Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
| Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim |
| Autore | Suh Jung W |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Waltham, MA : , : Morgan Kaufmann, , 2014 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina | 518.0285 |
| Altri autori (Persone) | KimYoungmin |
| Soggetto topico | Graphics processing units - Programming |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-12-407916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution 2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex 4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing 5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9 6.2.3 CUBLAS with Visual Profiler |
| Record Nr. | UNISA-996426331403316 |
Suh Jung W
|
||
| Waltham, MA : , : Morgan Kaufmann, , 2014 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
| Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim |
| Autore | Suh Jung W |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Waltham, MA : , : Morgan Kaufmann, , 2014 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina | 518.0285 |
| Altri autori (Persone) | KimYoungmin |
| Soggetto topico | Graphics processing units - Programming |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-12-407916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution 2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex 4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing 5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9 6.2.3 CUBLAS with Visual Profiler |
| Record Nr. | UNINA-9910453700903321 |
Suh Jung W
|
||
| Waltham, MA : , : Morgan Kaufmann, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
| Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim |
| Autore | Suh Jung W |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014 |
| Descrizione fisica | 1 online resource (x, 248 pages) : illustrations (some color) |
| Disciplina | 518.0285 |
| Collana | Gale eBooks |
| Soggetto topico |
Graphics processing units
Numerical analysis - Data processing |
| ISBN | 0-12-407916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution 2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex 4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing 5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9 6.2.3 CUBLAS with Visual Profiler |
| Record Nr. | UNINA-9910790838903321 |
Suh Jung W
|
||
| Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
| Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim |
| Autore | Suh Jung W |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014 |
| Descrizione fisica | 1 online resource (x, 248 pages) : illustrations (some color) |
| Disciplina | 518.0285 |
| Collana | Gale eBooks |
| Soggetto topico |
Graphics processing units
Numerical analysis - Data processing |
| ISBN | 0-12-407916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution 2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex 4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing 5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9 6.2.3 CUBLAS with Visual Profiler |
| Record Nr. | UNINA-9910814428703321 |
Suh Jung W
|
||
| Waltham, MA : , : Morgan Kaufmann, an imprint of Elsevier, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied numerical methods with MATLAB for engineers and scientists / Steven C. Chapra
| Applied numerical methods with MATLAB for engineers and scientists / Steven C. Chapra |
| Autore | Chapra, Steven C. |
| Edizione | [3. ed] |
| Pubbl/distr/stampa | New York, : McGraw-Hill, 2012 |
| Descrizione fisica | XVII, 653 p. ; 24 cm |
| Disciplina |
518.0285
518.0285536 |
| Soggetto topico |
Calcolo numerico - Elaborazione dei dati
Microelaboratori - Programmi MATLAB |
| ISBN |
9780071086189
9780073401102 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-NAP0526602 |
Chapra, Steven C.
|
||
| New York, : McGraw-Hill, 2012 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
| Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
| Descrizione fisica | 1 online resource (459 p.) |
| Disciplina | 518.0285 |
| Altri autori (Persone) | CharetonPeter G |
| Collana | Computational mathematics and analysis series |
| Soggetto topico | Numerical analysis - Data processing |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-62417-078-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910453209303321 |
| New York, : Nova Science Publishers, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor
| Computational mathematics [[electronic resource] ] : theory, methods and applications / / Peter G. Chareton, editor |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
| Descrizione fisica | 1 online resource (459 p.) |
| Disciplina | 518.0285 |
| Altri autori (Persone) | CharetonPeter G |
| Collana | Computational mathematics and analysis series |
| Soggetto topico | Numerical analysis - Data processing |
| ISBN | 1-62417-078-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910779781203321 |
| New York, : Nova Science Publishers, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational mathematics : theory, methods and applications / / Peter G. Chareton, editor
| Computational mathematics : theory, methods and applications / / Peter G. Chareton, editor |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
| Descrizione fisica | 1 online resource (459 p.) |
| Disciplina | 518.0285 |
| Altri autori (Persone) | CharetonPeter G |
| Collana | Computational mathematics and analysis series |
| Soggetto topico | Numerical analysis - Data processing |
| ISBN | 1-62417-078-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- COMPUTATIONAL MATHEMATICS: THEORY, METHODS AND APPLICATIONS -- COMPUTATIONAL MATHEMATICS: THEORY, METHODS AND APPLICATIONS -- CONTENTS -- PREFACE -- ANALYTICAL AND NUMERICAL METHODS IN THE LINEAR STABILITY STUDY OF IDEAL FLOWS ON A SPHERE -- ABSTRACT -- 1. INTRODUCTION -- 2. HILBERT SPACES AND GEOMETRIC STRUCTURE OF SMOOTH FUNCTIONS ON A SPHERE -- 3. INTEGRAL FORMULAS RELATED TO THE JACOBIAN -- Lemma 1 -- 4. STEADY BVE SOLUTIONS ON A ROTATING SPHERE -- 5. CONSERVATION LAW FOR PERTURBATIONS TO LP FLOWS AND RH WAVES -- Theorem 1 -- 6. CONSERVATION LAW FOR INFINITESIMAL PERTURBATIONS TO WV WAVES AND MODONS -- Theorem 2 -- 7. UNIFIED CONSERVATION LAW FOR DISTURBANCES OF BE SOLUTIONS -- 8. INSTABILITY CONDITIONS FOR LP FLOWS, RH WAVES, WV WAVES AND MODONS -- Theorem 3 -- Example 1 -- Example 2 -- Example 3 -- Theorem 4 -- 9. PECULIARITIES OF INSTABILITY CONDITIONS FOR WV WAVES AND MODONS -- 10. ESTIMATES OF THE MAXIMUM GROWTH RATE OF UNSTABLE MODES -- Theorem 5 -- Theorem 6 -- 11. ORTHOGONALITY OF UNSTABLE MODES TO THE BASIC FLOW (BVE SOLUTION) -- Theorem 7 -- Corollary 1 -- Corollary 2 -- 12. NUMERICAL EXPERIMENTS -- Experiment 1 -- Experiment 2 -- Experiment 3 -- Experiment 4 -- 13. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- REVIEWED BY -- PURE AND MIXED MATHEMATICS IN THE WORK OF LEONHARD EULER -- ABSTRACT -- 1. INTRODUCTION -- 2. THE RISE OF THE CONCEPT OF FUNCTIONS -- 3. ORDINARY DIFFERENTIAL EQUATIONS -- 4. DIFFERENTIATION AND INTEGRATION OF FUNCTIONS OF TWO VARIABLES -- 5. PARTIAL DIFFERENTIAL EQUATION -- 6. INFINITE POLYNOMIALS AND SERIES -- 7. MECHANICS -- 8. THE CALCULUS OF VARIATIONS AND THE PRINCIPLE OF THE LEAST ACTION -- 9. OTHER RESULTS IN MIXED MATHEMATICS -- REFERENCES -- APPLICATIONS OF COMPUTATIONAL GEOMETRY TO PROBLEMS OF POLITICAL COMPETITION -- ABSTRACT -- 1. INTRODUCTION.
2. GEOMETRICAL SEARCH FOR OPTIMUM POSITIONS IN THE GAME WITH RESTRICTIONS: USE OF THE OPINION SURVEYS -- 2.1. The Opinion Surveys -- 2.1.1. Public Opinion and Politics Fiscal Survey Nº 2615 of the CIS -- 2.2. The Algorithm and the Simulation -- 2.2.1. A Graphic Approximation of the Algorithm -- 2.3. Simulation with an Example of the National Politics (Spain) -- 2.3.1. Algorithm Implementation -- 2.3.2. Results -- 2.4. Conclusions -- 3. GEOMETRICAL STUDY OF EQUILIBRIUM POSITIONS IN THE GAME WITH RESTRICTIONS -- 3.1. The Model -- 3.2. Equilibrium with Restrictions -- 3.2.1. Existence Conditions -- 3.2.2. Examples -- 3.3. Conclusions -- APPENDIX A: DEVELOPMENT OF THE ALGORITHM -- REFERENCES -- COHERENCE - HOMOTOPIES OF HIGHER ORDER -- INTRODUCTION -- 1. COHERENT SYSTEMS AND COHERENT MAPS -- Theorem 1.1 -- Theorem 1.2 -- Theorem 1.3 -- Theorem 1.4 -- 2. LEVEL COHERENT CATEGORY -- Theorem 2.1 -- Theorem 2.2 -- Theorem 2.3 -- Theorem 2.4 -- Theorem 2.5 -- Theorem 2.6 -- Theorem 2.7 -- Theorem 2.8 -- 3. COHERENT SHIFT AND COHERENT CATEGORY -- Proposition 3.1 -- Proposition 3.2. -- Theorem 3.1 -- Theorem 3.2 -- Theorem 3.3 -- Theorem 3.4 -- 4. RELATIONS OF COHERENT CATEGORIES -- Theorem 4.1 -- Theorem 4.2 -- APPENDIX: STRICT ORDERING VS ORDERING FOR DIRECTED SETS -- Theorem 1 -- Theorem 2 -- Theorem 3 -- REFERENCES -- STABLE MFS-BASED SOLUTION TO SINGULAR AND NON-SINGULAR INVERSE PROBLEMS FOR TWO-DIMENSIONAL HELMHOLTZ-TYPE EQUATIONS -- Abstract -- 1Introduction -- 2MathematicalFormulationoftheInverseProblems -- 3SingularSolutionsfortheTwo-DimensionalHelmholtz-TypeOperator -- 4SingularInverseProblem:SingularitySubtractionTechnique -- 5StandardandModifiedMethodsofFundamentalSolutions -- 6Regularization -- 6.1TheTikhonovRegularizationMethod -- 6.2TheL-CurveMethod -- 7NumericalResults -- 7.1AccuracyErrors -- 7.2Non-SingularInverseProblems -- 7.2.1Examples. 7.2.2EffectoftheTRM -- 7.2.3ChoiceoftheOptimalRegularizationParameter -- 7.2.4NumericalStabilityoftheMethod -- 7.2.5NumericalConvergenceoftheMethod -- 7.3SingularInverseProblems -- 7.3.1Examples -- 7.3.2EffectoftheSST -- 7.3.3EffectoftheTRM -- 7.3.4ChoiceoftheOptimalRegularizationParameter -- 7.3.5NumericalStabilityoftheMethod -- 8Conclusion -- References -- VANDERMONDE SYSTEMS: THEORY AND APPLICATIONS -- 1Introduction -- 2PolynomialInterpolation -- 2.1LagrangeandNewtonform -- 2.2Lebesgueconstant -- 2.2.1Lebesgueconstantforequidistantnodes -- 2.3TheBj¨orckandPereyraalgorithm -- 3APropertyoftheElementarySymmetricFunctions -- 4PolynomialApproximationwithGauss-LobattoPoints -- 4.0.1Theinterpolationproblem -- 4.0.2Theleast-squaresproblem:explicitMoore-Penrosepseudo-inverseformula -- 4.0.3Theleast-squaresproblem:discreteorthogonalpolynomials -- 4.0.4Numericalproperties -- References -- A COMPARATIVE STUDY OF DIFFERENT SEMILOCAL CONVERGENCE RESULTS APPLIED TO KEPLER'S EQUATION -- Abstract -- 1Introduction -- 2Kantorovich'sTheoryAppliedtoKepler'sEquation -- 3Smale'sa-TheoryAppliedtoKepler'sEquation -- 4Conclusion -- References -- DISCRETE MAXIMUM PRINCIPLES FOR FEM SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS -- Abstract -- 1Introduction -- 2DiscreteMaximumPrinciplesinDifferentSettings -- 2.1Algebraicbackgroundandthe'matrixmaximumprinciple' -- 2.2SomemotivationfortheDMP -- 2.2.1Linearequationsandcontinuousmaximumprinciples -- 2.2.2TheDMPforasinglenonlinearellipticequation -- 2.3GeometricpropertiestoensuretheDMP -- 2.4AnalgebraicDMPinHilbertspace -- 2.4.1Formulationoftheoperatorequation -- 2.4.2Galerkintypediscretization -- 2.4.3Maximumprinciplefortheabstractdiscretizedproblem -- 3DiscreteMaximumPrinciplesforEllipticReaction-DiffusionTypeSystems -- 3.1Systemswithnonlinearcoefficients -- 3.1.1Formulationoftheproblem -- 3.1.2Finiteelementdiscretization. 3.1.3Discretemaximumprincipleforsystemswithnonlinearcoefficients -- 3.2Systemswithgeneralreactiontermsofsublineargrowth -- 3.3Systemswithgeneralreactiontermsofsuperlineargrowth -- 3.4Sufficientconditionsandtheirgeometricmeaning -- 4DiscreteMaximumPrinciplesforEllipticSystemsIncludingFirstOrderTerms -- 4.1Nonsymmetricsystemswithnonlinearreactioncoefficients -- 4.2Nonsymmetricsystemswithsublinearreactionterms -- 4.3Nonsymmetricsystemswithsuperlinearreactionterms -- 4.4Nonsymmetricsystemswithnonlinearconvectioncoefficients -- 5Somereal-lifeexamples -- 5.1Reaction-diffusionsystemsinchemistry -- 5.2Linearellipticsystems -- 5.3Nonsymmetrictransportsystems -- Acknowledgments -- References -- NUMERICAL CONFORMAL MAPPINGS FOR WAVEGUIDES -- Abstract -- 1Introduction -- 2WaveScatteringinTwo-DimensionalWaveguides -- 2.1Theoriginalproblem -- 2.2TheBuildingBlockMethod -- 2.4Solvingtheresultingproblem -- 3ConformalMappingMethods -- 3.1ModifiedSchwarz-Christoffelmappingsforpolygonswithroundedcor-ners -- 3.2Approximatecurvefactors -- 3.3TheOuterPolygonMethod -- 3.4Usingthegeodesicalgorithmforchannels -- 4Conclusion -- References -- COMPUTATIONAL STUDY OF THE 3D AFFINE TRANSFORMATION -- 1Introduction -- 2Definitionofthe3-PointProblem -- 3NumericalSolutions -- 3.1GeneralpolynomialsolverbasedonnumericalGroebnerbasisandeigen-systemmethod -- 3.2Globalminimization -- 3.3HomotopySolution -- 4SymbolicSolutions -- 4.1Dixon'sResultant:BasicConcepts -- 4.2ConstructionofDixonResultant -- Cayley'sformulationofB´ezout'smethod -- Example -- Dixon'sgeneralizationoftheCayley-B´ezout'smethod -- Example -- 4.3ImprovedDixonresultant-Kapur,SaxenaandYangmethod -- 4.4HeuristicmethodstoacceleratetheDixonresultant -- 4.5Earlydiscoveryoffactors:theEDFmethod -- Example -- 4.6ApplicationoftheEDFmethod -- 4.7ApplicationofReducedGroebnerbasis -- 4.8Computationofotherparameters. 5DefinitionoftheN-PointProblem -- 6SolutionoftheOverdeterminedModel -- 6.1DirectNumericalSolutionviaGlobalMinimization -- 6.2Newton-RaphsonwithDeflation -- Example -- 6.3ExtendedgeneralProcrustesalgorithm -- 7TheDeterminedModel -- 8NumericalSolutionoftheDeterminedModel -- 9ComplexityStudyoftheAlgorithms -- 10TheProperSelectionofthe3PointsforInitialGuessValues -- 11Conclusions -- Acknowledgments -- References -- DISTANCES BASED ON NEIGHBORHOOD SEQUENCES IN THE TRIANGULAR GRID -- Abstract -- 1Introduction -- 1.1Abriefhistoryofdigitalgeometry -- 2BasicDefinitionsandNotations -- 3TheShortestPaths -- 4ConditionforMetricDistances -- 5ComputingtheDistance -- 6DigitalCircles -- 7Conclusion -- References -- A STREAM IN THE STUDY ON NORMALITY OF S-PRODUCTS -- Abstract -- I.S-ProductsandInfiniteProducts -- 1Introduction -- 2ProductsofCompactFactors -- 3TheDefinitionofS-Products -- 4S-ProductsofMetricSpaces -- II.S-ProductswithCountableTightness -- 5TightnessandProducts -- 6S-ProductsofParacompactp-Spaces -- 7GeneralizedMetricSpaces -- 8S-ProductsofGeneralizedMetricSpaces -- 9S-ProductsofParacompactC-ScatteredSpaces -- 10Non-NormalityofS-Products -- III.S-ProductswithoutCountableTightness -- 11CollectionwiseNormalityofS-Products -- 12CountableParacompactnessofS-Products -- 13TheShrinkingPropertyofS-Products -- 14Non-NormalityofS-Products,Revisited -- IV.RectangularProducts -- 15RectangularProductsandCoveringDimension -- 16ProductsofMetricSpaces -- 17ProductsofGeneralizedMetricSpaces -- 18NormalCoversofProducts -- References -- THE COMPLETION OF FUZZY METRIC SPACES AND OF OTHER RELATED STRUCTURES -- Abstract -- 1IntroductionandPreliminaries -- 2TheCompletionofFuzzyMetricSpaces -- 3TheCompletionofStrongFuzzyMetricSpacesandofNon-ArchimedeanFuzzyMetricSpaces -- 4TheCompletionofFuzzyMetricGroups -- 5TheCompletionofIntuitionisticFuzzyMetricSpaces -- Acknowledgments. References. |
| Record Nr. | UNINA-9910957633303321 |
| New York, : Nova Science Publishers, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational methods for data evaluation and assimilation / / Dan Gabrial Cauci, Ionel Michael Navon, Mihaela Ionescu-Bujor
| Computational methods for data evaluation and assimilation / / Dan Gabrial Cauci, Ionel Michael Navon, Mihaela Ionescu-Bujor |
| Autore | Cacuci D. G. |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2014] |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina | 518.0285 |
| Soggetto topico | Mathematical analysis - Data processing |
| ISBN |
0-429-13654-4
1-58488-735-4 |
| Classificazione | MAT003000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Cover; Contributors; Preface; List of Figures; List of Tables; Contents; Introduction; Chapter 1 - Experimental Data Evaluation: Basic Concepts; Chapter 2 - Computation of Means and Variances from Measurements; Chapter 3 - Optimization Methods For Large-Scale Data Assimilation; Chapter 4 - Basic Principles of 4-D VAR; Chapter 5 - 4-D VAR in Numerical Weather Prediction Models; Chapter 6 - Appendix A; Chapter 7 - Appendix B; Chapter 8 - Appendix C; Bibliography; Back Cover |
| Record Nr. | UNINA-9910787583203321 |
Cacuci D. G.
|
||
| Boca Raton : , : CRC Press, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational methods for data evaluation and assimilation / / Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor
| Computational methods for data evaluation and assimilation / / Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor |
| Autore | Cacuci D. G |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Boca Raton, : CRC Press, 2014 |
| Descrizione fisica | 1 online resource (372 p.) |
| Disciplina |
518.0285
519.538 |
| Altri autori (Persone) |
NavonIonel Michael
Ionescu-BujorMihaela |
| Soggetto topico | Mathematical analysis - Data processing |
| ISBN |
1-04-020571-2
0-429-13654-4 1-58488-735-4 |
| Classificazione | MAT003000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Cover; Contributors; Preface; List of Figures; List of Tables; Contents; Introduction; Chapter 1 - Experimental Data Evaluation: Basic Concepts; Chapter 2 - Computation of Means and Variances from Measurements; Chapter 3 - Optimization Methods For Large-Scale Data Assimilation; Chapter 4 - Basic Principles of 4-D VAR; Chapter 5 - 4-D VAR in Numerical Weather Prediction Models; Chapter 6 - Appendix A; Chapter 7 - Appendix B; Chapter 8 - Appendix C; Bibliography; Back Cover |
| Record Nr. | UNINA-9910966711403321 |
Cacuci D. G
|
||
| Boca Raton, : CRC Press, 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||