27th International Meshing Roundtable / / edited by Xevi Roca, Adrien Loseille |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (IX, 490 p. 314 illus., 249 illus. in color.) |
Disciplina |
004
518.25 |
Collana | Lecture Notes in Computational Science and Engineering |
Soggetto topico |
Computer mathematics
Software engineering Numerical analysis Computer science—Mathematics Computer-aided engineering Computer simulation Computational Science and Engineering Software Engineering Numeric Computing Math Applications in Computer Science Computer-Aided Engineering (CAD, CAE) and Design Simulation and Modeling |
ISBN | 3-030-13992-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1: High-order Adapted Meshes -- P2 Mesh Optimization Operators -- Isometric Embedding of Curvilinear Meshes Defined on Riemannian Metric Spaces -- Defining a Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes -- Curvilinear Mesh Adaptation -- Part 2 : Mesh and Geometry Blocks, Hex mesh generation -- A 44-Element Mesh of Schneiders' Pyramid: Bounding the Difficulty of Hex-Meshing Problems -- Representing Three-dimensional Cross Fields Using 4th Order Tensors -- Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing -- An Angular Method with Position Control for Block Mesh Squareness Improvement -- Dual Surface Based Approach to Block Decomposition of Solid Models -- Automatic Blocking of Shapes using Evolutionary Algorithm -- Multi-block mesh refinement by adding mesh singularities -- Part 3: Simplicial Meshes -- Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation -- Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes -- A Construction of Anisotropic Meshes Based on Quasi Conformal Mapping -- Terminal Star Operations Algorithm for Tetrahedral Mesh Improvement -- Part 4: Curved High-Order Meshes -- Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm -- Curving for Viscous Meshes -- An Angular Approach to Untangling High-Order Curvilinear Triangular Meshes -- Imposing Boundary Conditions to Match a CAD Virtual Geometry for the Mesh Curving Problem -- Part 5: Parallel and Fast Meshing Methods -- Exact Fast Parallel Intersection of Large 3-D Triangular Meshes -- Performance Comparison and Workload Analysis of Mesh Untangling and Smoothing Algorithms -- Accurate Manycore-Accelerated Manifold Surface Remesh Kernels -- Parallel Performance Model for Vertex Repositioning Algorithms and Application to Mesh Partitioning -- Discrete Mesh Optimization on GPU -- Mesh Morphing for Turbomachinery Applications Using Radial Basis Functions. |
Record Nr. | UNINA-9910349352403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Discrete Energy on Rectifiable Sets / / by Sergiy V. Borodachov, Douglas P. Hardin, Edward B. Saff |
Autore | Borodachov Sergiy V |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (xviii, 666 pages) : illustrations |
Disciplina | 518.25 |
Collana | Springer Monographs in Mathematics |
Soggetto topico |
Convex geometry
Discrete geometry Mathematical physics Measure theory Number theory Topology Computer science - Mathematics Convex and Discrete Geometry Mathematical Methods in Physics Measure and Integration Number Theory Mathematical Applications in Computer Science |
ISBN | 0-387-84808-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 0. An Overview: Discretizing Manifolds via Particle Interactions.-1. Preliminaries -- 2. Basics of Minimal Energy -- 3.-Introduction to Packing and Covering -- 4. Continuous and Discrete Energy -- 5. LP Bounds on the Sphere -- 6. Asymptotics for Energy Minimizing Congurations on Sd -- 7. Some Popular Algorithms for Distributing Points on S2 -- 8. Minimal Energy in the Hypersingular Case -- 9. Minimal Energy Asymptotics in the "Harmonic Series" Case -- 10. Periodic Riesz Energy -- 11. Congurations with non-Uniform Distribution -- 12. Low Complexity Energy Methods for Discretization -- 13. Best-Packing on Compact Sets -- 14. Optimal Discrete Measures for Potentials: Polarization (Chebyshev) Constants -- Appendix -- References -- List of Symbols -- Index. |
Record Nr. | UNINA-9910349324903321 |
Borodachov Sergiy V | ||
New York, NY : , : Springer New York : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi |
Autore | Mohammadi S (Soheil) |
Pubbl/distr/stampa | Malden, MA, : Blackwell Pub., c2008 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina |
518.25
624.1/76 |
Soggetto topico |
Fracture mechanics
Finite element method |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-37946-1
9786612379468 0-470-69779-2 0-470-69799-7 |
Classificazione |
BAU 154f
UF 3150 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy 2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral 2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment 3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation 3.7.2 XFEM discretization |
Record Nr. | UNINA-9910144525003321 |
Mohammadi S (Soheil) | ||
Malden, MA, : Blackwell Pub., c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi |
Autore | Mohammadi S (Soheil) |
Pubbl/distr/stampa | Malden, MA, : Blackwell Pub., c2008 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina |
518.25
624.1/76 |
Soggetto topico |
Fracture mechanics
Finite element method |
ISBN |
1-282-37946-1
9786612379468 0-470-69779-2 0-470-69799-7 |
Classificazione |
BAU 154f
UF 3150 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy 2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral 2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment 3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation 3.7.2 XFEM discretization |
Record Nr. | UNISA-996212478503316 |
Mohammadi S (Soheil) | ||
Malden, MA, : Blackwell Pub., c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi |
Autore | Mohammadi S (Soheil) |
Pubbl/distr/stampa | Malden, MA, : Blackwell Pub., c2008 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina |
518.25
624.1/76 |
Soggetto topico |
Fracture mechanics
Finite element method |
ISBN |
1-282-37946-1
9786612379468 0-470-69779-2 0-470-69799-7 |
Classificazione |
BAU 154f
UF 3150 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy 2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral 2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment 3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation 3.7.2 XFEM discretization |
Record Nr. | UNINA-9910829884103321 |
Mohammadi S (Soheil) | ||
Malden, MA, : Blackwell Pub., c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNINA-9910138858903321 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
9781118569764 1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNISA-996211142503316 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
9781118569764 1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNINA-9910830747403321 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The finite element method : basic concepts and applications with MATLAB, MAPLE, and COMSOL / Darrell W. Pepper, Juan C. Heinrich |
Autore | Pepper, Darrell W. |
Edizione | [trd ed.] |
Descrizione fisica | xviii, 609 pages ; 25 cm |
Disciplina | 518.25 |
Altri autori (Persone) | Heinrich, Juan C. |
Collana | Series in computational and physical processes in mechanics and thermal sciences |
Soggetto topico | Finite element method |
ISBN | 9781498738606 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003577589707536 |
Pepper, Darrell W. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Finite Elements Using Maxima : Theory and Routines for Rods and Beams / / by Andreas Öchsner, Resam Makvandi |
Autore | Öchsner Andreas |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (263 pages) |
Disciplina |
620.00151535
518.25 |
Soggetto topico |
Mechanics, Applied
Solids Numerical analysis Mathematics - Data processing Solid Mechanics Numerical Analysis Computational Science and Engineering |
ISBN | 3-030-17199-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Maxima - A Computer Algebra System -- Rods and Trusses -- Euler-Bernoulli Beams and Frames -- Timoshenko Beams and Frames. |
Record Nr. | UNINA-9910337606703321 |
Öchsner Andreas | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|