top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Causality [[electronic resource] ] : statistical perspectives and applications / / edited by Carlo Berzuini, Philip Dawid, Luisa Bernardinelli
Causality [[electronic resource] ] : statistical perspectives and applications / / edited by Carlo Berzuini, Philip Dawid, Luisa Bernardinelli
Autore Berzuini Carlo
Pubbl/distr/stampa Chichester, West Sussex, U.K., : Wiley, 2012
Descrizione fisica 1 online resource (415 p.)
Disciplina 519.5/44
Altri autori (Persone) BerzuiniCarlo
DawidPhilip
BernardinelliLuisa
Collana Wiley series in probability and statistics
Soggetto topico Estimation theory
Causation
Causality (Physics)
ISBN 1-119-94173-3
1-280-67923-9
9786613656162
1-119-94571-2
1-119-94570-4
Classificazione MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical causality : some historical remarks -- The language of potential outcomes -- Structural equations, graphs and interventions -- The decision-theoretic approach to causal -- Causal inference as a prediction problem : assumptions, identification, and evidence synthesis -- Graph-based criteria of identifiability of causal questions -- Causal inference from observational data : a Bayesian predictive approach -- Causal inference from observing sequences of actions -- Causal effects and natural laws : towards a conceptualization of causal counterfactuals -- For non-manipulable exposures, with application to the effects of race and sex -- Cross-classifications by joint potential outcomes -- Estimation of direct and indirect effects -- The mediation formula : a guide to the assessment of causal pathways in nonlinear models -- The sufficient cause framework in statistics, philosophy and the biomedical and social sciences -- Inference about biological mechanism on the basis of epidemiological data -- Ion channels and multiple sclerosis -- Supplementary variables for causal estimation -- Time-varying confounding : some practical considerations in a likelihood framework -- Natural experiments as a means of testing causal inferences -- Nonreactive and purely reactive doses in observational studies -- Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies) -- Causal inference in clinical trials -- Granger causality and causal inference in time series analysis -- Dynamic molecular networks and mechanisms iIn the biosciences : a statistical framework.
Record Nr. UNINA-9910139088403321
Berzuini Carlo  
Chichester, West Sussex, U.K., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Causality : statistical perspectives and applications / / edited by Carlo Berzuini, Philip Dawid, Luisa Bernardinelli
Causality : statistical perspectives and applications / / edited by Carlo Berzuini, Philip Dawid, Luisa Bernardinelli
Autore Berzuini Carlo
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : Wiley, 2012
Descrizione fisica 1 online resource (415 p.)
Disciplina 519.5/44
Altri autori (Persone) BerzuiniCarlo
DawidPhilip
BernardinelliLuisa
Collana Wiley series in probability and statistics
Soggetto topico Estimation theory
Causation
Causality (Physics)
ISBN 9786613656162
9781119941736
1119941733
9781280679230
1280679239
9781119945710
1119945712
9781119945703
1119945704
Classificazione MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Statistical causality : some historical remarks -- The language of potential outcomes -- Structural equations, graphs and interventions -- The decision-theoretic approach to causal -- Causal inference as a prediction problem : assumptions, identification, and evidence synthesis -- Graph-based criteria of identifiability of causal questions -- Causal inference from observational data : a Bayesian predictive approach -- Causal inference from observing sequences of actions -- Causal effects and natural laws : towards a conceptualization of causal counterfactuals -- For non-manipulable exposures, with application to the effects of race and sex -- Cross-classifications by joint potential outcomes -- Estimation of direct and indirect effects -- The mediation formula : a guide to the assessment of causal pathways in nonlinear models -- The sufficient cause framework in statistics, philosophy and the biomedical and social sciences -- Inference about biological mechanism on the basis of epidemiological data -- Ion channels and multiple sclerosis -- Supplementary variables for causal estimation -- Time-varying confounding : some practical considerations in a likelihood framework -- Natural experiments as a means of testing causal inferences -- Nonreactive and purely reactive doses in observational studies -- Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies) -- Causal inference in clinical trials -- Granger causality and causal inference in time series analysis -- Dynamic molecular networks and mechanisms iIn the biosciences : a statistical framework.
Record Nr. UNINA-9910820793703321
Berzuini Carlo  
Chichester, West Sussex, U.K., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The EM algorithm and extensions [[electronic resource] /] / Geoffrey J. McLachlan, Thriyambakam Krishnan
The EM algorithm and extensions [[electronic resource] /] / Geoffrey J. McLachlan, Thriyambakam Krishnan
Autore McLachlan Geoffrey J. <1946->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2008
Descrizione fisica 1 online resource (399 p.)
Disciplina 519.5
519.5/44
519.544
Altri autori (Persone) KrishnanT <1938-> (Thriyambakam)
Collana Wiley series in probability and statistics
Soggetto topico Expectation-maximization algorithms
Estimation theory
Missing observations (Statistics)
ISBN 1-281-28447-5
9786611284473
0-470-19161-9
0-470-19160-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The EM Algorithm and Extensions; CONTENTS; PREFACE TO THE SECOND EDITION; PREFACE TO THE FIRST EDITION; LIST OF EXAMPLES; 1 GENERAL INTRODUCTION; 1.1 Introduction; 1.2 Maximum Likelihood Estimation; 1.3 Newton-Type Methods; 1.3.1 Introduction; 1.3.2 Newton-Raphson Method; 1.3.3 Quasi-Newton Methods; 1.3.4 Modified Newton Methods; 1.4 Introductory Examples; 1.4.1 Introduction; 1.4.2 Example 1.1: A Multinomial Example; 1.4.3 Example 1.2: Estimation of Mixing Proportions; 1.5 Formulation of the EM Algorithm; 1.5.1 EM Algorithm; 1.5.2 Example 1.3: Censored Exponentially Distributed Survival Times
1.5.3 E- and M-Steps for the Regular Exponential Family1.5.4 Example 1.4: Censored Exponentially Distributed Survival Times (Example 1.3 Continued); 1.5.5 Generalized EM Algorithm; 1.5.6 GEM Algorithm Based on One Newton-Raphson Step; 1.5.7 EM Gradient Algorithm; 1.5.8 EM Mapping; 1.6 EM Algorithm for MAP and MPL Estimation; 1.6.1 Maximum a Posteriori Estimation; 1.6.2 Example 1.5: A Multinomial Example (Example 1.1 Continued); 1.6.3 Maximum Penalized Estimation; 1.7 Brief Summary of the Properties of the EM Algorithm; 1.8 History of the EM Algorithm; 1.8.1 Early EM History
1.8.2 Work Before Dempster, Laird, and Rubin (1977)1.8.3 EM Examples and Applications Since Dempster, Laird, and Rubin (1977); 1.8.4 Two Interpretations of EM; 1.8.5 Developments in EM Theory, Methodology, and Applications; 1.9 Overview of the Book; 1.10 Notations; 2 EXAMPLES OF THE EM ALGORITHM; 2.1 Introduction; 2.2 Multivariate Data with Missing Values; 2.2.1 Example 2.1: Bivariate Normal Data with Missing Values; 2.2.2 Numerical Illustration; 2.2.3 Multivariate Data: Buck's Method; 2.3 Least Squares with Missing Data; 2.3.1 Healy-Westmacott Procedure
2.3.2 Example 2.2: Linear Regression with Missing Dependent Values2.3.3 Example 2.3: Missing Values in a Latin Square Design; 2.3.4 Healy-Westmacott Procedure as an EM Algorithm; 2.4 Example 2.4: Multinomial with Complex Cell Structure; 2.5 Example 2.5: Analysis of PET and SPECT Data; 2.6 Example 2.6: Multivariate t-Distribution (Known D.F.); 2.6.1 ML Estimation of Multivariate t-Distribution; 2.6.2 Numerical Example: Stack Loss Data; 2.7 Finite Normal Mixtures; 2.7.1 Example 2.7: Univariate Component Densities; 2.7.2 Example 2.8: Multivariate Component Densities
2.7.3 Numerical Example: Red Blood Cell Volume Data2.8 Example 2.9: Grouped and Truncated Data; 2.8.1 Introduction; 2.8.2 Specification of Complete Data; 2.8.3 E-Step; 2.8.4 M-Step; 2.8.5 Confirmation of Incomplete-Data Score Statistic; 2.8.6 M-Step for Grouped Normal Data; 2.8.7 Numerical Example: Grouped Log Normal Data; 2.9 Example 2.10: A Hidden Markov AR(1) model; 3 BASIC THEORY OF THE EM ALGORITHM; 3.1 Introduction; 3.2 Monotonicity of the EM Algorithm; 3.3 Monotonicity of a Generalized EM Algorithm; 3.4 Convergence of an EM Sequence to a Stationary Value; 3.4.1 Introduction
3.4.2 Regularity Conditions of Wu (1983)
Record Nr. UNINA-9910145008603321
McLachlan Geoffrey J. <1946->  
Hoboken, N.J., : Wiley-Interscience, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The EM algorithm and extensions [[electronic resource] /] / Geoffrey J. McLachlan, Thriyambakam Krishnan
The EM algorithm and extensions [[electronic resource] /] / Geoffrey J. McLachlan, Thriyambakam Krishnan
Autore McLachlan Geoffrey J. <1946->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2008
Descrizione fisica 1 online resource (399 p.)
Disciplina 519.5
519.5/44
519.544
Altri autori (Persone) KrishnanT <1938-> (Thriyambakam)
Collana Wiley series in probability and statistics
Soggetto topico Expectation-maximization algorithms
Estimation theory
Missing observations (Statistics)
ISBN 1-281-28447-5
9786611284473
0-470-19161-9
0-470-19160-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The EM Algorithm and Extensions; CONTENTS; PREFACE TO THE SECOND EDITION; PREFACE TO THE FIRST EDITION; LIST OF EXAMPLES; 1 GENERAL INTRODUCTION; 1.1 Introduction; 1.2 Maximum Likelihood Estimation; 1.3 Newton-Type Methods; 1.3.1 Introduction; 1.3.2 Newton-Raphson Method; 1.3.3 Quasi-Newton Methods; 1.3.4 Modified Newton Methods; 1.4 Introductory Examples; 1.4.1 Introduction; 1.4.2 Example 1.1: A Multinomial Example; 1.4.3 Example 1.2: Estimation of Mixing Proportions; 1.5 Formulation of the EM Algorithm; 1.5.1 EM Algorithm; 1.5.2 Example 1.3: Censored Exponentially Distributed Survival Times
1.5.3 E- and M-Steps for the Regular Exponential Family1.5.4 Example 1.4: Censored Exponentially Distributed Survival Times (Example 1.3 Continued); 1.5.5 Generalized EM Algorithm; 1.5.6 GEM Algorithm Based on One Newton-Raphson Step; 1.5.7 EM Gradient Algorithm; 1.5.8 EM Mapping; 1.6 EM Algorithm for MAP and MPL Estimation; 1.6.1 Maximum a Posteriori Estimation; 1.6.2 Example 1.5: A Multinomial Example (Example 1.1 Continued); 1.6.3 Maximum Penalized Estimation; 1.7 Brief Summary of the Properties of the EM Algorithm; 1.8 History of the EM Algorithm; 1.8.1 Early EM History
