Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth
| Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth |
| Autore | Haller Rudolf (Mathematician) |
| Edizione | [2., überarbeitete Auflage] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2016] |
| Descrizione fisica | 1 online resource (499 p.) |
| Disciplina | 519.2/2 |
| Collana | De Gruyter Studium |
| Soggetto topico |
Stochastik
Wahrscheinlichkeitsrechnung MATHEMATICS / Probability & Statistics / General |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-11-048077-8
3-11-048090-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Frontmatter -- Vorwort zur 1. Auflage -- Vorwort zur 2. Auflage -- Inhaltsverzeichnis -- Von den Anfängen bis zum Ende des Mittelalters -- Beginn der Neuzeit -- 1. Hälfte des 17. Jahrhunderts -- HUYGENS' Tractatus de Ratiociniis in Aleae Ludo von 1657 -- 2. Hälfte des 17. Jahrhunderts -- Beginn des 18. Jahrhunderts -- JAKOB BERNOULLIs Ars Conjectandi von 1713 -- MONTMORTs Essay d'Analyse sur les Jeux de Hazard von 1713 -- NIKOLAUS BERNOULLIs Petersburger Problem von 1713 -- Die Jahre nach 1713 bis 1750 -- 2. Hälfte des 18. Jahrhunderts -- 1. Hälfte des 19. Jahrhunderts -- 2. Hälfte des 19. Jahrhunderts -- Das 20. Jahrhundert -- Nachtrag -- Lebensdaten -- Literatur -- Abbildungsverzeichnis -- Personenregister -- Sachregister |
| Record Nr. | UNINA-9910164964103321 |
Haller Rudolf (Mathematician)
|
||
| Berlin ; ; Boston : , : De Gruyter, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth
| Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth |
| Autore | Haller Rudolf (Mathematician) |
| Edizione | [2., überarbeitete Auflage] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2016] |
| Descrizione fisica | 1 online resource (499 p.) |
| Disciplina | 519.2/2 |
| Collana | De Gruyter Studium |
| Soggetto topico |
Stochastik
Wahrscheinlichkeitsrechnung MATHEMATICS / Probability & Statistics / General |
| ISBN |
3-11-048077-8
3-11-048090-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Frontmatter -- Vorwort zur 1. Auflage -- Vorwort zur 2. Auflage -- Inhaltsverzeichnis -- Von den Anfängen bis zum Ende des Mittelalters -- Beginn der Neuzeit -- 1. Hälfte des 17. Jahrhunderts -- HUYGENS' Tractatus de Ratiociniis in Aleae Ludo von 1657 -- 2. Hälfte des 17. Jahrhunderts -- Beginn des 18. Jahrhunderts -- JAKOB BERNOULLIs Ars Conjectandi von 1713 -- MONTMORTs Essay d'Analyse sur les Jeux de Hazard von 1713 -- NIKOLAUS BERNOULLIs Petersburger Problem von 1713 -- Die Jahre nach 1713 bis 1750 -- 2. Hälfte des 18. Jahrhunderts -- 1. Hälfte des 19. Jahrhunderts -- 2. Hälfte des 19. Jahrhunderts -- Das 20. Jahrhundert -- Nachtrag -- Lebensdaten -- Literatur -- Abbildungsverzeichnis -- Personenregister -- Sachregister |
| Record Nr. | UNINA-9910792676303321 |
Haller Rudolf (Mathematician)
|
||
| Berlin ; ; Boston : , : De Gruyter, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth
| Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth |
| Autore | Haller Rudolf (Mathematician) |
| Edizione | [2., überarbeitete Auflage] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2016] |
| Descrizione fisica | 1 online resource (499 p.) |
| Disciplina | 519.2/2 |
| Collana | De Gruyter Studium |
| Soggetto topico |
Stochastik
Wahrscheinlichkeitsrechnung MATHEMATICS / Probability & Statistics / General |
| ISBN |
3-11-048077-8
3-11-048090-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Frontmatter -- Vorwort zur 1. Auflage -- Vorwort zur 2. Auflage -- Inhaltsverzeichnis -- Von den Anfängen bis zum Ende des Mittelalters -- Beginn der Neuzeit -- 1. Hälfte des 17. Jahrhunderts -- HUYGENS' Tractatus de Ratiociniis in Aleae Ludo von 1657 -- 2. Hälfte des 17. Jahrhunderts -- Beginn des 18. Jahrhunderts -- JAKOB BERNOULLIs Ars Conjectandi von 1713 -- MONTMORTs Essay d'Analyse sur les Jeux de Hazard von 1713 -- NIKOLAUS BERNOULLIs Petersburger Problem von 1713 -- Die Jahre nach 1713 bis 1750 -- 2. Hälfte des 18. Jahrhunderts -- 1. Hälfte des 19. Jahrhunderts -- 2. Hälfte des 19. Jahrhunderts -- Das 20. Jahrhundert -- Nachtrag -- Lebensdaten -- Literatur -- Abbildungsverzeichnis -- Personenregister -- Sachregister |
| Record Nr. | UNINA-9910827623403321 |
Haller Rudolf (Mathematician)
|
||
| Berlin ; ; Boston : , : De Gruyter, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth
| Berühmte Aufgaben der Stochastik : Von den Anfängen bis heute / / Rudolf Haller, Friedrich Barth |
| Autore | Haller Rudolf |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter (O), , [2014] |
| Descrizione fisica | 1 online resource |
| Disciplina | 519.2/2 |
| Collana | De Gruyter Studium |
| Soggetto topico |
Probabilities - History
Mathematics Physical Sciences & Mathematics Mathematical Statistics |
| ISBN |
3-486-74714-2
3-486-99082-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Frontmatter -- Vorwort -- Inhaltsverzeichnis -- Von den Anfängen bis zum Ende des Mittelalters -- Beginn der Neuzeit -- 1. Hälfte des 17. Jahrhunderts -- HUYGENS' Tractatus de Ratiociniis in Aleae Ludo von 1657 -- 2. Hälfte des 17. Jahrhunderts -- Beginn des 18. Jahrhunderts -- JAKOB BERNOULLIs Ars Conjectandi von 1713 -- MONTMORTs Essay d'Analyse sur les Jeux de Hazard von 1713 -- NIKOLAUS BERNOULLIs Petersburger Problem von 1713 -- Die Jahre nach 1713 bis 1750 -- 2. Hälfte des 18. Jahrhunderts -- 1. Hälfte des 19. Jahrhunderts -- 2. Hälfte des 19. Jahrhunderts -- Das 20. Jahrhundert -- Lebensdaten -- Literatur -- Abbildungsverzeichnis -- Personenregister -- Sachregister |
| Record Nr. | UNINA-9910155383903321 |
Haller Rudolf
|
||
| Berlin ; ; Boston : , : De Gruyter (O), , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
| Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs |
| Autore | Geiss Stefan |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2021 |
| Descrizione fisica | 1 online resource (124 pages) |
| Disciplina | 519.2/2 |
| Altri autori (Persone) | YlinenJuha |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Stochastic differential equations
Besov spaces Probability theory and stochastic processes -- Stochastic analysis -- Stochastic calculus of variations and the Malliavin calculus Probability theory and stochastic processes -- Stochastic analysis -- Stochastic ordinary differential equations Functional analysis -- Linear function spaces and their duals -- Sobolev spaces and other spaces of ``smooth'' functions, embedding theorems, trace theorems |
| ISBN |
9781470467517
1470467518 |
| Classificazione | 60H0760H1046E35 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover -- Title page -- Chapter 1. Introduction -- 1.1. Background -- 1.2. Outline of the main ideas -- 1.3. Notation -- Chapter 2. A General Factorization -- 2.1. The operators \C and \C^{ } -- 2.2. The operators \C and \C^{ } for stochastic processes -- Chapter 3. Transference of SDEs -- 3.1. Setting -- 3.2. Results -- Chapter 4. Anisotropic Besov Spaces on the Wiener Space -- 4.1. Classical Besov spaces on the Wiener space -- 4.2. Setting -- 4.3. Definition of anisotropic Besov spaces -- 4.4. Connection to real interpolation -- 4.5. The space \B_{ }^{Φ₂} -- 4.6. An embedding theorem for functionals of bounded variation -- 4.7. Examples -- Chapter 5. Continuous BMO-Martingales -- 5.1. Continuous BMO-martingales and sliceable numbers -- 5.2. Fefferman's inequality and \bmo( _{2 }) spaces -- 5.3. Reverse Hölder inequalities -- 5.4. An application to BSDEs -- Chapter 6. Applications to BSDEs -- 6.1. The setting -- 6.2. Stability of BSDEs with respect to perturbations of the Gaussian structure -- 6.3. On classes of quadratic and sub-quadratic BSDEs -- 6.4. Settings for the stability theorem -- 6.5. On the _{ }-variation of BSDEs -- 6.6. Applications to other types of BSDEs -- Appendix A. Technical Facts -- Bibliography -- Index -- Back Cover. |
| Record Nr. | UNINA-9910958811103321 |
Geiss Stefan
|
||
| Providence : , : American Mathematical Society, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals of stochastic networks / / Oliver C. Ibe
| Fundamentals of stochastic networks / / Oliver C. Ibe |
| Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Lowell, Mass., : John Wiley & Sons Inc., c2011 |
| Descrizione fisica | 1 online resource (309 p.) |
| Disciplina | 519.2/2 |
| Soggetto topico |
Queuing theory
Stochastic analysis |
| ISBN |
9786613257833
9781283257831 1283257831 9781118092989 1118092988 9781118092972 111809297X 9781118092996 1118092996 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | FUNDAMENTALS OF STOCHASTIC NETWORKS; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1: BASIC CONCEPTS IN PROBABILITY; 2: OVERVIEW OF STOCHASTIC PROCESSES; 3: ELEMENTARY QUEUEING THEORY; 4: ADVANCED QUEUEING THEORY; 5: QUEUEING NETWORKS; 6: APPROXIMATIONS OF QUEUEING SYSTEMS AND NETWORKS; 7: ELEMENTS OF GRAPH THEORY; 8: BAYESIAN NETWORKS; 9: BOOLEAN NETWORKS; 10: RANDOM NETWORKS; REFERENCES; INDEX |
| Record Nr. | UNINA-9910139590403321 |
Ibe Oliver C (Oliver Chukwudi), <1947->
|
||
| Lowell, Mass., : John Wiley & Sons Inc., c2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Infinite dimensional stochastic analysis [[electronic resource] ] : in honor of Hui-Hsiung Kuo / / editors, Ambar N. Sengupta, P. Sundar
| Infinite dimensional stochastic analysis [[electronic resource] ] : in honor of Hui-Hsiung Kuo / / editors, Ambar N. Sengupta, P. Sundar |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (257 p.) |
| Disciplina | 519.2/2 |
| Altri autori (Persone) |
KuoHui-Hsiung <1941->
SenguptaAmbar <1963-> SundarP (Padmanabhan) |
| Collana | QP-PQ, quantum probability and white noise analysis |
| Soggetto topico |
White noise theory
Stochastic analysis |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-93809-2
9786611938093 981-277-955-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Preface; Complex White Noise and the Infinite Dimensional Unitary Group T. Hida; 1. Introduction; 2. Complex white noise; 3. Infinite dimensional unitary group; 4. Subgroups of U(Ee); References; Complex Ito Formulas M. Redfern; 1. Introduction; 2. Background and Notation; 3. Complex White Noise Analysis; 4. Calculus of (Dc*)-Valued Processes; 5. Real Case; References; White Noise Analysis: Background and a Recent Application J. Becnel and A . N. Sengupta; 1. Introduction; 2. Background: The Schwartz Space as a Nuclear Space
2.1. Hermite polynomials, creation and annihilation operators2.2. The Schwartz space as a nuclear space; 2.3. The abstract formulation; 2.4. Gaussian measure in infinite dimensions; 3. White Noise Distribution Theory; 3.1. Wiener-Ito isomorphism; 3.2. Properties of test functions; 3.3. The Segal-Bargmann transform; 3.3.1. The S-transform over subspaces; 4. Application to Quantum Computing; 4.1. Quantum algorithms; 4.2. Hidden subspace algorithm; Acknowledgment; References; Probability Measures with Sub-Additive Principal Szego-Jacobi Parameters A. Stan; 1. Introduction; 2. Background 3. Wick product4. Random variables with sub-additive w-parameters; References; Donsker's Functional Calculus and Related Questions P.-L. Chow and J. Potthoff; 1. Introduction; 2. Donsker's Calculus; 3. Tools from White Noise Analysis and Malliavin Calclus; 3.1. Chaos Decomposition; 3.2. S-Transform; 3.3. Smooth and Generalized Random Variables; 3.4. Differential Operators; 3.5. Characterization Theorem and Wick Product; 4. Fourier-Wiener Transform; 5. Independence and Ito Calculus; 5.1. Independence of Generalized Random Variables; 5.2. Ito Calculus for Generalized Stochastic Processes 5.3. Donsker's Delta Function6. Towards Donsker's Calculus; References; Stochastic Analysis of Tidal Dynamics Equation U. Manna, J. L. Menaldi, and S. S. Sritharan; 1. Introduction; 2. Tidal Dynamics: The Model; 3. Deterministic Setting: Global Monotonicity and Solvability; 4. Stochastic Tide Equation; Acknowledgments; References; Adapted Solutions to the Backward Stochastic Navier-Stokes Equations in 3D P. Sundar and H. Yin; 1. Introduction; 2. Preliminaries; 3. A Priori Estimates; 4. Existence of Solutions; 5. Uniqueness of Solutions; References Spaces of Test and Generalized Functions of Arcsine White Noise Formulas A . Barhoumi, A . Riahi, and H. Ouerdiane1. Introduction; 2. Arcsine White Noise Space; 2.1. Arcsine space in one dimension; 2.2. Construction of the arcsine white noise space; 3. Arcsine Test and Generalized Functions Spaces; 4. Characterization Theorems; 4.1. The S-transform; 4.2. Characterization of test and generalized functions; References; An Infinite Dimensional Fourier-Mehler Transform and the Levy Laplacian K. Saito and K. Sakabe; 1. Introduction; 2. A compensated Levy process and the Levy distributions 3. The Levy Laplacian acting on the Levy distributions |
| Record Nr. | UNINA-9910453201803321 |
| New Jersey, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Infinite dimensional stochastic analysis [[electronic resource] ] : in honor of Hui-Hsiung Kuo / / editors, Ambar N. Sengupta, P. Sundar
| Infinite dimensional stochastic analysis [[electronic resource] ] : in honor of Hui-Hsiung Kuo / / editors, Ambar N. Sengupta, P. Sundar |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (257 p.) |
| Disciplina | 519.2/2 |
| Altri autori (Persone) |
KuoHui-Hsiung <1941->
SenguptaAmbar <1963-> SundarP (Padmanabhan) |
| Collana | QP-PQ, quantum probability and white noise analysis |
| Soggetto topico |
White noise theory
Stochastic analysis |
| ISBN |
1-281-93809-2
9786611938093 981-277-955-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Preface; Complex White Noise and the Infinite Dimensional Unitary Group T. Hida; 1. Introduction; 2. Complex white noise; 3. Infinite dimensional unitary group; 4. Subgroups of U(Ee); References; Complex Ito Formulas M. Redfern; 1. Introduction; 2. Background and Notation; 3. Complex White Noise Analysis; 4. Calculus of (Dc*)-Valued Processes; 5. Real Case; References; White Noise Analysis: Background and a Recent Application J. Becnel and A . N. Sengupta; 1. Introduction; 2. Background: The Schwartz Space as a Nuclear Space
2.1. Hermite polynomials, creation and annihilation operators2.2. The Schwartz space as a nuclear space; 2.3. The abstract formulation; 2.4. Gaussian measure in infinite dimensions; 3. White Noise Distribution Theory; 3.1. Wiener-Ito isomorphism; 3.2. Properties of test functions; 3.3. The Segal-Bargmann transform; 3.3.1. The S-transform over subspaces; 4. Application to Quantum Computing; 4.1. Quantum algorithms; 4.2. Hidden subspace algorithm; Acknowledgment; References; Probability Measures with Sub-Additive Principal Szego-Jacobi Parameters A. Stan; 1. Introduction; 2. Background 3. Wick product4. Random variables with sub-additive w-parameters; References; Donsker's Functional Calculus and Related Questions P.-L. Chow and J. Potthoff; 1. Introduction; 2. Donsker's Calculus; 3. Tools from White Noise Analysis and Malliavin Calclus; 3.1. Chaos Decomposition; 3.2. S-Transform; 3.3. Smooth and Generalized Random Variables; 3.4. Differential Operators; 3.5. Characterization Theorem and Wick Product; 4. Fourier-Wiener Transform; 5. Independence and Ito Calculus; 5.1. Independence of Generalized Random Variables; 5.2. Ito Calculus for Generalized Stochastic Processes 5.3. Donsker's Delta Function6. Towards Donsker's Calculus; References; Stochastic Analysis of Tidal Dynamics Equation U. Manna, J. L. Menaldi, and S. S. Sritharan; 1. Introduction; 2. Tidal Dynamics: The Model; 3. Deterministic Setting: Global Monotonicity and Solvability; 4. Stochastic Tide Equation; Acknowledgments; References; Adapted Solutions to the Backward Stochastic Navier-Stokes Equations in 3D P. Sundar and H. Yin; 1. Introduction; 2. Preliminaries; 3. A Priori Estimates; 4. Existence of Solutions; 5. Uniqueness of Solutions; References Spaces of Test and Generalized Functions of Arcsine White Noise Formulas A . Barhoumi, A . Riahi, and H. Ouerdiane1. Introduction; 2. Arcsine White Noise Space; 2.1. Arcsine space in one dimension; 2.2. Construction of the arcsine white noise space; 3. Arcsine Test and Generalized Functions Spaces; 4. Characterization Theorems; 4.1. The S-transform; 4.2. Characterization of test and generalized functions; References; An Infinite Dimensional Fourier-Mehler Transform and the Levy Laplacian K. Saito and K. Sakabe; 1. Introduction; 2. A compensated Levy process and the Levy distributions 3. The Levy Laplacian acting on the Levy distributions |
| Record Nr. | UNINA-9910782272003321 |
| New Jersey, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Integral transformations and anticipative calculus for fractional Brownian motions / / Yaozhong Hu
| Integral transformations and anticipative calculus for fractional Brownian motions / / Yaozhong Hu |
| Autore | Hu Yaozhong <1961-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
| Descrizione fisica | 1 online resource (144 p.) |
| Disciplina |
510 s
519.2/2 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Stochastic integrals
Gaussian processes Fractional calculus Integral transforms |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0426-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Representations""; ""Chapter 3. Induced Transformation I""; ""Chapter 4. Approximation""; ""4.1. Rate of Convergence When 0 < H < 1/2""; ""4.2. Rate of Convergence When 1/2 < H < 1""; ""4.3. Higher Order of Convergence When 3/4 < H < 1""; ""4.4. Best Approximation""; ""Chapter 5. Induced Transformation II""; ""5.1. Operators Associated With Z[sub(H)](t,s)""; ""5.2. Inverse Operator of T[sub(H,T)]""; ""5.3. B[sub(H,T)]T[sub(H,T)] when 1/2 < H < 1""; ""5.4. T[sub(H,T)]B[sub(H,T)] for 1/2 < H < 1""
""5.5. B[sub(H,T)]T[sub(H,T)] for 0 < H < 1/2""""5.6. T[sub(H,T)]B[sub(H,T)] for 0 < H < 1/2""; ""5.7. Transpose of T[sub(H,T)]""; ""5.8. The Expression for T[sub(H,T)]T*[sub(H,T)]""; ""5.9. The transpose of B[sub(H,T)]""; ""5.10. The Expression of B*[sub(H,T)]B[sub(H,T)]""; ""5.11. Extension of T*[sub(H,T)] and B*[sub(H,T)]""; ""5.12. Representation of Brownian motion by fractional Brownian motion""; ""Chapter 6. Stochastic Calculus of Variation""; ""6.1. Stochastic Integral for Deterministic Integrands""; ""6.2. A Probability Structure Preserving Mapping"" ""Chapter 13. Continuation""""Chapter 14. Stochastic Control""; ""Chapter 15. Appendix""; ""Bibliography"" |
| Record Nr. | UNINA-9910480408803321 |
Hu Yaozhong <1961->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Integral transformations and anticipative calculus for fractional Brownian motions / / Yaozhong Hu
| Integral transformations and anticipative calculus for fractional Brownian motions / / Yaozhong Hu |
| Autore | Hu Yaozhong <1961-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
| Descrizione fisica | 1 online resource (144 p.) |
| Disciplina |
510 s
519.2/2 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Stochastic integrals
Gaussian processes Fractional calculus Integral transforms |
| ISBN | 1-4704-0426-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Representations""; ""Chapter 3. Induced Transformation I""; ""Chapter 4. Approximation""; ""4.1. Rate of Convergence When 0 < H < 1/2""; ""4.2. Rate of Convergence When 1/2 < H < 1""; ""4.3. Higher Order of Convergence When 3/4 < H < 1""; ""4.4. Best Approximation""; ""Chapter 5. Induced Transformation II""; ""5.1. Operators Associated With Z[sub(H)](t,s)""; ""5.2. Inverse Operator of T[sub(H,T)]""; ""5.3. B[sub(H,T)]T[sub(H,T)] when 1/2 < H < 1""; ""5.4. T[sub(H,T)]B[sub(H,T)] for 1/2 < H < 1""
""5.5. B[sub(H,T)]T[sub(H,T)] for 0 < H < 1/2""""5.6. T[sub(H,T)]B[sub(H,T)] for 0 < H < 1/2""; ""5.7. Transpose of T[sub(H,T)]""; ""5.8. The Expression for T[sub(H,T)]T*[sub(H,T)]""; ""5.9. The transpose of B[sub(H,T)]""; ""5.10. The Expression of B*[sub(H,T)]B[sub(H,T)]""; ""5.11. Extension of T*[sub(H,T)] and B*[sub(H,T)]""; ""5.12. Representation of Brownian motion by fractional Brownian motion""; ""Chapter 6. Stochastic Calculus of Variation""; ""6.1. Stochastic Integral for Deterministic Integrands""; ""6.2. A Probability Structure Preserving Mapping"" ""Chapter 13. Continuation""""Chapter 14. Stochastic Control""; ""Chapter 15. Appendix""; ""Bibliography"" |
| Record Nr. | UNINA-9910788749203321 |
Hu Yaozhong <1961->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||