Canonical differential operators and lower-order symbols / / Robert John Victor Jackson |
Autore | Jackson Robert John Victor |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1973 |
Descrizione fisica | 1 online resource (246 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds (Mathematics)
Pseudodifferential operators Jet bundles (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9934-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""TABLE OF CONTENTS""; ""ABSTRACT""; ""ACKNOWLEDGEMENTS""; ""INTRODUCTION""; ""PART I""; ""CHAPTER ONE: SYMBOLS""; ""Â1.0 Introduction""; ""Â1.1 Symbols of Pseudo-Differential Operators on Ω[sub(Â?)](X)""; ""Â1.2 Symbols of Partial Differential Operators on Ω[sub(Â?)](X)""; ""Â1.3 Sub-sub-principal Symbols""; ""CHAPTER TWO: SPECIAL CANONICAL OPERATORS""; ""Â2.0 Introduction""; ""Â2.1 Canonical Operators on ""Volume Preserving"" Manifolds""; ""Â2.2 The Laplace-Beltrami Operator on Ω[sub(k)](X)""; ""Â2.3 Self-Adjoint, Second-Order Operators on Ω[sub(Â?)](X)""; ""Â2.4 Conclusions"" |
Record Nr. | UNINA-9910480120803321 |
Jackson Robert John Victor
![]() |
||
Providence : , : American Mathematical Society, , 1973 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Canonical differential operators and lower-order symbols / / Robert John Victor Jackson |
Autore | Jackson Robert John Victor |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1973 |
Descrizione fisica | 1 online resource (246 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds (Mathematics)
Pseudodifferential operators Jet bundles (Mathematics) |
ISBN | 0-8218-9934-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""TABLE OF CONTENTS""; ""ABSTRACT""; ""ACKNOWLEDGEMENTS""; ""INTRODUCTION""; ""PART I""; ""CHAPTER ONE: SYMBOLS""; ""Â1.0 Introduction""; ""Â1.1 Symbols of Pseudo-Differential Operators on Ω[sub(Â?)](X)""; ""Â1.2 Symbols of Partial Differential Operators on Ω[sub(Â?)](X)""; ""Â1.3 Sub-sub-principal Symbols""; ""CHAPTER TWO: SPECIAL CANONICAL OPERATORS""; ""Â2.0 Introduction""; ""Â2.1 Canonical Operators on ""Volume Preserving"" Manifolds""; ""Â2.2 The Laplace-Beltrami Operator on Ω[sub(k)](X)""; ""Â2.3 Self-Adjoint, Second-Order Operators on Ω[sub(Â?)](X)""; ""Â2.4 Conclusions"" |
Record Nr. | UNINA-9910788615103321 |
Jackson Robert John Victor
![]() |
||
Providence : , : American Mathematical Society, , 1973 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Canonical differential operators and lower-order symbols / / Robert John Victor Jackson |
Autore | Jackson Robert John Victor |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1973 |
Descrizione fisica | 1 online resource (246 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds (Mathematics)
Pseudodifferential operators Jet bundles (Mathematics) |
ISBN | 0-8218-9934-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""TABLE OF CONTENTS""; ""ABSTRACT""; ""ACKNOWLEDGEMENTS""; ""INTRODUCTION""; ""PART I""; ""CHAPTER ONE: SYMBOLS""; ""Â1.0 Introduction""; ""Â1.1 Symbols of Pseudo-Differential Operators on Ω[sub(Â?)](X)""; ""Â1.2 Symbols of Partial Differential Operators on Ω[sub(Â?)](X)""; ""Â1.3 Sub-sub-principal Symbols""; ""CHAPTER TWO: SPECIAL CANONICAL OPERATORS""; ""Â2.0 Introduction""; ""Â2.1 Canonical Operators on ""Volume Preserving"" Manifolds""; ""Â2.2 The Laplace-Beltrami Operator on Ω[sub(k)](X)""; ""Â2.3 Self-Adjoint, Second-Order Operators on Ω[sub(Â?)](X)""; ""Â2.4 Conclusions"" |
Record Nr. | UNINA-9910818808003321 |
Jackson Robert John Victor
![]() |
||
Providence : , : American Mathematical Society, , 1973 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geodesics and ends in certain surfaces without conjugate points / / Patrick Eberlein |
Autore | Eberlein Patrick <1944-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , [1978] |
Descrizione fisica | 1 online resource (116 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometry, Differential
Riemann surfaces Manifolds (Mathematics) Geodesics (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0204-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 PRELIMINARIES""; ""1. Definitions""; ""2. Isometries and limit sets""; ""3. Fundamental domains""; ""CHAPTER 2 FURTHER PROPERTIES OF UNIFORM VISIBILITY MANIFOLDS""; ""1. Busemann functions and horospheres""; ""2. Classification of isometries""; ""3. Classification of limit sets""; ""CHAPTER 3 PARABOLIC GEODESICS""; ""CHAPTER 4 THE ENDS OF M""; ""1. Definition of parabolic and expanding ends""; ""2. Asymptotes in finitely connected surfaces""; ""3. A characterization of parabolic geodesies""
""4. Total curvatures of neighborhoods of parabolic and expanding ends""""5. Structure of the divergent geodesies associated to an end""; ""CHAPTER 5 SEPARATING GEODESICS OF M""; ""1. Definition of separating geodesies""; ""2. The case of an infinite cyclic fundamental group""; ""3. The two components of the complement of a separating geodesic""; ""4. Further properties of separating geodesies""; ""5. Riemannian collared neighborhoods of expanding ends""; ""CHAPTER 6 THE SETS M[sub(0)] AND M*[sub(0)]""; ""1. Totally convex sets"" ""2. Construction of the smallest closed totally convex set M[sub(0)]""""3. Criteria for M[sub(0)] to be compact""; ""4. The compact deformation retract M*[sub(0)]""; ""REFERENCES"" |
Record Nr. | UNINA-9910480725003321 |
Eberlein Patrick <1944->
![]() |
||
Providence : , : American Mathematical Society, , [1978] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geodesics and ends in certain surfaces without conjugate points / / Patrick Eberlein |
Autore | Eberlein Patrick <1944-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , [1978] |
Descrizione fisica | 1 online resource (116 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometry, Differential
Riemann surfaces Manifolds (Mathematics) Geodesics (Mathematics) |
ISBN | 1-4704-0204-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 PRELIMINARIES""; ""1. Definitions""; ""2. Isometries and limit sets""; ""3. Fundamental domains""; ""CHAPTER 2 FURTHER PROPERTIES OF UNIFORM VISIBILITY MANIFOLDS""; ""1. Busemann functions and horospheres""; ""2. Classification of isometries""; ""3. Classification of limit sets""; ""CHAPTER 3 PARABOLIC GEODESICS""; ""CHAPTER 4 THE ENDS OF M""; ""1. Definition of parabolic and expanding ends""; ""2. Asymptotes in finitely connected surfaces""; ""3. A characterization of parabolic geodesies""
""4. Total curvatures of neighborhoods of parabolic and expanding ends""""5. Structure of the divergent geodesies associated to an end""; ""CHAPTER 5 SEPARATING GEODESICS OF M""; ""1. Definition of separating geodesies""; ""2. The case of an infinite cyclic fundamental group""; ""3. The two components of the complement of a separating geodesic""; ""4. Further properties of separating geodesies""; ""5. Riemannian collared neighborhoods of expanding ends""; ""CHAPTER 6 THE SETS M[sub(0)] AND M*[sub(0)]""; ""1. Totally convex sets"" ""2. Construction of the smallest closed totally convex set M[sub(0)]""""3. Criteria for M[sub(0)] to be compact""; ""4. The compact deformation retract M*[sub(0)]""; ""REFERENCES"" |
Record Nr. | UNINA-9910788889503321 |
Eberlein Patrick <1944->
![]() |
||
Providence : , : American Mathematical Society, , [1978] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geodesics and ends in certain surfaces without conjugate points / / Patrick Eberlein |
Autore | Eberlein Patrick <1944-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , [1978] |
Descrizione fisica | 1 online resource (116 p.) |
Disciplina | 516/.36 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometry, Differential
Riemann surfaces Manifolds (Mathematics) Geodesics (Mathematics) |
ISBN | 1-4704-0204-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 PRELIMINARIES""; ""1. Definitions""; ""2. Isometries and limit sets""; ""3. Fundamental domains""; ""CHAPTER 2 FURTHER PROPERTIES OF UNIFORM VISIBILITY MANIFOLDS""; ""1. Busemann functions and horospheres""; ""2. Classification of isometries""; ""3. Classification of limit sets""; ""CHAPTER 3 PARABOLIC GEODESICS""; ""CHAPTER 4 THE ENDS OF M""; ""1. Definition of parabolic and expanding ends""; ""2. Asymptotes in finitely connected surfaces""; ""3. A characterization of parabolic geodesies""
""4. Total curvatures of neighborhoods of parabolic and expanding ends""""5. Structure of the divergent geodesies associated to an end""; ""CHAPTER 5 SEPARATING GEODESICS OF M""; ""1. Definition of separating geodesies""; ""2. The case of an infinite cyclic fundamental group""; ""3. The two components of the complement of a separating geodesic""; ""4. Further properties of separating geodesies""; ""5. Riemannian collared neighborhoods of expanding ends""; ""CHAPTER 6 THE SETS M[sub(0)] AND M*[sub(0)]""; ""1. Totally convex sets"" ""2. Construction of the smallest closed totally convex set M[sub(0)]""""3. Criteria for M[sub(0)] to be compact""; ""4. The compact deformation retract M*[sub(0)]""; ""REFERENCES"" |
Record Nr. | UNINA-9910829186703321 |
Eberlein Patrick <1944->
![]() |
||
Providence : , : American Mathematical Society, , [1978] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 / / G. Daniel Mostow |
Autore | Mostow G. Daniel |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina | 516/.36 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Riemannian manifolds
Symmetric spaces Lie groups Rigidity (Geometry) |
Soggetto non controllato |
Addition
Adjoint representation Affine space Approximation Automorphism Axiom Big O notation Boundary value problem Cohomology Compact Riemann surface Compact space Conjecture Constant curvature Corollary Counterexample Covering group Covering space Curvature Diameter Diffeomorphism Differentiable function Dimension Direct product Division algebra Ergodicity Erlangen program Existence theorem Exponential function Finitely generated group Fundamental domain Fundamental group Geometry Half-space (geometry) Hausdorff distance Hermitian matrix Homeomorphism Homomorphism Hyperplane Identity matrix Inner automorphism Isometry group Jordan algebra Matrix multiplication Metric space Morphism Möbius transformation Normal subgroup Normalizing constant Partially ordered set Permutation Projective space Riemann surface Riemannian geometry Sectional curvature Self-adjoint Set function Smoothness Stereographic projection Subgroup Subset Summation Symmetric space Tangent space Tangent vector Theorem Topology Tubular neighborhood Two-dimensional space Unit sphere Vector group Weyl group |
ISBN | 1-4008-8183-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- §1. Introduction -- §2. Algebraic Preliminaries -- §3. The Geometry of χ : Preliminaries -- §4. A Metric Definition of the Maximal Boundary -- §5. Polar Parts -- §6. A Basic Inequality -- §7. Geometry of Neighboring Flats -- §8. Density Properties of Discrete Subgroups -- §8. Density Properties of Discrete Subgroups -- § 10. Pseudo Isometries of Simply Connected Spaces with Negative Curvature -- §11. Polar Regular Elements in Co-Compact Γ -- § 12. Pseudo-Isometric Invariance of Semi-Simple and Unipotent Elements -- §13. The Basic Approximation -- §14. The Map ∅̅ -- §15. The Boundary Map ∅0 -- §16. Tits Geometries -- §17. Rigidity for R-rank > 1 -- §18. The Restriction to Simple Groups -- §19. Spaces of R-rank 1 -- §20. The Boundary Semi-Metric -- §21. Quasi-Conformal Mappings Over K and Absolute Continuity on Almost All R-Circles -- §22. The Effect of Ergodicity -- §23. R-Rank 1 Rigidity Proof Concluded -- §24. Concluding Remarks -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154743303321 |
Mostow G. Daniel
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|