1.8.2 Work Before Dempster, Laird, and Rubin (1977)1.8.3 EM Examples and Applications Since Dempster, Laird, and Rubin (1977); 1.8.4 Two Interpretations of EM; 1.8.5 Developments in EM Theory, Methodology, and Applications; 1.9 Overview of the Book; 1.10 Notations; 2 EXAMPLES OF THE EM ALGORITHM; 2.1 Introduction; 2.2 Multivariate Data with Missing Values; 2.2.1 Example 2.1: Bivariate Normal Data with Missing Values; 2.2.2 Numerical Illustration; 2.2.3 Multivariate Data: Buck's Method; 2.3 Least Squares with Missing Data; 2.3.1 Healy-Westmacott Procedure
2.3.2 Example 2.2: Linear Regression with Missing Dependent Values2.3.3 Example 2.3: Missing Values in a Latin Square Design; 2.3.4 Healy-Westmacott Procedure as an EM Algorithm; 2.4 Example 2.4: Multinomial with Complex Cell Structure; 2.5 Example 2.5: Analysis of PET and SPECT Data; 2.6 Example 2.6: Multivariate t-Distribution (Known D.F.); 2.6.1 ML Estimation of Multivariate t-Distribution; 2.6.2 Numerical Example: Stack Loss Data; 2.7 Finite Normal Mixtures; 2.7.1 Example 2.7: Univariate Component Densities; 2.7.2 Example 2.8: Multivariate Component Densities
2.7.3 Numerical Example: Red Blood Cell Volume Data2.8 Example 2.9: Grouped and Truncated Data; 2.8.1 Introduction; 2.8.2 Specification of Complete Data; 2.8.3 E-Step; 2.8.4 M-Step; 2.8.5 Confirmation of Incomplete-Data Score Statistic; 2.8.6 M-Step for Grouped Normal Data; 2.8.7 Numerical Example: Grouped Log Normal Data; 2.9 Example 2.10: A Hidden Markov AR(1) model; 3 BASIC THEORY OF THE EM ALGORITHM; 3.1 Introduction; 3.2 Monotonicity of the EM Algorithm; 3.3 Monotonicity of a Generalized EM Algorithm; 3.4 Convergence of an EM Sequence to a Stationary Value; 3.4.1 Introduction
3.4.2 Regularity Conditions of Wu (1983)
Record Nr. UNINA-9910831039703321
McLachlan Geoffrey J. <1946->  
Hoboken, N.J., : Wiley-Interscience, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The EM algorithm and extensions / / Geoffrey J. McLachlan, Thriyambakam Krishnan
The EM algorithm and extensions / / Geoffrey J. McLachlan, Thriyambakam Krishnan
Autore McLachlan Geoffrey J. <1946->
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2008
Descrizione fisica 1 online resource (399 p.)
Disciplina 519.5/44
Altri autori (Persone) KrishnanT <1938-> (Thriyambakam)
Collana Wiley series in probability and statistics
Soggetto topico Expectation-maximization algorithms
Estimation theory
Missing observations (Statistics)
ISBN 9786611284473
9781281284471
1281284475
9780470191613
0470191619
9780470191606
0470191600
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The EM Algorithm and Extensions; CONTENTS; PREFACE TO THE SECOND EDITION; PREFACE TO THE FIRST EDITION; LIST OF EXAMPLES; 1 GENERAL INTRODUCTION; 1.1 Introduction; 1.2 Maximum Likelihood Estimation; 1.3 Newton-Type Methods; 1.3.1 Introduction; 1.3.2 Newton-Raphson Method; 1.3.3 Quasi-Newton Methods; 1.3.4 Modified Newton Methods; 1.4 Introductory Examples; 1.4.1 Introduction; 1.4.2 Example 1.1: A Multinomial Example; 1.4.3 Example 1.2: Estimation of Mixing Proportions; 1.5 Formulation of the EM Algorithm; 1.5.1 EM Algorithm; 1.5.2 Example 1.3: Censored Exponentially Distributed Survival Times
1.5.3 E- and M-Steps for the Regular Exponential Family1.5.4 Example 1.4: Censored Exponentially Distributed Survival Times (Example 1.3 Continued); 1.5.5 Generalized EM Algorithm; 1.5.6 GEM Algorithm Based on One Newton-Raphson Step; 1.5.7 EM Gradient Algorithm; 1.5.8 EM Mapping; 1.6 EM Algorithm for MAP and MPL Estimation; 1.6.1 Maximum a Posteriori Estimation; 1.6.2 Example 1.5: A Multinomial Example (Example 1.1 Continued); 1.6.3 Maximum Penalized Estimation; 1.7 Brief Summary of the Properties of the EM Algorithm; 1.8 History of the EM Algorithm; 1.8.1 Early EM History
1.8.2 Work Before Dempster, Laird, and Rubin (1977)1.8.3 EM Examples and Applications Since Dempster, Laird, and Rubin (1977); 1.8.4 Two Interpretations of EM; 1.8.5 Developments in EM Theory, Methodology, and Applications; 1.9 Overview of the Book; 1.10 Notations; 2 EXAMPLES OF THE EM ALGORITHM; 2.1 Introduction; 2.2 Multivariate Data with Missing Values; 2.2.1 Example 2.1: Bivariate Normal Data with Missing Values; 2.2.2 Numerical Illustration; 2.2.3 Multivariate Data: Buck's Method; 2.3 Least Squares with Missing Data; 2.3.1 Healy-Westmacott Procedure
2.3.2 Example 2.2: Linear Regression with Missing Dependent Values2.3.3 Example 2.3: Missing Values in a Latin Square Design; 2.3.4 Healy-Westmacott Procedure as an EM Algorithm; 2.4 Example 2.4: Multinomial with Complex Cell Structure; 2.5 Example 2.5: Analysis of PET and SPECT Data; 2.6 Example 2.6: Multivariate t-Distribution (Known D.F.); 2.6.1 ML Estimation of Multivariate t-Distribution; 2.6.2 Numerical Example: Stack Loss Data; 2.7 Finite Normal Mixtures; 2.7.1 Example 2.7: Univariate Component Densities; 2.7.2 Example 2.8: Multivariate Component Densities
2.7.3 Numerical Example: Red Blood Cell Volume Data2.8 Example 2.9: Grouped and Truncated Data; 2.8.1 Introduction; 2.8.2 Specification of Complete Data; 2.8.3 E-Step; 2.8.4 M-Step; 2.8.5 Confirmation of Incomplete-Data Score Statistic; 2.8.6 M-Step for Grouped Normal Data; 2.8.7 Numerical Example: Grouped Log Normal Data; 2.9 Example 2.10: A Hidden Markov AR(1) model; 3 BASIC THEORY OF THE EM ALGORITHM; 3.1 Introduction; 3.2 Monotonicity of the EM Algorithm; 3.3 Monotonicity of a Generalized EM Algorithm; 3.4 Convergence of an EM Sequence to a Stationary Value; 3.4.1 Introduction
3.4.2 Regularity Conditions of Wu (1983)
Record Nr. UNINA-9911020436103321
McLachlan Geoffrey J. <1946->  
Hoboken, N.J., : Wiley-Interscience, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Estimation in surveys with nonresponse [[electronic resource] /] / Carl-Erik Särndal, Sixten Lundström
Estimation in surveys with nonresponse [[electronic resource] /] / Carl-Erik Särndal, Sixten Lundström
Autore Särndal Carl-Erik <1937->
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (214 p.)
Disciplina 001.433
519.5/44
519.544
Altri autori (Persone) LundströmSixten
Collana Wiley Series in Survey Methodology
Soggetto topico Estimation theory
Sampling (Statistics)
Nonresponse (Statistics)
Soggetto genere / forma Electronic books.
ISBN 1-280-27623-1
9786610276233
0-470-01135-1
0-470-01134-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Estimation in Surveys with Nonresponse; Contents; Preface; Chapter 1 Introduction; Chapter 2 The Survey and Its Imperfections; 2.1 The survey objective; 2.2 Sources of error in a survey; Chapter 3 General Principles to Assist Estimation; 3.1 Introduction; 3.2 The importance of auxiliary information; 3.3 Desirable features of an auxiliary vector; Chapter 4 The Use of Auxiliary Information under Ideal Conditions; 4.1 Introduction; 4.2 The Horvitz-Thompson estimator; 4.3 The generalized regression estimator; 4.4 Variance and variance estimation
4.5 Examples of the generalized regression estimatorChapter 5 Introduction to Estimation in the Presence of Nonresponse; 5.1 General background; 5.2 Errors caused by sampling and nonresponse; Appendix: Variance and mean squared error under nonresponse; Chapter 6 Weighting of Data in the Presence of Nonresponse; 6.1 Traditional approaches to weighting; 6.2 Auxiliary vectors and auxiliary information; 6.3 The calibration approach: some terminology; 6.4 Point estimation under the calibration approach; 6.5 Calibration estimators for domains; 6.6 Comments on the calibration approach
6.7 Alternative sets of calibrated weights6.8 Properties of the calibrated weights; Chapter 7 Examples of Calibration Estimators; 7.1 Examples of familiar estimators for data with nonresponse; 7.2 The simplest auxiliary vector; 7.3 One-way classi.cation; 7.4 A single quantitative auxiliary variable; 7.5 One-way classi.cation combined with a quantitative variable; 7.6 Two-way classi.cation; 7.7 A Monte Carlo simulation study; Chapter 8 The Combined Use of Sample Information and Population Information; 8.1 Options for the combined use of information
8.2 An example of calibration with information at both levels8.3 A Monte Carlo simulation study of alternative calibration procedures; 8.4 Two-step procedures in practice; Chapter 9 Analysing the Bias due to Nonresponse; 9.1 Simple estimators and their nonresponse bias; 9.2 Finding an ef.cient grouping; 9.3 Further illustrations of the nonresponse; 9.4 A general expression for the bias of the calibration estimator; 9.5 Conditions for near-unbiasedness; 9.6 A review of concepts, terms and ideas; Appendix: Proof of Proposition 9.1; Chapter 10 Selecting the Most Relevant Auxiliary Information
10.1 Discussion10.2 Guidelines for the construction of an auxiliary vector; 10.3 The prospects for near-zero bias with traditional estimators; 10.4 Further avenues towards a zero bias; 10.5 A further tool for reducing the bias; 10.6 The search for a powerful auxiliary vector; 10.7 Empirical illustrations of the indicators; 10.8 Literature review; Chapter 11 Variance and Variance Estimation; 11.1 Variance estimation for the calibration estimator; 11.2 An estimator for ideal conditions; 11.3 A useful relationship; 11.4 Variance estimation for the two-step A and two-step B procedures
11.5 A simulation study of the variance estimation technique
Record Nr. UNINA-9910143689003321
Särndal Carl-Erik <1937->  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Estimation in surveys with nonresponse [[electronic resource] /] / Carl-Erik Särndal, Sixten Lundström
Estimation in surveys with nonresponse [[electronic resource] /] / Carl-Erik Särndal, Sixten Lundström
Autore Särndal Carl-Erik <1937->
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (214 p.)
Disciplina 001.433
519.5/44
519.544
Altri autori (Persone) LundströmSixten
Collana Wiley Series in Survey Methodology
Soggetto topico Estimation theory
Sampling (Statistics)
Nonresponse (Statistics)
ISBN 1-280-27623-1
9786610276233
0-470-01135-1
0-470-01134-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Estimation in Surveys with Nonresponse; Contents; Preface; Chapter 1 Introduction; Chapter 2 The Survey and Its Imperfections; 2.1 The survey objective; 2.2 Sources of error in a survey; Chapter 3 General Principles to Assist Estimation; 3.1 Introduction; 3.2 The importance of auxiliary information; 3.3 Desirable features of an auxiliary vector; Chapter 4 The Use of Auxiliary Information under Ideal Conditions; 4.1 Introduction; 4.2 The Horvitz-Thompson estimator; 4.3 The generalized regression estimator; 4.4 Variance and variance estimation
4.5 Examples of the generalized regression estimatorChapter 5 Introduction to Estimation in the Presence of Nonresponse; 5.1 General background; 5.2 Errors caused by sampling and nonresponse; Appendix: Variance and mean squared error under nonresponse; Chapter 6 Weighting of Data in the Presence of Nonresponse; 6.1 Traditional approaches to weighting; 6.2 Auxiliary vectors and auxiliary information; 6.3 The calibration approach: some terminology; 6.4 Point estimation under the calibration approach; 6.5 Calibration estimators for domains; 6.6 Comments on the calibration approach
6.7 Alternative sets of calibrated weights6.8 Properties of the calibrated weights; Chapter 7 Examples of Calibration Estimators; 7.1 Examples of familiar estimators for data with nonresponse; 7.2 The simplest auxiliary vector; 7.3 One-way classi.cation; 7.4 A single quantitative auxiliary variable; 7.5 One-way classi.cation combined with a quantitative variable; 7.6 Two-way classi.cation; 7.7 A Monte Carlo simulation study; Chapter 8 The Combined Use of Sample Information and Population Information; 8.1 Options for the combined use of information
8.2 An example of calibration with information at both levels8.3 A Monte Carlo simulation study of alternative calibration procedures; 8.4 Two-step procedures in practice; Chapter 9 Analysing the Bias due to Nonresponse; 9.1 Simple estimators and their nonresponse bias; 9.2 Finding an ef.cient grouping; 9.3 Further illustrations of the nonresponse; 9.4 A general expression for the bias of the calibration estimator; 9.5 Conditions for near-unbiasedness; 9.6 A review of concepts, terms and ideas; Appendix: Proof of Proposition 9.1; Chapter 10 Selecting the Most Relevant Auxiliary Information
10.1 Discussion10.2 Guidelines for the construction of an auxiliary vector; 10.3 The prospects for near-zero bias with traditional estimators; 10.4 Further avenues towards a zero bias; 10.5 A further tool for reducing the bias; 10.6 The search for a powerful auxiliary vector; 10.7 Empirical illustrations of the indicators; 10.8 Literature review; Chapter 11 Variance and Variance Estimation; 11.1 Variance estimation for the calibration estimator; 11.2 An estimator for ideal conditions; 11.3 A useful relationship; 11.4 Variance estimation for the two-step A and two-step B procedures
11.5 A simulation study of the variance estimation technique
Record Nr. UNINA-9910830681903321
Särndal Carl-Erik <1937->  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Estimation in surveys with nonresponse / / Carl-Erik Sarndal, Sixten Lundstrom
Estimation in surveys with nonresponse / / Carl-Erik Sarndal, Sixten Lundstrom
Autore Särndal Carl-Erik <1937->
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (214 p.)
Disciplina 519.5/44
Altri autori (Persone) LundströmSixten
Collana Wiley Series in Survey Methodology
Soggetto topico Estimation theory
Sampling (Statistics)
Nonresponse (Statistics)
ISBN 9786610276233
9781280276231
1280276231
9780470011355
0470011351
9780470011348
0470011343
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Estimation in Surveys with Nonresponse; Contents; Preface; Chapter 1 Introduction; Chapter 2 The Survey and Its Imperfections; 2.1 The survey objective; 2.2 Sources of error in a survey; Chapter 3 General Principles to Assist Estimation; 3.1 Introduction; 3.2 The importance of auxiliary information; 3.3 Desirable features of an auxiliary vector; Chapter 4 The Use of Auxiliary Information under Ideal Conditions; 4.1 Introduction; 4.2 The Horvitz-Thompson estimator; 4.3 The generalized regression estimator; 4.4 Variance and variance estimation
4.5 Examples of the generalized regression estimatorChapter 5 Introduction to Estimation in the Presence of Nonresponse; 5.1 General background; 5.2 Errors caused by sampling and nonresponse; Appendix: Variance and mean squared error under nonresponse; Chapter 6 Weighting of Data in the Presence of Nonresponse; 6.1 Traditional approaches to weighting; 6.2 Auxiliary vectors and auxiliary information; 6.3 The calibration approach: some terminology; 6.4 Point estimation under the calibration approach; 6.5 Calibration estimators for domains; 6.6 Comments on the calibration approach
6.7 Alternative sets of calibrated weights6.8 Properties of the calibrated weights; Chapter 7 Examples of Calibration Estimators; 7.1 Examples of familiar estimators for data with nonresponse; 7.2 The simplest auxiliary vector; 7.3 One-way classi.cation; 7.4 A single quantitative auxiliary variable; 7.5 One-way classi.cation combined with a quantitative variable; 7.6 Two-way classi.cation; 7.7 A Monte Carlo simulation study; Chapter 8 The Combined Use of Sample Information and Population Information; 8.1 Options for the combined use of information
8.2 An example of calibration with information at both levels8.3 A Monte Carlo simulation study of alternative calibration procedures; 8.4 Two-step procedures in practice; Chapter 9 Analysing the Bias due to Nonresponse; 9.1 Simple estimators and their nonresponse bias; 9.2 Finding an ef.cient grouping; 9.3 Further illustrations of the nonresponse; 9.4 A general expression for the bias of the calibration estimator; 9.5 Conditions for near-unbiasedness; 9.6 A review of concepts, terms and ideas; Appendix: Proof of Proposition 9.1; Chapter 10 Selecting the Most Relevant Auxiliary Information
10.1 Discussion10.2 Guidelines for the construction of an auxiliary vector; 10.3 The prospects for near-zero bias with traditional estimators; 10.4 Further avenues towards a zero bias; 10.5 A further tool for reducing the bias; 10.6 The search for a powerful auxiliary vector; 10.7 Empirical illustrations of the indicators; 10.8 Literature review; Chapter 11 Variance and Variance Estimation; 11.1 Variance estimation for the calibration estimator; 11.2 An estimator for ideal conditions; 11.3 A useful relationship; 11.4 Variance estimation for the two-step A and two-step B procedures
11.5 A simulation study of the variance estimation technique
Record Nr. UNINA-9911019680603321
Särndal Carl-Erik <1937->  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Function estimates : proceedings of a conference held July 28-August 3, 1985 / / J.S. Marron, editor
Function estimates : proceedings of a conference held July 28-August 3, 1985 / / J.S. Marron, editor
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1986]
Descrizione fisica 1 online resource (189 p.)
Disciplina 519.5/44
Collana Contemporary mathematics / American Mathematical Society
Soggetto topico Estimation theory
Soggetto genere / forma Electronic books.
ISBN 0-8218-7649-X
0-8218-5062-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Preface""; ""Logspline density estimation""; ""Statistical encounters with B-splines""; ""Estimation of a transfer function in a nongaussian context""; ""Evaluating the performance of an inversion algorithm""; ""Harmonic splines in geomagnetism""; ""Problems in estimating the anomalous gravity potential of the earth from discrete data""; ""What regression model should be chosen when the statistician misspecifies the error distribution?""; ""Approximation theory of method of regularization estimators: applications""
""Partial spline modelling of the tropopause and other discontinuities""""Choice of smoothing parameter in deconvolution problems""; ""Regression approximation using projections and isotropic kernels""; ""Will the art of smoothing ever become a science?""
Record Nr. UNINA-9910480001003321
Providence, Rhode Island : , : American Mathematical Society, , [1986]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Function estimates : proceedings of a conference held July 28-August 3, 1985 / / J.S. Marron, editor
Function estimates : proceedings of a conference held July 28-August 3, 1985 / / J.S. Marron, editor
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1986]
Descrizione fisica 1 online resource (189 p.)
Disciplina 519.5/44
Collana Contemporary mathematics
Soggetto topico Estimation theory
ISBN 0-8218-7649-X
0-8218-5062-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- Preface -- Logspline density estimation -- Statistical encounters with B-splines -- Estimation of a transfer function in a non-gaussian context -- Evaluating the performance of an inversion algorithm -- Harmonic splines in geomagnetism -- Problems in estimating the anomalous gravity potential of the earth from discrete data -- What regression model should be chosen when the statistician misspecifies the error distribution? -- Approximation theory of method of regularization estimators: applications -- Partial spline modelling of the tropopause and other discontinuities -- Choice of smoothing parameter in deconvolution problems -- Regression approximation using projections and isotropic kernels -- Will the art of smoothing ever become a science.
Record Nr. UNINA-9910788785303321
Providence, Rhode Island : , : American Mathematical Society, , [1986]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui