical experiments -- 6.9.1. Exchange problem -- 6.9.2. Basis pursuit problem -- 6.9.3. Constrained LASSO problem -- 6.10. Conclusion -- 6.11. References -- Chapter 7. Modified Extragradient Algorithms for Variational Inequalities -- 7.1. Introduction -- 7.2. Preliminaries -- 7.3. Overview of the main algorithms for solving variational inequalities and approximations of fixed points -- 7.4. Modified extragradient algorithm for variational inequalities -- 7.5. Modified extragradient algorithm for variational inequalities and operator equations with a priori information -- 7.6. Strongly convergent modified extragradient algorithm -- 7.6.1. Algorithm variant for variational inequalities -- 7.6.2. Variant for problems with a priori information -- 7.7. References -- Chapter 8. On Multivariate Algorithms of Digital Signatures on Secure El Gamal-Type Mode.
8.1. On post-quantum, multivariate and non-commutative cryptography -- 8.2. On stable subgroups of formal Cremona group and privatization of multivariate public keys based on maps of bounded degree -- 8.3. Multivariate Tahoma protocol for stable Cremona generators and its usage for multivariate encryption algorithms -- 8.4. On multivariate digital signature algorithms and their privatization scheme -- 8.5. Examples of stable cubical groups -- 8.5.1. Simplest graph-based example -- 8.5.2. Other stable subgroups defined via linguistic graphs -- 8.5.3. Special homomorphisms of linguistic graphs and corresponding semigroups -- 8.5.4. Example of stable subsemigroups of arbitrary degree -- 8.6. Conclusion -- 8.7. References -- Chapter 9. Metasurface Model of Geographic Baric Field Formation -- 9.1. Introduction -- 9.2. The parametric scalar field model principle -- 9.3. Local isobaric scalar field model -- 9.4. Modeling Chladni figures based on the proposed model -- 9.5. The frequency of forcing influences and the problem of its detection -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Simulation of the Electron-Hole Plasma State by Perturbation Theory Methods -- 10.1. Introduction. Nonlinear boundary value problems of the p-i-n diodes theory -- 10.2. Construction of an asymptotic solution of a boundary value problem for the system of the charge carrier current continuity equations and the Poisson equation -- 10.3. Simulation of the charge carriers’ stationary distribution in the electron-hole plasma of the p-i-n diode assembly elements -- 10.4. Modeling the charge carriers stationary distribution in the active region of the integrated surface-oriented p-i-n structures -- 10.5. Final considerations -- 10.6. References -- Chapter 11. Diffusion Perturbations in Models of the Dynamics of Infectious Diseases Taking into Account the Concentrated Effects.
11.1. Introduction -- 11.2. Model problem of infectious disease dynamics taking into account diffusion perturbation and asymptotics of the solution -- 11.3. Modeling of diffusion perturbations of infectious disease process taking into account the concentrated effects and immunotherapy -- 11.4. Modeling the influence of diffusion perturbations on development of infectious diseases under convection -- 11.5. Numerical experiment results -- 11.6. Conclusion -- 11.7. References -- Chapter 12. Solitary Waves in "Shallow Water" Environments -- 12.1. Introduction -- 12.2. T-forms for the solitary wave approximation -- 12.3. Existence of the solution of the gas dynamics equations in the form of solitary waves -- 12.4. Analysis of the localized wave trajectories -- 12.5. Numerical results -- 12.6. Conclusion -- 12.7. References -- Chapter 13. Instrument Element and Grid Middleware in Metrology Problems -- 13.1. Introduction -- 13.2. Security in the grid -- 13.3. Grid element for measuring instruments -- 13.4. Grid and some problems of metrology -- 13.5. Discussion and conclusion -- 13.6. References -- Chapter 14. Differential Evolution for Best Uniform Spline Approximation -- 14.1. Introduction -- 14.2. Problem statement -- 14.3. Review of methods for spline approximation -- 14.4. Algorithm -- 14.5. Experimental results and discussion -- 14.6. Conclusion -- 14.7. References -- Chapter 15. Finding a Nearest Pair of Points Between Two Smooth Curves in Euclidean Space -- 15.1. Introduction -- 15.2. Define the problem and notations -- 15.3. Lagrange function with energy dissipation -- 15.4. Lagrange equation -- 15.5. Hamiltonian equations -- 15.6. Numerical experiments -- 15.7. Concluding remarks -- 15.8. References -- Chapter 16. Constrained Markov Decision Process for the Industry -- 16.1. Introduction.
16.2. Introduction to constrained Markov decision processes -- 16.2.1. Introduction -- 16.2.2. Model -- 16.2.3. Economic criteria -- 16.2.4. Infinite horizon expected discounted reward -- 16.2.5. Infinite horizon expected average reward -- 16.3. Markov decision process with a constraint on the asymptotic availability -- 16.3.1. Introduction -- 16.3.2. Model -- 16.3.3. Algorithm -- 16.3.4. Application -- 16.4. Markov decision process with a constraint on the asymptotic failure rate -- 16.4.1. Introduction -- 16.4.2. Model -- 16.4.3. Algorithm -- 16.4.4. Application -- 16.5. Conclusion -- 16.6. References -- List of Authors -- Index -- EULA.
|
| Record Nr. | UNINA-9911019125103321 |