Analisi dei dati e data mining per le decisioni aziendali / Sergio Zani, Andrea cerioli
| Analisi dei dati e data mining per le decisioni aziendali / Sergio Zani, Andrea cerioli |
| Autore | Zani, Sergio |
| Pubbl/distr/stampa | Milano : Giuffrè, c2007 |
| Descrizione fisica | XVII, 625 p. ; 25 cm |
| Disciplina | 518.5 |
| Altri autori (Persone) | Cerioli, Andrea |
| Soggetto non controllato | Analisi dei dati |
| ISBN | 88-14-13695-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Titolo uniforme | |
| Record Nr. | UNIPARTHENOPE-000027783 |
Zani, Sergio
|
||
| Milano : Giuffrè, c2007 | ||
| Lo trovi qui: Univ. Parthenope | ||
| ||
Interpolation and approximation by polynomials / George M. Phillips
| Interpolation and approximation by polynomials / George M. Phillips |
| Autore | Phillips, George M. |
| Pubbl/distr/stampa | New York ; Berlin ; Heidelberg, : Springer, c2003 |
| Descrizione fisica | XI, 312 p. ; 23 cm. |
| Disciplina |
518
518.5 |
| Collana | CMS books in mathematics |
| Soggetto topico | Analisi numerica |
| ISBN |
0387002154
9781441918109 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-TO01224218 |
Phillips, George M.
|
||
| New York ; Berlin ; Heidelberg, : Springer, c2003 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Lezioni di inferenza statistica / Luigi D'Ambra
| Lezioni di inferenza statistica / Luigi D'Ambra |
| Autore | D'Ambra, Luigi |
| Edizione | [4. ed] |
| Pubbl/distr/stampa | Napoli, : R. Curto, 2000 |
| Descrizione fisica | 416 p. ; 24 cm. |
| Disciplina | 518.5 |
| Collana | Dipartimento di matematica e statistica, Università di Napoli Federico 2. Serie didattica |
| Soggetto topico | Inferenza statistica |
| ISBN | 8883990188 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISANNIO-NAP0262337 |
D'Ambra, Luigi
|
||
| Napoli, : R. Curto, 2000 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
| Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li |
| Pubbl/distr/stampa | Beijing, China, : Higher Education Press, 2011 |
| Descrizione fisica | 1 online resource (314 p.) |
| Disciplina |
515.353
518.5 |
| Altri autori (Persone) |
DamlamianAlain
MiaraBernadette LiDaqian |
| Collana | Series in contemporary applied mathematics |
| Soggetto topico |
Homogenization (Differential equations)
Differential equations, Nonlinear Mathematical analysis |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4366-89-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 4.2 Elementary displacements and decompositions |
| Record Nr. | UNINA-9910457497603321 |
| Beijing, China, : Higher Education Press, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
| Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li |
| Pubbl/distr/stampa | Beijing, China, : Higher Education Press, 2011 |
| Descrizione fisica | 1 online resource (314 p.) |
| Disciplina |
515.353
518.5 |
| Altri autori (Persone) |
DamlamianAlain
MiaraBernadette LiDaqian |
| Collana | Series in contemporary applied mathematics |
| Soggetto topico |
Homogenization (Differential equations)
Differential equations, Nonlinear Mathematical analysis |
| ISBN | 981-4366-89-7 |
| Classificazione | SK 950 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 4.2 Elementary displacements and decompositions |
| Record Nr. | UNINA-9910779068003321 |
| Beijing, China, : Higher Education Press, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistica descrittiva : Applicazioni con Excel / Luigi D'Ambra e Silvana Spedaliere
| Statistica descrittiva : Applicazioni con Excel / Luigi D'Ambra e Silvana Spedaliere |
| Autore | D'Ambra, Luigi |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Napoli, : RCE Multimedia, c2008 |
| Descrizione fisica | 319 p. : ill. ; 30 cm. |
| Disciplina | 518.5 |
| Altri autori (Persone) | Spedaliere, Silvana |
| Soggetto topico | Statistica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISANNIO-NAP0477963 |
D'Ambra, Luigi
|
||
| Napoli, : RCE Multimedia, c2008 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Statistica Neerlandica : journal of the Netherlands Society for Statistics and Operations Research
| Statistica Neerlandica : journal of the Netherlands Society for Statistics and Operations Research |
| Pubbl/distr/stampa | Oxford : Backwell |
| Descrizione fisica | v. ; 25 cm |
| Disciplina | 518.5 |
| Soggetto topico |
Statistica - Periodici
Ricerca operativa - Periodici |
| ISSN | 0039-0402 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Note periodicità | Quadrimestrale |
| Record Nr. | UNISA-990000472850203316 |
| Oxford : Backwell | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||