top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
27th International Meshing Roundtable / / edited by Xevi Roca, Adrien Loseille
27th International Meshing Roundtable / / edited by Xevi Roca, Adrien Loseille
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (IX, 490 p. 314 illus., 249 illus. in color.)
Disciplina 004
518.25
Collana Lecture Notes in Computational Science and Engineering
Soggetto topico Computer mathematics
Software engineering
Numerical analysis
Computer science—Mathematics
Computer-aided engineering
Computer simulation
Computational Science and Engineering
Software Engineering
Numeric Computing
Math Applications in Computer Science
Computer-Aided Engineering (CAD, CAE) and Design
Simulation and Modeling
ISBN 3-030-13992-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: High-order Adapted Meshes -- P2 Mesh Optimization Operators -- Isometric Embedding of Curvilinear Meshes Defined on Riemannian Metric Spaces -- Defining a Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes -- Curvilinear Mesh Adaptation -- Part 2 : Mesh and Geometry Blocks, Hex mesh generation -- A 44-Element Mesh of Schneiders' Pyramid: Bounding the Difficulty of Hex-Meshing Problems -- Representing Three-dimensional Cross Fields Using 4th Order Tensors -- Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing -- An Angular Method with Position Control for Block Mesh Squareness Improvement -- Dual Surface Based Approach to Block Decomposition of Solid Models -- Automatic Blocking of Shapes using Evolutionary Algorithm -- Multi-block mesh refinement by adding mesh singularities -- Part 3: Simplicial Meshes -- Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation -- Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes -- A Construction of Anisotropic Meshes Based on Quasi Conformal Mapping -- Terminal Star Operations Algorithm for Tetrahedral Mesh Improvement -- Part 4: Curved High-Order Meshes -- Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm -- Curving for Viscous Meshes -- An Angular Approach to Untangling High-Order Curvilinear Triangular Meshes -- Imposing Boundary Conditions to Match a CAD Virtual Geometry for the Mesh Curving Problem -- Part 5: Parallel and Fast Meshing Methods -- Exact Fast Parallel Intersection of Large 3-D Triangular Meshes -- Performance Comparison and Workload Analysis of Mesh Untangling and Smoothing Algorithms -- Accurate Manycore-Accelerated Manifold Surface Remesh Kernels -- Parallel Performance Model for Vertex Repositioning Algorithms and Application to Mesh Partitioning -- Discrete Mesh Optimization on GPU -- Mesh Morphing for Turbomachinery Applications Using Radial Basis Functions.
Record Nr. UNINA-9910349352403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete Energy on Rectifiable Sets / / by Sergiy V. Borodachov, Douglas P. Hardin, Edward B. Saff
Discrete Energy on Rectifiable Sets / / by Sergiy V. Borodachov, Douglas P. Hardin, Edward B. Saff
Autore Borodachov Sergiy V
Edizione [1st ed. 2019.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (xviii, 666 pages) : illustrations
Disciplina 518.25
Collana Springer Monographs in Mathematics
Soggetto topico Convex geometry
Discrete geometry
Mathematical physics
Measure theory
Number theory
Topology
Computer science - Mathematics
Convex and Discrete Geometry
Mathematical Methods in Physics
Measure and Integration
Number Theory
Mathematical Applications in Computer Science
ISBN 0-387-84808-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 0. An Overview: Discretizing Manifolds via Particle Interactions.-1. Preliminaries -- 2. Basics of Minimal Energy -- 3.-Introduction to Packing and Covering -- 4. Continuous and Discrete Energy -- 5. LP Bounds on the Sphere -- 6. Asymptotics for Energy Minimizing Congurations on Sd -- 7. Some Popular Algorithms for Distributing Points on S2 -- 8. Minimal Energy in the Hypersingular Case -- 9. Minimal Energy Asymptotics in the "Harmonic Series" Case -- 10. Periodic Riesz Energy -- 11. Congurations with non-Uniform Distribution -- 12. Low Complexity Energy Methods for Discretization -- 13. Best-Packing on Compact Sets -- 14. Optimal Discrete Measures for Potentials: Polarization (Chebyshev) Constants -- Appendix -- References -- List of Symbols -- Index.
Record Nr. UNINA-9910349324903321
Borodachov Sergiy V  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910144525003321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNISA-996212478503316
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910829884103321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNINA-9910138858903321
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
9781118569764
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNISA-996211142503316
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf
Autore Dhatt G
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (612 p.)
Disciplina 518.25
Altri autori (Persone) TouzotGilbert
LefrançoisEmmanuel
BreitkopfPiotr
Collana Numerical methods series
Soggetto topico Finite element method
ISBN 1-118-56976-8
9781118569764
1-118-56970-9
1-118-56974-1
1-299-18683-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x)
1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation
1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements
2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0)
2.6.3 High-precision Hermite elements
Record Nr. UNINA-9910830747403321
Dhatt G  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The finite element method : basic concepts and applications with MATLAB, MAPLE, and COMSOL / Darrell W. Pepper, Juan C. Heinrich
The finite element method : basic concepts and applications with MATLAB, MAPLE, and COMSOL / Darrell W. Pepper, Juan C. Heinrich
Autore Pepper, Darrell W.
Edizione [trd ed.]
Descrizione fisica xviii, 609 pages ; 25 cm
Disciplina 518.25
Altri autori (Persone) Heinrich, Juan C.
Collana Series in computational and physical processes in mechanics and thermal sciences
Soggetto topico Finite element method
ISBN 9781498738606
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003577589707536
Pepper, Darrell W.  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Finite Elements Using Maxima : Theory and Routines for Rods and Beams / / by Andreas Öchsner, Resam Makvandi
Finite Elements Using Maxima : Theory and Routines for Rods and Beams / / by Andreas Öchsner, Resam Makvandi
Autore Öchsner Andreas
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (263 pages)
Disciplina 620.00151535
518.25
Soggetto topico Mechanics, Applied
Solids
Numerical analysis
Mathematics - Data processing
Solid Mechanics
Numerical Analysis
Computational Science and Engineering
ISBN 3-030-17199-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Maxima - A Computer Algebra System -- Rods and Trusses -- Euler-Bernoulli Beams and Frames -- Timoshenko Beams and Frames.
Record Nr. UNINA-9910337606703321
Öchsner Andreas  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui