top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Bayesian modeling and causal inference from incomplete-data perspectives [[electronic resource] ] : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Applied Bayesian modeling and causal inference from incomplete-data perspectives [[electronic resource] ] : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Descrizione fisica 1 online resource (437 p.)
Disciplina 519.5/42
519.542
Altri autori (Persone) RubinDonald B
GelmanAndrew
MengXiao-Li
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Missing observations (Statistics)
ISBN 1-280-26898-0
9786610268986
0-470-09045-6
0-470-09044-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives; Contents; Preface; I Casual inference and observational studies; 1 An overview of methods for causal inference from observational studies; 1.1 Introduction; 1.2 Approaches based on causal models; 1.3 Canonical inference; 1.4 Methodologic modeling; 1.5 Conclusion; 2 Matching in observational studies; 2.1 The role of matching in observational studies; 2.2 Why match?; 2.3 Two key issues: balance and structure; 2.4 Additional issues; 3 Estimating causal effects in nonexperimental studies; 3.1 Introduction
3.2 Identifying and estimating the average treatment effect3.3 The NSW data; 3.4 Propensity score estimates; 3.5 Conclusions; 4 Medication cost sharing and drug spending in Medicare; 4.1 Methods; 4.2 Results; 4.3 Study limitations; 4.4 Conclusions and policy implications; 5 A comparison of experimental and observational data analyses; 5.1 Experimental sample; 5.2 Constructed observational study; 5.3 Concluding remarks; 6 Fixing broken experiments using the propensity score; 6.1 Introduction; 6.2 The lottery data; 6.3 Estimating the propensity scores; 6.4 Results; 6.5 Concluding remarks
7 The propensity score with continuous treatments7.1 Introduction; 7.2 The basic framework; 7.3 Bias removal using the GPS; 7.4 Estimation and inference; 7.5 Application: the Imbens-Rubin-Sacerdote lottery sample; 7.6 Conclusion; 8 Causal inference with instrumental variables; 8.1 Introduction; 8.2 Key assumptions for the LATE interpretation of the IV estimand; 8.3 Estimating causal effects with IV; 8.4 Some recent applications; 8.5 Discussion; 9 Principal stratification; 9.1 Introduction: partially controlled studies; 9.2 Examples of partially controlled studies; 9.3 Principal stratification
9.4 Estimands9.5 Assumptions; 9.6 Designs and polydesigns; II Missing data modeling; 10 Nonresponse adjustment in government statistical agencies: constraints, inferential goals, and robustness issues; 10.1 Introduction: a wide spectrum of nonresponse adjustment efforts in government statistical agencies; 10.2 Constraints; 10.3 Complex estimand structures, inferential goals, and utility functions; 10.4 Robustness; 10.5 Closing remarks; 11 Bridging across changes in classification systems; 11.1 Introduction; 11.2 Multiple imputation to achieve comparability of industry and occupation codes
11.3 Bridging the transition from single-race reporting to multiple-race reporting11.4 Conclusion; 12 Representing the Census undercount by multiple imputation of households; 12.1 Introduction; 12.2 Models; 12.3 Inference; 12.4 Simulation evaluations; 12.5 Conclusion; 13 Statistical disclosure techniques based on multiple imputation; 13.1 Introduction; 13.2 Full synthesis; 13.3 SMIKe and MIKe; 13.4 Analysis of synthetic samples; 13.5 An application; 13.6 Conclusions; 14 Designs producing balanced missing data: examples from the National Assessment of Educational Progress; 14.1 Introduction
14.2 Statistical methods in NAEP
Record Nr. UNINA-9910144711403321
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Bayesian modeling and causal inference from incomplete-data perspectives [[electronic resource] ] : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Applied Bayesian modeling and causal inference from incomplete-data perspectives [[electronic resource] ] : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Descrizione fisica 1 online resource (437 p.)
Disciplina 519.5/42
519.542
Altri autori (Persone) RubinDonald B
GelmanAndrew
MengXiao-Li
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Missing observations (Statistics)
ISBN 1-280-26898-0
9786610268986
0-470-09045-6
0-470-09044-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives; Contents; Preface; I Casual inference and observational studies; 1 An overview of methods for causal inference from observational studies; 1.1 Introduction; 1.2 Approaches based on causal models; 1.3 Canonical inference; 1.4 Methodologic modeling; 1.5 Conclusion; 2 Matching in observational studies; 2.1 The role of matching in observational studies; 2.2 Why match?; 2.3 Two key issues: balance and structure; 2.4 Additional issues; 3 Estimating causal effects in nonexperimental studies; 3.1 Introduction
3.2 Identifying and estimating the average treatment effect3.3 The NSW data; 3.4 Propensity score estimates; 3.5 Conclusions; 4 Medication cost sharing and drug spending in Medicare; 4.1 Methods; 4.2 Results; 4.3 Study limitations; 4.4 Conclusions and policy implications; 5 A comparison of experimental and observational data analyses; 5.1 Experimental sample; 5.2 Constructed observational study; 5.3 Concluding remarks; 6 Fixing broken experiments using the propensity score; 6.1 Introduction; 6.2 The lottery data; 6.3 Estimating the propensity scores; 6.4 Results; 6.5 Concluding remarks
7 The propensity score with continuous treatments7.1 Introduction; 7.2 The basic framework; 7.3 Bias removal using the GPS; 7.4 Estimation and inference; 7.5 Application: the Imbens-Rubin-Sacerdote lottery sample; 7.6 Conclusion; 8 Causal inference with instrumental variables; 8.1 Introduction; 8.2 Key assumptions for the LATE interpretation of the IV estimand; 8.3 Estimating causal effects with IV; 8.4 Some recent applications; 8.5 Discussion; 9 Principal stratification; 9.1 Introduction: partially controlled studies; 9.2 Examples of partially controlled studies; 9.3 Principal stratification
9.4 Estimands9.5 Assumptions; 9.6 Designs and polydesigns; II Missing data modeling; 10 Nonresponse adjustment in government statistical agencies: constraints, inferential goals, and robustness issues; 10.1 Introduction: a wide spectrum of nonresponse adjustment efforts in government statistical agencies; 10.2 Constraints; 10.3 Complex estimand structures, inferential goals, and utility functions; 10.4 Robustness; 10.5 Closing remarks; 11 Bridging across changes in classification systems; 11.1 Introduction; 11.2 Multiple imputation to achieve comparability of industry and occupation codes
11.3 Bridging the transition from single-race reporting to multiple-race reporting11.4 Conclusion; 12 Representing the Census undercount by multiple imputation of households; 12.1 Introduction; 12.2 Models; 12.3 Inference; 12.4 Simulation evaluations; 12.5 Conclusion; 13 Statistical disclosure techniques based on multiple imputation; 13.1 Introduction; 13.2 Full synthesis; 13.3 SMIKe and MIKe; 13.4 Analysis of synthetic samples; 13.5 An application; 13.6 Conclusions; 14 Designs producing balanced missing data: examples from the National Assessment of Educational Progress; 14.1 Introduction
14.2 Statistical methods in NAEP
Record Nr. UNINA-9910829865903321
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Bayesian modeling and causal inference from incomplete-data perspectives : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Applied Bayesian modeling and causal inference from incomplete-data perspectives : an essential journey with Donald Rubin's statistical family / / edited by Andrew Gelman, Xiao-Li Meng
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Descrizione fisica 1 online resource (437 p.)
Disciplina 519.5/42
Altri autori (Persone) RubinDonald B
GelmanAndrew
MengXiao-Li
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Missing observations (Statistics)
ISBN 1-280-26898-0
9786610268986
0-470-09045-6
0-470-09044-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives; Contents; Preface; I Casual inference and observational studies; 1 An overview of methods for causal inference from observational studies; 1.1 Introduction; 1.2 Approaches based on causal models; 1.3 Canonical inference; 1.4 Methodologic modeling; 1.5 Conclusion; 2 Matching in observational studies; 2.1 The role of matching in observational studies; 2.2 Why match?; 2.3 Two key issues: balance and structure; 2.4 Additional issues; 3 Estimating causal effects in nonexperimental studies; 3.1 Introduction
3.2 Identifying and estimating the average treatment effect3.3 The NSW data; 3.4 Propensity score estimates; 3.5 Conclusions; 4 Medication cost sharing and drug spending in Medicare; 4.1 Methods; 4.2 Results; 4.3 Study limitations; 4.4 Conclusions and policy implications; 5 A comparison of experimental and observational data analyses; 5.1 Experimental sample; 5.2 Constructed observational study; 5.3 Concluding remarks; 6 Fixing broken experiments using the propensity score; 6.1 Introduction; 6.2 The lottery data; 6.3 Estimating the propensity scores; 6.4 Results; 6.5 Concluding remarks
7 The propensity score with continuous treatments7.1 Introduction; 7.2 The basic framework; 7.3 Bias removal using the GPS; 7.4 Estimation and inference; 7.5 Application: the Imbens-Rubin-Sacerdote lottery sample; 7.6 Conclusion; 8 Causal inference with instrumental variables; 8.1 Introduction; 8.2 Key assumptions for the LATE interpretation of the IV estimand; 8.3 Estimating causal effects with IV; 8.4 Some recent applications; 8.5 Discussion; 9 Principal stratification; 9.1 Introduction: partially controlled studies; 9.2 Examples of partially controlled studies; 9.3 Principal stratification
9.4 Estimands9.5 Assumptions; 9.6 Designs and polydesigns; II Missing data modeling; 10 Nonresponse adjustment in government statistical agencies: constraints, inferential goals, and robustness issues; 10.1 Introduction: a wide spectrum of nonresponse adjustment efforts in government statistical agencies; 10.2 Constraints; 10.3 Complex estimand structures, inferential goals, and utility functions; 10.4 Robustness; 10.5 Closing remarks; 11 Bridging across changes in classification systems; 11.1 Introduction; 11.2 Multiple imputation to achieve comparability of industry and occupation codes
11.3 Bridging the transition from single-race reporting to multiple-race reporting11.4 Conclusion; 12 Representing the Census undercount by multiple imputation of households; 12.1 Introduction; 12.2 Models; 12.3 Inference; 12.4 Simulation evaluations; 12.5 Conclusion; 13 Statistical disclosure techniques based on multiple imputation; 13.1 Introduction; 13.2 Full synthesis; 13.3 SMIKe and MIKe; 13.4 Analysis of synthetic samples; 13.5 An application; 13.6 Conclusions; 14 Designs producing balanced missing data: examples from the National Assessment of Educational Progress; 14.1 Introduction
14.2 Statistical methods in NAEP
Record Nr. UNINA-9910876584003321
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Bayesian modelling / / Peter Congdon
Applied Bayesian modelling / / Peter Congdon
Autore Congdon P.
Edizione [Second edition.]
Pubbl/distr/stampa Chichester, [England] : , : Wiley, , 2014
Descrizione fisica 1 online resource (465 p.)
Disciplina 519.5/42
Collana Wiley Series in Probability and Statistics
Soggetto topico Bayesian statistical decision theory
Mathematical statistics
ISBN 1-118-89504-5
1-118-89505-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; Chapter 1 Bayesian methods and Bayesian estimation; 1.1 Introduction; 1.1.1 Summarising existing knowledge: Prior densities for parameters; 1.1.2 Updating information: Prior, likelihood and posterior densities; 1.1.3 Predictions and assessment; 1.1.4 Sampling parameters; 1.2 MCMC techniques: The Metropolis-Hastings algorithm; 1.2.1 Gibbs sampling; 1.2.2 Other MCMC algorithms; 1.2.3 INLA approximations; 1.3 Software for MCMC: BUGS, JAGS and R-INLA; 1.4 Monitoring MCMC chains and assessing convergence; 1.4.1 Convergence diagnostics
1.4.2 Model identifiability1.5 Model assessment; 1.5.1 Sensitivity to priors; 1.5.2 Model checks; 1.5.3 Model choice; References; Chapter 2 Hierarchical models for related units; 2.1 Introduction: Smoothing to the hyper population; 2.2 Approaches to model assessment: Penalised fit criteria, marginal likelihood and predictive methods; 2.2.1 Penalised fit criteria; 2.2.2 Formal model selection using marginal likelihoods; 2.2.3 Estimating model probabilities or marginal likelihoods in practice; 2.2.4 Approximating the posterior density; 2.2.5 Model averaging from MCMC samples
2.2.6 Predictive criteria for model checking and selection: Cross-validation2.2.7 Predictive checks and model choice using complete data replicate sampling; 2.3 Ensemble estimates: Poisson-gamma and Beta-binomial hierarchical models; 2.3.1 Hierarchical mixtures for poisson and binomial data; 2.4 Hierarchical smoothing methods for continuous data; 2.4.1 Priors on hyperparameters; 2.4.2 Relaxing normality assumptions; 2.4.3 Multivariate borrowing of strength; 2.5 Discrete mixtures and dirichlet processes; 2.5.1 Finite mixture models; 2.5.2 Dirichlet process priors
2.6 General additive and histogram smoothing priors2.6.1 Smoothness priors; 2.6.2 Histogram smoothing; Exercises; Notes; References; Chapter 3 Regression techniques; 3.1 Introduction: Bayesian regression; 3.2 Normal linear regression; 3.2.1 Linear regression model checking; 3.3 Simple generalized linear models: Binomial, binary and Poisson regression; 3.3.1 Binary and binomial regression; 3.3.2 Poisson regression; 3.4 Augmented data regression; 3.5 Predictor subset choice; 3.5.1 The g-prior approach; 3.5.2 Hierarchical lasso prior methods; 3.6 Multinomial, nested and ordinal regression
3.6.1 Nested logit specification3.6.2 Ordinal outcomes; Exercises; Notes; References; Chapter 4 More advanced regression techniques; 4.1 Introduction; 4.2 Departures from linear model assumptions and robust alternatives; 4.3 Regression for overdispersed discrete outcomes; 4.3.1 Excess zeroes; 4.4 Link selection; 4.5 Discrete mixture regressions for regression and outlier status; 4.5.1 Outlier accommodation; 4.6 Modelling non-linear regression effects; 4.6.1 Smoothness priors for non-linear regression; 4.6.2 Spline regression and other basis functions; 4.6.3 Priors on basis coefficients
4.7 Quantile regression
Record Nr. UNINA-9910132210503321
Congdon P.  
Chichester, [England] : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximation methods for efficient learning of Bayesian networks [[electronic resource] /] / Carsten Riggelsen
Approximation methods for efficient learning of Bayesian networks [[electronic resource] /] / Carsten Riggelsen
Autore Riggelsen Carsten
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press, c2008
Descrizione fisica 1 online resource (148 p.)
Disciplina 519.5
519.5/42
Collana Frontiers in artificial intelligence and applications
Dissertations in artificial intelligence
Soggetto topico Bayesian statistical decision theory
Machine learning
Neural networks (Computer science)
Soggetto genere / forma Electronic books.
ISBN 6611733337
1-281-73333-4
9786611733339
1-60750-298-4
600-00-0346-3
1-4337-1131-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References
Record Nr. UNINA-9910453283703321
Riggelsen Carsten  
Amsterdam ; ; Washington, DC, : IOS Press, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximation methods for efficient learning of Bayesian networks [[electronic resource] /] / Carsten Riggelsen
Approximation methods for efficient learning of Bayesian networks [[electronic resource] /] / Carsten Riggelsen
Autore Riggelsen Carsten
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press, c2008
Descrizione fisica 1 online resource (148 p.)
Disciplina 519.5
519.5/42
Collana Frontiers in artificial intelligence and applications
Dissertations in artificial intelligence
Soggetto topico Bayesian statistical decision theory
Machine learning
Neural networks (Computer science)
ISBN 6611733337
1-281-73333-4
9786611733339
1-60750-298-4
600-00-0346-3
1-4337-1131-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References
Record Nr. UNINA-9910782592403321
Riggelsen Carsten  
Amsterdam ; ; Washington, DC, : IOS Press, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximation methods for efficient learning of Bayesian networks / / Carsten Riggelsen
Approximation methods for efficient learning of Bayesian networks / / Carsten Riggelsen
Autore Riggelsen Carsten
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press, c2008
Descrizione fisica 1 online resource (148 p.)
Disciplina 519.5
519.5/42
Collana Frontiers in artificial intelligence and applications
Dissertations in artificial intelligence
Soggetto topico Bayesian statistical decision theory
Machine learning
Neural networks (Computer science)
ISBN 6611733337
1-281-73333-4
9786611733339
1-60750-298-4
600-00-0346-3
1-4337-1131-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References
Record Nr. UNINA-9910822048103321
Riggelsen Carsten  
Amsterdam ; ; Washington, DC, : IOS Press, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes linear statistics : theory and methods / / Michael Goldstein and David Wooff
Bayes linear statistics : theory and methods / / Michael Goldstein and David Wooff
Autore Goldstein Michael <1949->
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Descrizione fisica 1 online resource (538 p.)
Disciplina 519.5/42
Altri autori (Persone) WooffDavid
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Linear systems
Computational complexity
ISBN 1-280-85495-2
9786610854950
0-470-06566-4
0-470-06567-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayes Linear Statistics; Contents; Preface; 1 The Bayes linear approach; 1.1 Combining beliefs with data; 1.2 The Bayesian approach; 1.3 Features of the Bayes linear approach; 1.4 Example; 1.4.1 Expectation, variance, and standardization; 1.4.2 Prior inputs; 1.4.3 Adjusted expectations; 1.4.4 Adjusted versions; 1.4.5 Adjusted variances; 1.4.6 Checking data inputs; 1.4.7 Observed adjusted expectations; 1.4.8 Diagnostics for adjusted beliefs; 1.4.9 Further diagnostics for the adjusted versions; 1.4.10 Summary of basic adjustment; 1.4.11 Diagnostics for collections
1.4.12 Exploring collections of beliefs via canonical structure1.4.13 Modifying the original specifications; 1.4.14 Repeating the analysis for the revised model; 1.4.15 Global analysis of collections of observations; 1.4.16 Partial adjustments; 1.4.17 Partial diagnostics; 1.4.18 Summary; 1.5 Overview; 2 Expectation; 2.1 Expectation as a primitive; 2.2 Discussion: expectation as a primitive; 2.3 Quantifying collections of uncertainties; 2.4 Specifying prior beliefs; 2.4.1 Example: oral glucose tolerance test; 2.5 Qualitative and quantitative prior specification
2.6 Example: qualitative representation of uncertainty2.6.1 Identifying the quantities of interest; 2.6.2 Identifying relevant prior information; 2.6.3 Sources of variation; 2.6.4 Representing population variation; 2.6.5 The qualitative representation; 2.6.6 Graphical models; 2.7 Example: quantifying uncertainty; 2.7.1 Prior expectations; 2.7.2 Prior variances; 2.7.3 Prior covariances; 2.7.4 Summary of belief specifications; 2.8 Discussion: on the various methods for assigning expectations; 3 Adjusting beliefs; 3.1 Adjusted expectation; 3.2 Properties of adjusted expectation
3.3 Adjusted variance3.4 Interpretations of belief adjustment; 3.5 Foundational issues concerning belief adjustment; 3.6 Example: one-dimensional problem; 3.7 Collections of adjusted beliefs; 3.8 Examples; 3.8.1 Algebraic example; 3.8.2 Oral glucose tolerance test; 3.8.3 Many oral glucose tolerance tests; 3.9 Canonical analysis for a belief adjustment; 3.9.1 Canonical directions for the adjustment; 3.9.2 The resolution transform; 3.9.3 Partitioning the resolution; 3.9.4 The reverse adjustment; 3.9.5 Minimal linear sufficiency; 3.9.6 The adjusted belief transform matrix
3.10 The geometric interpretation of belief adjustment3.11 Examples; 3.11.1 Simple one-dimensional problem; 3.11.2 Algebraic example; 3.11.3 Oral glucose tolerance test; 3.12 Further reading; 4 The observed adjustment; 4.1 Discrepancy; 4.1.1 Discrepancy for a collection; 4.1.2 Evaluating discrepancy over a basis; 4.1.3 Discrepancy for quantities with variance zero; 4.2 Properties of discrepancy measures; 4.2.1 Evaluating the discrepancy vector over a basis; 4.3 Examples; 4.3.1 Simple one-dimensional problem; 4.3.2 Detecting degeneracy; 4.3.3 Oral glucose tolerance test
4.4 The observed adjustment
Record Nr. UNINA-9910876938403321
Goldstein Michael <1949->  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian analysis of stochastic process models / / David Rios Insua, Fabrizio Ruggeri, Michael P. Wiper
Bayesian analysis of stochastic process models / / David Rios Insua, Fabrizio Ruggeri, Michael P. Wiper
Autore Rios Insua David <1964->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey, : Wiley, 2012
Descrizione fisica 1 online resource (316 p.)
Disciplina 519.5/42
Altri autori (Persone) WiperMichael P
RuggeriFabrizio
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Stochastic processes
ISBN 1-280-58993-0
9786613619761
1-118-30403-9
0-470-97591-1
0-470-97592-X
Classificazione MAT029010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface 1 Stochastic Processes 11 1.1 Introduction 11 1.2 Key Concepts in Stochastic Processes 11 1.3 Main Classes of Stochastic Processes 16 1.4 Inference, Prediction and Decision Making 21 1.5 Discussion 23 2 Bayesian Analysis 27 2.1 Introduction 27 2.2 Bayesian Statistics 28 2.3 Bayesian Decision Analysis 37 2.4 Bayesian Computation 39 2.5 Discussion 51 3 Discrete Time Markov Chains 61 3.1 Introduction 61 3.2 Important Markov Chain Models 62 3.3 Inference for First Order Chains 66 3.4 Special Topics 76 3.5 Case Study: Wind Directions at Gij́on 87 3.6 Markov Decision Processes 94 3.7 Discussion 97 4 Continuous Time Markov Chains and Extensions 105 4.1 Introduction 105 4.2 Basic Setup and Results 106 4.3 Inference and Prediction for CTMCs 108 4.4 Case Study: Hardware Availability through CTMCs 112 4.5 Semi-Markovian Processes 118 4.6 Decision Making with Semi-Markovian Decision Processes 122 4.7 Discussion 128 5 Poisson Processes and Extensions 133 5.1 Introduction 133 5.2 Basics on Poisson Processes 134 5.3 Homogeneous Poisson Processes 138 5.4 Nonhomogeneous Poisson Processes 147 5.5 Compound Poisson Processes 153 5.6 Further Extensions of Poisson Processes 154 5.7 Case Study: Earthquake Occurrences 157 5.8 Discussion 162 6 Continuous Time Continuous Space Processes 169 6.1 Introduction 169 6.2 Gaussian Processes 170 6.3 Brownian Motion and Fractional Brownian Motion 174 6.4 Dilusions 181 6.5 Case Study: Prey-predator Systems 184 6.6 Discussion 190 7 Queueing Analysis 201 7.1 Introduction 201 7.2 Basic Queueing Concepts 201 7.3 The Main Queueing Models 204 7.4 Inference for Queueing Systems 208 7.5 Inference for M=M=1 Systems 209 7.6 Inference for Non Markovian Systems 220 7.7 Decision Problems in Queueing Systems 229 7.8 Case Study: Optimal Number of Beds in a Hospital 230 7.9 Discussion 235 8 Reliability 245 8.1 Introduction 245 8.2 Basic Reliability Concepts 246 8.3 Renewal Processes 249 8.4 Poisson Processes 251 8.5 Other Processes 259 8.6 Maintenance 262 8.7 Case Study: Gas Escapes 263 8.8 Discussion 271 9 Discrete Event Simulation 279 9.1 Introduction 279 9.2 Discrete Event Simulation Methods 280 9.3 A Bayesian View of DES 283 9.4 Case Study: A G=G=1 Queueing System 286 9.5 Bayesian Output Analysis 288 9.6 Simulation and Optimization 292 9.7 Discussion 294 10 Risk Analysis 301 10.1 Introduction 301 10.2 Risk Measures 302 10.3 Ruin Problems 316 10.4 Case Study: Ruin Probability Estimation 320 10.5 Discussion 327 Appendix A Main Distributions 337 Appendix B Generating Functions and the Laplace-Stieltjes Transform 347 Index.
Record Nr. UNINA-9910141318903321
Rios Insua David <1964->  
Hoboken, New Jersey, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian argumentation : the practical side of probability / / Frank Zenker, editor
Bayesian argumentation : the practical side of probability / / Frank Zenker, editor
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht [Netherlands] ; ; New York, : Springer, 2013
Descrizione fisica 1 online resource (213 p.)
Disciplina 519.5/42
519.542
Altri autori (Persone) ZenkerFrank
Collana Synthese library : studies in epistemology, logic, methodology, and philosophy of science
Soggetto topico Bayesian statistical decision theory
Evidence (Law)
Evidence, Criminal
ISBN 1-283-93609-7
94-007-5357-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. The Bayesian approach to argumentation -- pt. 2. The legal domain -- pt 3. Modeling rational agents -- pt. 4. Theoretical issues.
Record Nr. UNINA-9910438240903321
Dordrecht [Netherlands] ; ; New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui