top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning : Honolulu, HI, 1-5 April 2007
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning : Honolulu, HI, 1-5 April 2007
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2007
Disciplina 519.7/03
Soggetto topico Dynamic programming
Machine learning
Operations Research
Civil & Environmental Engineering
Engineering & Applied Sciences
ISBN 1-5090-8720-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996201767103316
[Place of publication not identified], : IEEE, 2007
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning : Honolulu, HI, 1-5 April 2007
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning : Honolulu, HI, 1-5 April 2007
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2007
Disciplina 519.7/03
Soggetto topico Dynamic programming
Machine learning
Operations Research
Civil & Environmental Engineering
Engineering & Applied Sciences
ISBN 9781509087204
1509087206
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910143037403321
[Place of publication not identified], : IEEE, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximate dynamic programming [[electronic resource] ] : solving the curses of dimensionality / / Warren B. Powell
Approximate dynamic programming [[electronic resource] ] : solving the curses of dimensionality / / Warren B. Powell
Autore Powell Warren B. <1955->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : J. Wiley & Sons, c2011
Descrizione fisica 1 online resource (658 p.)
Disciplina 519.7/03
519.703
Collana Wiley series in probability and statistics
Soggetto topico Dynamic programming
Programming (Mathematics)
ISBN 1-283-27370-5
9786613273703
1-118-02916-X
1-118-02917-8
1-118-02915-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Approximate Dynamic Programming; Contents; Preface to the Second Edition; Preface to the First Edition; Acknowledgments; 1 The Challenges of Dynamic Programming; 1.1 A Dynamic Programming Example: A Shortest Path Problem; 1.2 The Three Curses of Dimensionality; 1.3 Some Real Applications; 1.4 Problem Classes; 1.5 The Many Dialects of Dynamic Programming; 1.6 What Is New in This Book?; 1.7 Pedagogy; 1.8 Bibliographic Notes; 2 Some Illustrative Models; 2.1 Deterministic Problems; 2.2 Stochastic Problems; 2.3 Information Acquisition Problems; 2.4 A Simple Modeling Framework for Dynamic Programs
2.5 Bibliographic NotesProblems; 3 Introduction to Markov Decision Processes; 3.1 The Optimality Equations; 3.2 Finite Horizon Problems; 3.3 Infinite Horizon Problems; 3.4 Value Iteration; 3.5 Policy Iteration; 3.6 Hybrid Value-Policy Iteration; 3.7 Average Reward Dynamic Programming; 3.8 The Linear Programming Method for Dynamic Programs; 3.9 Monotone Policies*; 3.10 Why Does It Work?**; 3.11 Bibliographic Notes; Problems; 4 Introduction to Approximate Dynamic Programming; 4.1 The Three Curses of Dimensionality (Revisited); 4.2 The Basic Idea; 4.3 Q-Learning and SARSA
4.4 Real-Time Dynamic Programming4.5 Approximate Value Iteration; 4.6 The Post-Decision State Variable; 4.7 Low-Dimensional Representations of Value Functions; 4.8 So Just What Is Approximate Dynamic Programming?; 4.9 Experimental Issues; 4.10 But Does It Work?; 4.11 Bibliographic Notes; Problems; 5 Modeling Dynamic Programs; 5.1 Notational Style; 5.2 Modeling Time; 5.3 Modeling Resources; 5.4 The States of Our System; 5.5 Modeling Decisions; 5.6 The Exogenous Information Process; 5.7 The Transition Function; 5.8 The Objective Function; 5.9 A Measure-Theoretic View of Information**
5.10 Bibliographic NotesProblems; 6 Policies; 6.1 Myopic Policies; 6.2 Lookahead Policies; 6.3 Policy Function Approximations; 6.4 Value Function Approximations; 6.5 Hybrid Strategies; 6.6 Randomized Policies; 6.7 How to Choose a Policy?; 6.8 Bibliographic Notes; Problems; 7 Policy Search; 7.1 Background; 7.2 Gradient Search; 7.3 Direct Policy Search for Finite Alternatives; 7.4 The Knowledge Gradient Algorithm for Discrete Alternatives; 7.5 Simulation Optimization; 7.6 Why Does It Work?**; 7.7 Bibliographic Notes; Problems; 8 Approximating Value Functions; 8.1 Lookup Tables and Aggregation
8.2 Parametric Models8.3 Regression Variations; 8.4 Nonparametric Models; 8.5 Approximations and the Curse of Dimensionality; 8.6 Why Does It Work?**; 8.7 Bibliographic Notes; Problems; 9 Learning Value Function Approximations; 9.1 Sampling the Value of a Policy; 9.2 Stochastic Approximation Methods; 9.3 Recursive Least Squares for Linear Models; 9.4 Temporal Difference Learning with a Linear Model; 9.5 Bellman's Equation Using a Linear Model; 9.6 Analysis of TD(0), LSTD, and LSPE Using a Single State; 9.7 Gradient-Based Methods for Approximate Value Iteration*
9.8 Least Squares Temporal Differencing with Kernel Regression*
Record Nr. UNINA-9910139593803321
Powell Warren B. <1955->  
Hoboken, N.J., : J. Wiley & Sons, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximate dynamic programming : solving the curses of dimensionality / / Warren B. Powell
Approximate dynamic programming : solving the curses of dimensionality / / Warren B. Powell
Autore Powell Warren B. <1955->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : J. Wiley & Sons, c2011
Descrizione fisica 1 online resource (658 p.)
Disciplina 519.7/03
Collana Wiley series in probability and statistics
Soggetto topico Dynamic programming
Programming (Mathematics)
ISBN 9786613273703
9781283273701
1283273705
9781118029169
111802916X
9781118029176
1118029178
9781118029152
1118029151
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Approximate Dynamic Programming; Contents; Preface to the Second Edition; Preface to the First Edition; Acknowledgments; 1 The Challenges of Dynamic Programming; 1.1 A Dynamic Programming Example: A Shortest Path Problem; 1.2 The Three Curses of Dimensionality; 1.3 Some Real Applications; 1.4 Problem Classes; 1.5 The Many Dialects of Dynamic Programming; 1.6 What Is New in This Book?; 1.7 Pedagogy; 1.8 Bibliographic Notes; 2 Some Illustrative Models; 2.1 Deterministic Problems; 2.2 Stochastic Problems; 2.3 Information Acquisition Problems; 2.4 A Simple Modeling Framework for Dynamic Programs
2.5 Bibliographic NotesProblems; 3 Introduction to Markov Decision Processes; 3.1 The Optimality Equations; 3.2 Finite Horizon Problems; 3.3 Infinite Horizon Problems; 3.4 Value Iteration; 3.5 Policy Iteration; 3.6 Hybrid Value-Policy Iteration; 3.7 Average Reward Dynamic Programming; 3.8 The Linear Programming Method for Dynamic Programs; 3.9 Monotone Policies*; 3.10 Why Does It Work?**; 3.11 Bibliographic Notes; Problems; 4 Introduction to Approximate Dynamic Programming; 4.1 The Three Curses of Dimensionality (Revisited); 4.2 The Basic Idea; 4.3 Q-Learning and SARSA
4.4 Real-Time Dynamic Programming4.5 Approximate Value Iteration; 4.6 The Post-Decision State Variable; 4.7 Low-Dimensional Representations of Value Functions; 4.8 So Just What Is Approximate Dynamic Programming?; 4.9 Experimental Issues; 4.10 But Does It Work?; 4.11 Bibliographic Notes; Problems; 5 Modeling Dynamic Programs; 5.1 Notational Style; 5.2 Modeling Time; 5.3 Modeling Resources; 5.4 The States of Our System; 5.5 Modeling Decisions; 5.6 The Exogenous Information Process; 5.7 The Transition Function; 5.8 The Objective Function; 5.9 A Measure-Theoretic View of Information**
5.10 Bibliographic NotesProblems; 6 Policies; 6.1 Myopic Policies; 6.2 Lookahead Policies; 6.3 Policy Function Approximations; 6.4 Value Function Approximations; 6.5 Hybrid Strategies; 6.6 Randomized Policies; 6.7 How to Choose a Policy?; 6.8 Bibliographic Notes; Problems; 7 Policy Search; 7.1 Background; 7.2 Gradient Search; 7.3 Direct Policy Search for Finite Alternatives; 7.4 The Knowledge Gradient Algorithm for Discrete Alternatives; 7.5 Simulation Optimization; 7.6 Why Does It Work?**; 7.7 Bibliographic Notes; Problems; 8 Approximating Value Functions; 8.1 Lookup Tables and Aggregation
8.2 Parametric Models8.3 Regression Variations; 8.4 Nonparametric Models; 8.5 Approximations and the Curse of Dimensionality; 8.6 Why Does It Work?**; 8.7 Bibliographic Notes; Problems; 9 Learning Value Function Approximations; 9.1 Sampling the Value of a Policy; 9.2 Stochastic Approximation Methods; 9.3 Recursive Least Squares for Linear Models; 9.4 Temporal Difference Learning with a Linear Model; 9.5 Bellman's Equation Using a Linear Model; 9.6 Analysis of TD(0), LSTD, and LSPE Using a Single State; 9.7 Gradient-Based Methods for Approximate Value Iteration*
9.8 Least Squares Temporal Differencing with Kernel Regression*
Record Nr. UNINA-9910822581503321
Powell Warren B. <1955->  
Hoboken, N.J., : J. Wiley & Sons, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic programming : foundations and principles / / Moshe Sniedovich
Dynamic programming : foundations and principles / / Moshe Sniedovich
Autore Sniedovich Moshe <1945->
Edizione [2nd ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , 2010
Descrizione fisica 1 online resource (616 p.)
Disciplina 519.7/03
Collana Pure and applied mathematics
Soggetto topico Dynamic programming
Programming (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 0-429-11620-9
1-282-90218-0
9786612902185
1-4200-1463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Preface (first edition); List of Figures; List of Tables; Contents; Chapter 1. Introduction; Chapter 2. Fundamentals; Chapter 3. Multistage Decision Model; Chapter 4. Dynamic Programming - An Outline; Chapter 5. Solution Methods; Chapter 6. Successive Approximation Methods; Chapter 7. Optimal Policies; Chpater 8. The Curse of Dimensionality; Chapter 9. The Rest Is Mathematics and Experience; Chapter 10. Refinements; Chapter 11. The State; Chapter 12. Parametric Schemes; Chapter 13. The Principle of Optimality; Chapter 14. Forward Decomposition; Chapter 15. Push!
Chapter 16. What Then Is Dynamic Programming?Appendix A. Contraction Mapping; Appendix B. Fractional Programming; Appendix C. Composite Concave Programming; Appendix D. The Principle of Optimality in Stochastic Processes; Appendix E. The Corridor Method; Bibliography; Back cover
Record Nr. UNINA-9910459543403321
Sniedovich Moshe <1945->  
Boca Raton : , : CRC Press, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic programming : foundations and principles / / Moshe Sniedovich
Dynamic programming : foundations and principles / / Moshe Sniedovich
Autore Sniedovich Moshe <1945->
Edizione [2nd ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , 2010
Descrizione fisica 1 online resource (616 p.)
Disciplina 519.7/03
Collana Pure and applied mathematics
Soggetto topico Dynamic programming
Programming (Mathematics)
ISBN 0-429-11620-9
1-282-90218-0
9786612902185
1-4200-1463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Preface (first edition); List of Figures; List of Tables; Contents; Chapter 1. Introduction; Chapter 2. Fundamentals; Chapter 3. Multistage Decision Model; Chapter 4. Dynamic Programming - An Outline; Chapter 5. Solution Methods; Chapter 6. Successive Approximation Methods; Chapter 7. Optimal Policies; Chpater 8. The Curse of Dimensionality; Chapter 9. The Rest Is Mathematics and Experience; Chapter 10. Refinements; Chapter 11. The State; Chapter 12. Parametric Schemes; Chapter 13. The Principle of Optimality; Chapter 14. Forward Decomposition; Chapter 15. Push!
Chapter 16. What Then Is Dynamic Programming?Appendix A. Contraction Mapping; Appendix B. Fractional Programming; Appendix C. Composite Concave Programming; Appendix D. The Principle of Optimality in Stochastic Processes; Appendix E. The Corridor Method; Bibliography; Back cover
Record Nr. UNINA-9910785135103321
Sniedovich Moshe <1945->  
Boca Raton : , : CRC Press, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic programming : foundations and principles / / Moshe Sniedovich
Dynamic programming : foundations and principles / / Moshe Sniedovich
Autore Sniedovich Moshe <1945->
Edizione [2nd ed.]
Pubbl/distr/stampa Boca Raton, : CRC Press, 2010
Descrizione fisica 1 online resource (616 p.)
Disciplina 519.7/03
Collana Pure and applied mathematics
Soggetto topico Dynamic programming
Programming (Mathematics)
ISBN 0-429-11620-9
1-282-90218-0
9786612902185
1-4200-1463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Preface (first edition); List of Figures; List of Tables; Contents; Chapter 1. Introduction; Chapter 2. Fundamentals; Chapter 3. Multistage Decision Model; Chapter 4. Dynamic Programming - An Outline; Chapter 5. Solution Methods; Chapter 6. Successive Approximation Methods; Chapter 7. Optimal Policies; Chpater 8. The Curse of Dimensionality; Chapter 9. The Rest Is Mathematics and Experience; Chapter 10. Refinements; Chapter 11. The State; Chapter 12. Parametric Schemes; Chapter 13. The Principle of Optimality; Chapter 14. Forward Decomposition; Chapter 15. Push!
Chapter 16. What Then Is Dynamic Programming?Appendix A. Contraction Mapping; Appendix B. Fractional Programming; Appendix C. Composite Concave Programming; Appendix D. The Principle of Optimality in Stochastic Processes; Appendix E. The Corridor Method; Bibliography; Back cover
Record Nr. UNINA-9910968271603321
Sniedovich Moshe <1945->  
Boca Raton, : CRC Press, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2004
Descrizione fisica 1 PDF (xxi, 644 pages) : illustrations
Disciplina 519.7/03
Altri autori (Persone) SiJennie
Collana IEEE press series on computational intelligence
Soggetto topico Dynamic programming
Automatic programming (Computer science)
Machine learning
Control theory
Systems engineering
Engineering & Applied Sciences
Civil & Environmental Engineering
Computer Science
Operations Research
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword. -- 1. ADP: goals, opportunities and principles. -- Part I: Overview. -- 2. Reinforcement learning and its relationship to supervised learning. -- 3. Model-based adaptive critic designs. -- 4. Guidance in the use of adaptive critics for control. -- 5. Direct neural dynamic programming. -- 6. The linear programming approach to approximate dynamic programming. -- 7. Reinforcement learning in large, high-dimensional state spaces. -- 8. Hierarchical decision making. -- Part II: Technical advances. -- 9. Improved temporal difference methods with linear function approximation. -- 10. Approximate dynamic programming for high-dimensional resource allocation problems. -- 11. Hierarchical approaches to concurrency, multiagency, and partial observability. -- 12. Learning and optimization - from a system theoretic perspective. -- 13. Robust reinforcement learning using integral-quadratic constraints. -- 14. Supervised actor-critic reinforcement learning. -- 15. BPTT and DAC - a common framework for comparison. -- Part III: Applications. -- 16. Near-optimal control via reinforcement learning. -- 17. Multiobjective control problems by reinforcement learning. -- 18. Adaptive critic based neural network for control-constrained agile missile. -- 19. Applications of approximate dynamic programming in power systems control. -- 20. Robust reinforcement learning for heating, ventilation, and air conditioning control of buildings. -- 21. Helicopter flight control using direct neural dynamic programming. -- 22. Toward dynamic stochastic optimal power flow. -- 23. Control, optimization, security, and self-healing of benchmark power systems.
Record Nr. UNINA-9910133842403321
Hoboken, New Jersey : , : IEEE Press, , c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2004
Descrizione fisica 1 PDF (xxi, 644 pages) : illustrations
Disciplina 519.7/03
Altri autori (Persone) SiJennie
Collana IEEE press series on computational intelligence
Soggetto topico Dynamic programming
Automatic programming (Computer science)
Machine learning
Control theory
Systems engineering
Engineering & Applied Sciences
Civil & Environmental Engineering
Computer Science
Operations Research
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword. -- 1. ADP: goals, opportunities and principles. -- Part I: Overview. -- 2. Reinforcement learning and its relationship to supervised learning. -- 3. Model-based adaptive critic designs. -- 4. Guidance in the use of adaptive critics for control. -- 5. Direct neural dynamic programming. -- 6. The linear programming approach to approximate dynamic programming. -- 7. Reinforcement learning in large, high-dimensional state spaces. -- 8. Hierarchical decision making. -- Part II: Technical advances. -- 9. Improved temporal difference methods with linear function approximation. -- 10. Approximate dynamic programming for high-dimensional resource allocation problems. -- 11. Hierarchical approaches to concurrency, multiagency, and partial observability. -- 12. Learning and optimization - from a system theoretic perspective. -- 13. Robust reinforcement learning using integral-quadratic constraints. -- 14. Supervised actor-critic reinforcement learning. -- 15. BPTT and DAC - a common framework for comparison. -- Part III: Applications. -- 16. Near-optimal control via reinforcement learning. -- 17. Multiobjective control problems by reinforcement learning. -- 18. Adaptive critic based neural network for control-constrained agile missile. -- 19. Applications of approximate dynamic programming in power systems control. -- 20. Robust reinforcement learning for heating, ventilation, and air conditioning control of buildings. -- 21. Helicopter flight control using direct neural dynamic programming. -- 22. Toward dynamic stochastic optimal power flow. -- 23. Control, optimization, security, and self-healing of benchmark power systems.
Record Nr. UNISA-996216868103316
Hoboken, New Jersey : , : IEEE Press, , c2004
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Handbook of learning and approximate dynamic programming / / [edited by] Jennie Si ... [et al.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2004
Descrizione fisica 1 PDF (xxi, 644 pages) : illustrations
Disciplina 519.7/03
Altri autori (Persone) SiJennie
Collana IEEE press series on computational intelligence
Soggetto topico Dynamic programming
Automatic programming (Computer science)
Machine learning
Control theory
Systems engineering
Engineering & Applied Sciences
Civil & Environmental Engineering
Computer Science
Operations Research
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword. -- 1. ADP: goals, opportunities and principles. -- Part I: Overview. -- 2. Reinforcement learning and its relationship to supervised learning. -- 3. Model-based adaptive critic designs. -- 4. Guidance in the use of adaptive critics for control. -- 5. Direct neural dynamic programming. -- 6. The linear programming approach to approximate dynamic programming. -- 7. Reinforcement learning in large, high-dimensional state spaces. -- 8. Hierarchical decision making. -- Part II: Technical advances. -- 9. Improved temporal difference methods with linear function approximation. -- 10. Approximate dynamic programming for high-dimensional resource allocation problems. -- 11. Hierarchical approaches to concurrency, multiagency, and partial observability. -- 12. Learning and optimization - from a system theoretic perspective. -- 13. Robust reinforcement learning using integral-quadratic constraints. -- 14. Supervised actor-critic reinforcement learning. -- 15. BPTT and DAC - a common framework for comparison. -- Part III: Applications. -- 16. Near-optimal control via reinforcement learning. -- 17. Multiobjective control problems by reinforcement learning. -- 18. Adaptive critic based neural network for control-constrained agile missile. -- 19. Applications of approximate dynamic programming in power systems control. -- 20. Robust reinforcement learning for heating, ventilation, and air conditioning control of buildings. -- 21. Helicopter flight control using direct neural dynamic programming. -- 22. Toward dynamic stochastic optimal power flow. -- 23. Control, optimization, security, and self-healing of benchmark power systems.
Record Nr. UNINA-9910829994103321
Hoboken, New Jersey : , : IEEE Press, , c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui