top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
27th International Meshing Roundtable / / edited by Xevi Roca, Adrien Loseille
27th International Meshing Roundtable / / edited by Xevi Roca, Adrien Loseille
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (IX, 490 p. 314 illus., 249 illus. in color.)
Disciplina 004
518.25
Collana Lecture Notes in Computational Science and Engineering
Soggetto topico Computer science - Mathematics
Software engineering
Numerical analysis
Computer science—Mathematics
Computer-aided engineering
Computer simulation
Computational Science and Engineering
Software Engineering
Numeric Computing
Math Applications in Computer Science
Computer-Aided Engineering (CAD, CAE) and Design
Simulation and Modeling
ISBN 3-030-13992-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: High-order Adapted Meshes -- P2 Mesh Optimization Operators -- Isometric Embedding of Curvilinear Meshes Defined on Riemannian Metric Spaces -- Defining a Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes -- Curvilinear Mesh Adaptation -- Part 2 : Mesh and Geometry Blocks, Hex mesh generation -- A 44-Element Mesh of Schneiders' Pyramid: Bounding the Difficulty of Hex-Meshing Problems -- Representing Three-dimensional Cross Fields Using 4th Order Tensors -- Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing -- An Angular Method with Position Control for Block Mesh Squareness Improvement -- Dual Surface Based Approach to Block Decomposition of Solid Models -- Automatic Blocking of Shapes using Evolutionary Algorithm -- Multi-block mesh refinement by adding mesh singularities -- Part 3: Simplicial Meshes -- Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation -- Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes -- A Construction of Anisotropic Meshes Based on Quasi Conformal Mapping -- Terminal Star Operations Algorithm for Tetrahedral Mesh Improvement -- Part 4: Curved High-Order Meshes -- Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm -- Curving for Viscous Meshes -- An Angular Approach to Untangling High-Order Curvilinear Triangular Meshes -- Imposing Boundary Conditions to Match a CAD Virtual Geometry for the Mesh Curving Problem -- Part 5: Parallel and Fast Meshing Methods -- Exact Fast Parallel Intersection of Large 3-D Triangular Meshes -- Performance Comparison and Workload Analysis of Mesh Untangling and Smoothing Algorithms -- Accurate Manycore-Accelerated Manifold Surface Remesh Kernels -- Parallel Performance Model for Vertex Repositioning Algorithms and Application to Mesh Partitioning -- Discrete Mesh Optimization on GPU -- Mesh Morphing for Turbomachinery Applications Using Radial Basis Functions.
Record Nr. UNINA-9910349352403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete Energy on Rectifiable Sets / / by Sergiy V. Borodachov, Douglas P. Hardin, Edward B. Saff
Discrete Energy on Rectifiable Sets / / by Sergiy V. Borodachov, Douglas P. Hardin, Edward B. Saff
Autore Borodachov Sergiy V
Edizione [1st ed. 2019.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (xviii, 666 pages) : illustrations
Disciplina 518.25
Collana Springer Monographs in Mathematics
Soggetto topico Convex geometry
Discrete geometry
Mathematical physics
Measure theory
Number theory
Topology
Computer science - Mathematics
Convex and Discrete Geometry
Mathematical Methods in Physics
Measure and Integration
Number Theory
Mathematical Applications in Computer Science
ISBN 9780387848082
0387848088
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 0. An Overview: Discretizing Manifolds via Particle Interactions.-1. Preliminaries -- 2. Basics of Minimal Energy -- 3.-Introduction to Packing and Covering -- 4. Continuous and Discrete Energy -- 5. LP Bounds on the Sphere -- 6. Asymptotics for Energy Minimizing Congurations on Sd -- 7. Some Popular Algorithms for Distributing Points on S2 -- 8. Minimal Energy in the Hypersingular Case -- 9. Minimal Energy Asymptotics in the "Harmonic Series" Case -- 10. Periodic Riesz Energy -- 11. Congurations with non-Uniform Distribution -- 12. Low Complexity Energy Methods for Discretization -- 13. Best-Packing on Compact Sets -- 14. Optimal Discrete Measures for Potentials: Polarization (Chebyshev) Constants -- Appendix -- References -- List of Symbols -- Index.
Record Nr. UNINA-9910349324903321
Borodachov Sergiy V  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910144525003321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNISA-996212478503316
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910829884103321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNINA-9910138858903321
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
9781118569764
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNISA-996211142503316
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
9781118569764
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNINA-9910830747403321
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The finite element method : basic concepts and applications with MATLAB, MAPLE, and COMSOL / Darrell W. Pepper, Juan C. Heinrich
The finite element method : basic concepts and applications with MATLAB, MAPLE, and COMSOL / Darrell W. Pepper, Juan C. Heinrich
Autore Pepper, Darrell W.
Edizione [trd ed.]
Descrizione fisica xviii, 609 pages ; 25 cm
Disciplina 518.25
Altri autori (Persone) Heinrich, Juan C.
Collana Series in computational and physical processes in mechanics and thermal sciences
Soggetto topico Finite element method
ISBN 9781498738606
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003577589707536
Pepper, Darrell W.  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Finite Elements Using Maxima : Theory and Routines for Rods and Beams / / by Andreas Öchsner, Resam Makvandi
Finite Elements Using Maxima : Theory and Routines for Rods and Beams / / by Andreas Öchsner, Resam Makvandi
Autore Öchsner Andreas
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (263 pages)
Disciplina 620.00151535
518.25
Soggetto topico Mechanics, Applied
Solids
Numerical analysis
Mathematics - Data processing
Solid Mechanics
Numerical Analysis
Computational Science and Engineering
ISBN 3-030-17199-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Maxima - A Computer Algebra System -- Rods and Trusses -- Euler-Bernoulli Beams and Frames -- Timoshenko Beams and Frames.
Record Nr. UNINA-9910337606703321
Öchsner Andreas  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui