Differentiable germs and catastrophes / Th. Brocker, L. Lander ; [translated by L. Lander]
| Differentiable germs and catastrophes / Th. Brocker, L. Lander ; [translated by L. Lander] |
| Autore | Lander, L. |
| Pubbl/distr/stampa | Cambridge : Cambridge University Press, c1975 |
| Descrizione fisica | vi, 179 p. : ill. ; 23 cm |
| Disciplina | 516.7 |
| Altri autori (Persone) | Brocker, Theodor |
| Collana | London Mathematical Society lecture note series, 0076-0552 ; 17 |
| Soggetto topico |
Catastrophes
Differentiable mappings Differential topology Germs |
| ISBN | 0521206812 |
| Classificazione | AMS 57R |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000815009707536 |
Lander, L.
|
||
| Cambridge : Cambridge University Press, c1975 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Differential geometry [[electronic resource] /] / [by] J. J. Stoker
| Differential geometry [[electronic resource] /] / [by] J. J. Stoker |
| Autore | Stoker J. J (James Johnston), <1905-> |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, 1989, c1969 |
| Descrizione fisica | 1 online resource (428 p.) |
| Disciplina |
516
516.7 |
| Collana | Pure and applied mathematics, v. 20 |
| Soggetto topico |
Geometry, Differential
Manifolds (Mathematics) |
| ISBN |
1-283-27398-5
9786613273987 1-118-16546-2 1-118-16547-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Differential Geometry; CONTENTS; Chapter I Operations with Vectors; 1. The vector notation; 2. Addition of vectors; 3. Multiplication by scalars; 4. Representation of a vector by means of linearly independent vectors; 5. Scalar product; 6. Vector product; 7. Scalar triple product; 8. Invariance under orthogonal transformations; 9. Vector calculus; Chapter II Plane Curves; 1. Introduction; 2. Regular curves; 3. Change of parameters; 4. Invariance under changes of parameter; 5. Tangent lines and tangent vectors of a curve; 6. Orientation of a curve; 7. Length of a curve
1. Regular curves2. Length of a curve; 3. Curvature of space curves; 4. Principal normal and osculating plane; 5. Binormal vector; 6. Torsion τ of a space curve; 7. The Frenet equations for space curves; 8. Rigid body motions and the rotation vector; 9. The Darboux vector; 10. Formulas for κ and τ; 11. The sign of τ; 12. Canonical representation of a curve; 13. Existence and uniqueness of a space curve for given κ (S), τ (S); 14. What about κ = 0?; 15. Another way to define space curves; 16. Some special curves; Chapter IV The Basic Elements of Surface Theory 1. Regular surfaces in Euclidean space2. Change of parameters; 3. Curvilinear coordinate curves on a surface; 4. Tangent plane and normal vector; 5. Length of curves and first fundamental form; 6. Invariance of the first fundamental form; 7. Angle measurement on surfaces; 8. Area of a surface; 9. A few examples; 10. Second fundamental form of a surface; 11. Osculating paraboloid; 12. Curvature of curves on a surface; 13. Principal directions and principal curvatures; 14. Mean curvature H and Gaussian curvature K; 15. Another definition of the Gaussian curvature K; 16. Lines of curvature 17. Third fundamental form18. Characterization of the sphere as a locus of umbilical points; 19. Asymptotic lines; 20. Torsion of asymptotic lines; 21. Introduction of special parameter curves; 22. Asymptotic lines and lines of curvature as parameter curves; 23. Embedding a given arc in a system of parameter curves; 24. Analogues of polar coordinates on a surface; Chapter V Some Special Surfaces; 1. Surfaces of revolution; 2. Developable surfaces in the small made up of parabolic points; 3. Edge of regression of a developable; 4. Why the name developable? 5. Developable surfaces in the large1 |
| Record Nr. | UNINA-9910139601203321 |
Stoker J. J (James Johnston), <1905->
|
||
| New York, : Wiley-Interscience, 1989, c1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Differential geometry [[electronic resource] /] / [by] J. J. Stoker
| Differential geometry [[electronic resource] /] / [by] J. J. Stoker |
| Autore | Stoker J. J (James Johnston), <1905-> |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, 1989, c1969 |
| Descrizione fisica | 1 online resource (428 p.) |
| Disciplina |
516
516.7 |
| Collana | Pure and applied mathematics, v. 20 |
| Soggetto topico |
Geometry, Differential
Manifolds (Mathematics) |
| ISBN |
1-283-27398-5
9786613273987 1-118-16546-2 1-118-16547-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Differential Geometry; CONTENTS; Chapter I Operations with Vectors; 1. The vector notation; 2. Addition of vectors; 3. Multiplication by scalars; 4. Representation of a vector by means of linearly independent vectors; 5. Scalar product; 6. Vector product; 7. Scalar triple product; 8. Invariance under orthogonal transformations; 9. Vector calculus; Chapter II Plane Curves; 1. Introduction; 2. Regular curves; 3. Change of parameters; 4. Invariance under changes of parameter; 5. Tangent lines and tangent vectors of a curve; 6. Orientation of a curve; 7. Length of a curve
1. Regular curves2. Length of a curve; 3. Curvature of space curves; 4. Principal normal and osculating plane; 5. Binormal vector; 6. Torsion τ of a space curve; 7. The Frenet equations for space curves; 8. Rigid body motions and the rotation vector; 9. The Darboux vector; 10. Formulas for κ and τ; 11. The sign of τ; 12. Canonical representation of a curve; 13. Existence and uniqueness of a space curve for given κ (S), τ (S); 14. What about κ = 0?; 15. Another way to define space curves; 16. Some special curves; Chapter IV The Basic Elements of Surface Theory 1. Regular surfaces in Euclidean space2. Change of parameters; 3. Curvilinear coordinate curves on a surface; 4. Tangent plane and normal vector; 5. Length of curves and first fundamental form; 6. Invariance of the first fundamental form; 7. Angle measurement on surfaces; 8. Area of a surface; 9. A few examples; 10. Second fundamental form of a surface; 11. Osculating paraboloid; 12. Curvature of curves on a surface; 13. Principal directions and principal curvatures; 14. Mean curvature H and Gaussian curvature K; 15. Another definition of the Gaussian curvature K; 16. Lines of curvature 17. Third fundamental form18. Characterization of the sphere as a locus of umbilical points; 19. Asymptotic lines; 20. Torsion of asymptotic lines; 21. Introduction of special parameter curves; 22. Asymptotic lines and lines of curvature as parameter curves; 23. Embedding a given arc in a system of parameter curves; 24. Analogues of polar coordinates on a surface; Chapter V Some Special Surfaces; 1. Surfaces of revolution; 2. Developable surfaces in the small made up of parabolic points; 3. Edge of regression of a developable; 4. Why the name developable? 5. Developable surfaces in the large1 |
| Record Nr. | UNINA-9910830341303321 |
Stoker J. J (James Johnston), <1905->
|
||
| New York, : Wiley-Interscience, 1989, c1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Differential geometry / / [by] J. J. Stoker
| Differential geometry / / [by] J. J. Stoker |
| Autore | Stoker J. J (James Johnston), <1905-> |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, 1989, c1969 |
| Descrizione fisica | 1 online resource (428 p.) |
| Disciplina |
516
516.7 |
| Collana | Pure and applied mathematics, v. 20 |
| Soggetto topico |
Geometry, Differential
Manifolds (Mathematics) |
| ISBN |
9786613273987
9781283273985 1283273985 9781118165461 1118165462 9781118165478 1118165470 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Differential Geometry; CONTENTS; Chapter I Operations with Vectors; 1. The vector notation; 2. Addition of vectors; 3. Multiplication by scalars; 4. Representation of a vector by means of linearly independent vectors; 5. Scalar product; 6. Vector product; 7. Scalar triple product; 8. Invariance under orthogonal transformations; 9. Vector calculus; Chapter II Plane Curves; 1. Introduction; 2. Regular curves; 3. Change of parameters; 4. Invariance under changes of parameter; 5. Tangent lines and tangent vectors of a curve; 6. Orientation of a curve; 7. Length of a curve
1. Regular curves2. Length of a curve; 3. Curvature of space curves; 4. Principal normal and osculating plane; 5. Binormal vector; 6. Torsion τ of a space curve; 7. The Frenet equations for space curves; 8. Rigid body motions and the rotation vector; 9. The Darboux vector; 10. Formulas for κ and τ; 11. The sign of τ; 12. Canonical representation of a curve; 13. Existence and uniqueness of a space curve for given κ (S), τ (S); 14. What about κ = 0?; 15. Another way to define space curves; 16. Some special curves; Chapter IV The Basic Elements of Surface Theory 1. Regular surfaces in Euclidean space2. Change of parameters; 3. Curvilinear coordinate curves on a surface; 4. Tangent plane and normal vector; 5. Length of curves and first fundamental form; 6. Invariance of the first fundamental form; 7. Angle measurement on surfaces; 8. Area of a surface; 9. A few examples; 10. Second fundamental form of a surface; 11. Osculating paraboloid; 12. Curvature of curves on a surface; 13. Principal directions and principal curvatures; 14. Mean curvature H and Gaussian curvature K; 15. Another definition of the Gaussian curvature K; 16. Lines of curvature 17. Third fundamental form18. Characterization of the sphere as a locus of umbilical points; 19. Asymptotic lines; 20. Torsion of asymptotic lines; 21. Introduction of special parameter curves; 22. Asymptotic lines and lines of curvature as parameter curves; 23. Embedding a given arc in a system of parameter curves; 24. Analogues of polar coordinates on a surface; Chapter V Some Special Surfaces; 1. Surfaces of revolution; 2. Developable surfaces in the small made up of parabolic points; 3. Edge of regression of a developable; 4. Why the name developable? 5. Developable surfaces in the large1 |
| Record Nr. | UNINA-9911019493603321 |
Stoker J. J (James Johnston), <1905->
|
||
| New York, : Wiley-Interscience, 1989, c1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Differential geometry and topology / Jacob T. Schwartz ; notes by Adil Naoum and Joseph Roitberg
| Differential geometry and topology / Jacob T. Schwartz ; notes by Adil Naoum and Joseph Roitberg |
| Autore | Schwartz, Jacob Theodore |
| Pubbl/distr/stampa | New York : Gordon and Breach, 1968 |
| Descrizione fisica | ix, 170 p. : ill. ; 24 cm |
| Disciplina | 516.7 |
| Collana | Notes on mathematics and its applications |
| Soggetto non controllato |
Geometria algebrica
Topologia Topologia algebrica Sistemi dinamici Frattali matematici |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990001058530403321 |
Schwartz, Jacob Theodore
|
||
| New York : Gordon and Breach, 1968 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Foundations of differential geometry / Shoshichi Kobayashi, Katsumi Nomizu
| Foundations of differential geometry / Shoshichi Kobayashi, Katsumi Nomizu |
| Autore | Kobayashi, Shoshichi |
| Pubbl/distr/stampa | New York : Interscience Publishers, 1963-69 |
| Descrizione fisica | 2 v. ; 24 cm. |
| Disciplina | 516.7 |
| Altri autori (Persone) | Nomizu, Katsumiauthor |
| Collana |
Interscience tracts in pure and applied mathematics ; 15, v.1
Interscience tracts in pure and applied mathematics ; 15, v.2 |
| Soggetto topico | Topology |
| ISBN |
0470496479 (v. 1)
0470496487 (v. 2) |
| Classificazione |
AMS 53-01
AMS 53-XX QA641 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000905159707536 |
Kobayashi, Shoshichi
|
||
| New York : Interscience Publishers, 1963-69 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Geometria proiettiva differenziale / G. Fubini, E. Cech
| Geometria proiettiva differenziale / G. Fubini, E. Cech |
| Autore | Fubini, Guido <1879-1943> |
| Pubbl/distr/stampa | Bologna : Zanichelli, 1926-1927 |
| Descrizione fisica | 2 v. (794 p. compless.) ; 25 cm |
| Disciplina | 516.7 |
| Altri autori (Persone) | Cech, Eduard |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNIPARTHENOPE-000011471 |
Fubini, Guido <1879-1943>
|
||
| Bologna : Zanichelli, 1926-1927 | ||
| Lo trovi qui: Univ. Parthenope | ||
| ||
Geometrische Ordnungen / Otto Haupt, Hermann Kunneth. Mit 20 Abbildungen
| Geometrische Ordnungen / Otto Haupt, Hermann Kunneth. Mit 20 Abbildungen |
| Autore | Haupt, Otto |
| Pubbl/distr/stampa | Berlin : Springer-Verlag, 1967 |
| Descrizione fisica | vii, 429 p. ; 24 cm. |
| Disciplina | 516.7 |
| Altri autori (Persone) | Kunneth, Hermann |
| Collana | Grundlehren der mathematischen Wissenschaften = A series of comprehensive studies in mathematics, 0072-7830 ; 133 |
| Soggetto topico |
Algebraic geometry
Differential geometry Finite geometry |
| Classificazione | AMS 51E |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNISALENTO-991000945189707536 |
Haupt, Otto
|
||
| Berlin : Springer-Verlag, 1967 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Grundzuge der topologie und differeziebare mannigfaltigkeiten / von C. Teleman
| Grundzuge der topologie und differeziebare mannigfaltigkeiten / von C. Teleman |
| Autore | Teleman, C. |
| Pubbl/distr/stampa | Berlin : VEB Deutscher Verlag der Wissenschaften, 1968 |
| Descrizione fisica | 411 p. ; 24 cm. |
| Disciplina | 516.7 |
| Collana | Mathematische Monographien ; 8 |
| Soggetto topico |
Differential geometry
Differential geometry-textbooks |
| Classificazione |
AMS 53-01
AMS 53-XX |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNISALENTO-991000967009707536 |
Teleman, C.
|
||
| Berlin : VEB Deutscher Verlag der Wissenschaften, 1968 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
An introduction to distance geometry applied to molecular geometry / / by Carlile Lavor, Leo Liberti, Weldon A. Lodwick, Tiago Mendonça da Costa
| An introduction to distance geometry applied to molecular geometry / / by Carlile Lavor, Leo Liberti, Weldon A. Lodwick, Tiago Mendonça da Costa |
| Autore | Lavor Carlile |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
| Descrizione fisica | 1 online resource (IX, 54 p. 27 illus. in color.) |
| Disciplina | 516.7 |
| Collana | SpringerBriefs in Computer Science |
| Soggetto topico |
Application software
Bioinformatics Applied mathematics Engineering mathematics Computer science—Mathematics Computer Applications Applications of Mathematics Math Applications in Computer Science |
| ISBN | 3-319-57183-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- The Distance Geometry Problem -- From Continuous to Discrete -- The Discretizable Distance Geometry Problem -- The Discretizable Molecular Distance Geometry Problem -- Distance Geometry and Molecular Geometry. |
| Record Nr. | UNINA-9910254814003321 |
Lavor Carlile
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||