top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNISA-996426331403316
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910453700903321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014
Descrizione fisica 1 online resource (x, 248 pages) : illustrations (some color)
Disciplina 518.0285
Collana Gale eBooks
Soggetto topico Graphics processing units
Numerical analysis - Data processing
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910790838903321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014
Descrizione fisica 1 online resource (x, 248 pages) : illustrations (some color)
Disciplina 518.0285
Collana Gale eBooks
Soggetto topico Graphics processing units
Numerical analysis - Data processing
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910814428703321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied numerical methods with MATLAB for engineers and scientists / Steven C. Chapra
Applied numerical methods with MATLAB for engineers and scientists / Steven C. Chapra
Autore Chapra, Steven C.
Edizione [3. ed]
Pubbl/distr/stampa New York, : McGraw-Hill, 2012
Descrizione fisica XVII, 653 p. ; 24 cm
Disciplina 518.0285
518.0285536
Soggetto topico Calcolo numerico - Elaborazione dei dati
Microelaboratori - Programmi MATLAB
ISBN 9780071086189
9780073401102
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-NAP0526602
Chapra, Steven C.  
New York, : McGraw-Hill, 2012
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (459 p.)
Disciplina 518.0285
Altri autori (Persone) CharetonPeter G
Collana Computational mathematics and analysis series
Soggetto topico Numerical analysis - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-62417-078-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910453209303321
New York, : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (459 p.)
Disciplina 518.0285
Altri autori (Persone) CharetonPeter G
Collana Computational mathematics and analysis series
Soggetto topico Numerical analysis - Data processing
ISBN 1-62417-078-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910779781203321
New York, : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational methods for data evaluation and assimilation / / Dan Gabrial Cauci, Ionel Michael Navon, Mihaela Ionescu-Bujor
Computational methods for data evaluation and assimilation / / Dan Gabrial Cauci, Ionel Michael Navon, Mihaela Ionescu-Bujor
Autore Cacuci D. G.
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (372 p.)
Disciplina 518.0285
Soggetto topico Mathematical analysis - Data processing
ISBN 0-429-13654-4
1-58488-735-4
Classificazione MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contributors; Preface; List of Figures; List of Tables; Contents; Introduction; Chapter 1 - Experimental Data Evaluation: Basic Concepts; Chapter 2 - Computation of Means and Variances from Measurements; Chapter 3 - Optimization Methods For Large-Scale Data Assimilation; Chapter 4 - Basic Principles of 4-D VAR; Chapter 5 - 4-D VAR in Numerical Weather Prediction Models; Chapter 6 - Appendix A; Chapter 7 - Appendix B; Chapter 8 - Appendix C; Bibliography; Back Cover
Record Nr. UNINA-9910787583203321
Cacuci D. G.  
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational methods for data evaluation and assimilation / / Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor
Computational methods for data evaluation and assimilation / / Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor
Autore Cacuci D. G
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton, : CRC Press, 2014
Descrizione fisica 1 online resource (372 p.)
Disciplina 518.0285
519.538
Altri autori (Persone) NavonIonel Michael
Ionescu-BujorMihaela
Soggetto topico Mathematical analysis - Data processing
ISBN 1-04-020571-2
0-429-13654-4
1-58488-735-4
Classificazione MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contributors; Preface; List of Figures; List of Tables; Contents; Introduction; Chapter 1 - Experimental Data Evaluation: Basic Concepts; Chapter 2 - Computation of Means and Variances from Measurements; Chapter 3 - Optimization Methods For Large-Scale Data Assimilation; Chapter 4 - Basic Principles of 4-D VAR; Chapter 5 - 4-D VAR in Numerical Weather Prediction Models; Chapter 6 - Appendix A; Chapter 7 - Appendix B; Chapter 8 - Appendix C; Bibliography; Back Cover
Record Nr. UNINA-9910966711403321
Cacuci D. G  
Boca Raton, : CRC Press, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to precise numerical methods [[electronic resource] /] / Oliver Aberth
Introduction to precise numerical methods [[electronic resource] /] / Oliver Aberth
Autore Aberth Oliver
Edizione [2nd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Academic Press, c2007
Descrizione fisica 1 online resource (267 p.)
Disciplina 518.0285
Soggetto topico Computer science - Mathematics
Numerical analysis - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-280-96233-X
9786610962334
0-08-047120-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Acknowledgments; 1 Introduction; 1.1 Open-source software; 1.2 Calling up a program; 1.3 Log files and print files; 1.4 More on log files; 1.5 The tilde notation for printed answers; 2 Computer Arithmetics; 2.1 Floating-point arithmetic; 2.2 Variable precision floating-point arithmetic; 2.3 Interval arithmetic; 2.4 Range arithmetic; 2.5 Practical range arithmetic; 2.6 Interval arithmetic notation; 2.7 Computing standard functions in range arithmetic; 2.8 Rational arithmetic; Software Exercises A; Notes and References; 3 Classification of Numerical Computation Problems; 3.1 A knotty problem
3.2 The impossibility of untying the knot 3.3 Repercussions from nonsolvable problem 3.1; 3.4 Some solvable and nonsolvable decimal place problems; 3.5 The solvable problems handled by calc; 3.6 Another nonsolvable problem; 3.7 The trouble with discontinuous functions; Notes and References; 4 Real-Valued Functions; 4.1 Elementary functions; Software Exercises B; 5 Computing Derivatives; 5.1 Power series of elementary functions; 5.2 An example of series evaluation; 5.3 Power series for elementary functions of several variables; 5.4 A more general method of generating power series
5.5 The demo program derivSoftware Exercises C; Notes and References; 6 Computing Integrals; 6.1 Computing a definite integral; 6.2 Formal interval arithmetic; 6.3 The demo program integ for computing ordinary definite integrals; 6.4 Taylor's remainder formula generalized; 6.5 The demo program mulint for higher dimensional integrals; 6.6 The demo program imprint for computing improper integrals; Software Exercises D; Notes and References; 7 Finding Where a Function f(x) is Zero; 7.1 Obtaining a solvable problem; 7.2 Using interval arithmetic for the problem; 7.3 Newton's method
7.4 Order of convergence Software Exercises E; 8 Finding Roots of Polynomials; 8.1 Polynomials; 8.2 A bound for the roots of a polynomial; 8.3 The Bairstow method for finding roots of a real polynomial; 8.4 Bounding the error of a rational polynomial's root approximations; 8.5 Finding accurate roots for a rational or a real polynomial; 8.6 The demo program roots; Software Exercises F; Notes and References; 9 Solving n Linear Equations in n Unknowns; 9.1 Notation; 9.2 Computation problems; 9.3 A method for solving linear equations; 9.4 Computing determinants
9.5 Finding the inverse of a square matrix 9.6 The demo programs equat, r_equat, and c_equat; Software Exercises G; Notes and References; 10 Eigenvalue and Eigenvector Problems; 10.1 Finding a solution to Ax= 0 when det A= 0; 10.2 Eigenvalues and Eigenvector; 10.3 Companion matrices and Vandermonde matrices; 10.4 Finding eigenvalues and Eigenvector by Danilevsky's method; 10.5 Error bounds for Danilevsky's method; 10.6 Rational matrices; 10.7 The demo programs eigen, c_eigen, and r_eigen; Software Exercises H; 11 Problems of Linear Programming; 11.1 Linear algebra using rational arithmetic
11.2 A more efficient method for solving rational linear equations
Record Nr. UNINA-9910458146303321
Aberth Oliver  
Amsterdam ; ; Boston, : Academic Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...