A generalized Taylor's formula for functions of several variables and certain of its applications / J. A. Riestra
| A generalized Taylor's formula for functions of several variables and certain of its applications / J. A. Riestra |
| Autore | Riestra, J. A. |
| Pubbl/distr/stampa | Harlow (UK) : Longman, c1995 |
| Descrizione fisica | 125 p. : ill. ; 25 cm |
| Disciplina | 515.782 |
| Collana | Pitman research notes in mathematics series |
| Soggetto non controllato |
Teoria della distribuzione - Analisi funzionale
Funzioni di più variabili reali Mappe differenziabili Funzioni quasi analitiche |
| ISBN | 0-582-27781-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990001144780403321 |
Riestra, J. A.
|
||
| Harlow (UK) : Longman, c1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A nonlinear theory of generalized functions / Hebe A. Biagioni
| A nonlinear theory of generalized functions / Hebe A. Biagioni |
| Autore | Biagioni, Hebe Azevedo |
| Pubbl/distr/stampa | Berlin [etc.] : Springer, c1990 |
| Descrizione fisica | XII, 214 p. : ill. ; 25 cm. |
| Disciplina | 515.782 |
| Collana | Lecture notes in mathematics |
| Soggetto topico | Analisi funzionale |
| ISBN | 3-540-52408-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNIBAS-000012588 |
Biagioni, Hebe Azevedo
|
||
| Berlin [etc.] : Springer, c1990 | ||
| Lo trovi qui: Univ. della Basilicata | ||
| ||
Analytically uniform spaces and their applications to convolution equations / Carlos A. Berenstein, Milos A. Dostal
| Analytically uniform spaces and their applications to convolution equations / Carlos A. Berenstein, Milos A. Dostal |
| Autore | Berenstein, Carlos A. |
| Pubbl/distr/stampa | Berlin : Springer-Verlag, 1972 |
| Descrizione fisica | v, 130 p. ; 26 cm |
| Disciplina | 515.782 |
| Altri autori (Persone) | Dostal, Milos A. |
| Collana | Lecture notes in mathematics, 0075-8434 ; 256 |
| Soggetto topico |
Distributions
Fourier transformations Locally convex spaces Partial differential equations |
| ISBN | 3540057463 |
| Classificazione | AMS 46F10 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000685009707536 |
Berenstein, Carlos A.
|
||
| Berlin : Springer-Verlag, 1972 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Applications of distributions in mathematical physics / by E.M. De Jager
| Applications of distributions in mathematical physics / by E.M. De Jager |
| Autore | JAGER E.M. De |
| Edizione | [2 ed.] |
| Pubbl/distr/stampa | Amsterdam : Mathematical Centrum, 1969 |
| Descrizione fisica | 182 p. : ill. ; 24 cm |
| Disciplina | 515.782 |
| Collana | Mathematical Centre Tracts |
| Soggetto non controllato | Fisica matematica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | und |
| Record Nr. | UNISA-990001069130203316 |
JAGER E.M. De
|
||
| Amsterdam : Mathematical Centrum, 1969 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Applications of harmonic analysis / I. M. Gel'fand, G. E. Shilov
| Applications of harmonic analysis / I. M. Gel'fand, G. E. Shilov |
| Autore | Shilov, G. E. |
| Pubbl/distr/stampa | New York : Academic Press, 1964 |
| Descrizione fisica | xiv, 384 p. ; 24 cm. |
| Disciplina | 515.782 |
| Altri autori (Persone) | Gelfand, Izrail Moiseevic |
| Collana | Generalized functions ; 4 |
| Soggetto topico |
Generalized functions
Spaces determined by compactness |
| Classificazione |
AMS 46A11
AMS 46F |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000688509707536 |
Shilov, G. E.
|
||
| New York : Academic Press, 1964 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Applications of the theory of distributions / R. Cristescu, G. Marinescu ; traslated from the romanian edition by S. Teleman
| Applications of the theory of distributions / R. Cristescu, G. Marinescu ; traslated from the romanian edition by S. Teleman |
| Autore | Cristescu, Romulus |
| Pubbl/distr/stampa | Bucaresti : Editura Academiei ( (London) : John Wiley & Sons, 1973 |
| Descrizione fisica | 227 p. ; 22 cm |
| Disciplina | 515.782 |
| Altri autori (Persone) | Marinescu, Gheorghe |
| Soggetto non controllato |
Teoria delle distribuzioni
Applicazioni |
| ISBN | 0-471-18758-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990000833440403321 |
Cristescu, Romulus
|
||
| Bucaresti : Editura Academiei ( (London) : John Wiley & Sons, 1973 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas
| Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas |
| Autore | Pilipović Stevan |
| Pubbl/distr/stampa | Singapore, : World Scientific, c2012 |
| Descrizione fisica | 1 online resource (309 p.) |
| Disciplina |
515.23
515.782 |
| Altri autori (Persone) |
StankovićBogoljub <1924->
VindasJasson |
| Collana | Series on analysis, applications and computation |
| Soggetto topico | Asymptotic expansions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4366-85-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions
1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 4.2.4 Special integral transforms |
| Record Nr. | UNINA-9910457493803321 |
Pilipović Stevan
|
||
| Singapore, : World Scientific, c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas
| Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas |
| Autore | Pilipović Stevan |
| Pubbl/distr/stampa | Singapore, : World Scientific, c2012 |
| Descrizione fisica | 1 online resource (309 p.) |
| Disciplina |
515.23
515.782 |
| Altri autori (Persone) |
StankovićBogoljub <1924->
VindasJasson |
| Collana | Series on analysis, applications and computation |
| Soggetto topico | Asymptotic expansions |
| ISBN | 981-4366-85-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions
1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 4.2.4 Special integral transforms |
| Record Nr. | UNINA-9910779068103321 |
Pilipović Stevan
|
||
| Singapore, : World Scientific, c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Beyond beta [[electronic resource] ] : other continuous families of distributions with bounded support and applications / / Samuel Kotz, Johan Rene van Dorp
| Beyond beta [[electronic resource] ] : other continuous families of distributions with bounded support and applications / / Samuel Kotz, Johan Rene van Dorp |
| Autore | Kotz Samuel |
| Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2004 |
| Descrizione fisica | 1 online resource (307 p.) |
| Disciplina |
515.782
519.5 |
| Altri autori (Persone) | Van DorpJohan René |
| Soggetto topico |
Theory of distributions (Functional analysis)
Multivariate analysis |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-89702-7
9786611897024 981-270-128-1 |
| Classificazione | 31.73 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Chapter 1 The Triangular Distribution; Chapter 2 Some Early Extensions of the Triangular Distribution; Chapter 3 The Standard Two-Sided Power Distribution; Chapter 4 The Two-Sided Power Distribution; Chapter 5 The Generalized Trapezoidal Distribution; Chapter 6 Uneven Two-Sided Power Distributions; Chapter 7 The Reflected Generalized Topp and Leone Distribution; Chapter 8 A Generalized Framework for Two-Sided Distributions; Epilogue; Appendix A Graphical Overview of Continuous Univariate Families of Distributions possessing a Bounded Domain
Appendix B The Johnson SB DistributionBibliography; Author Index; Subject Index |
| Record Nr. | UNINA-9910451292403321 |
Kotz Samuel
|
||
| Singapore ; ; London, : World Scientific, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Beyond beta [[electronic resource] ] : other continuous families of distributions with bounded support and applications / / Samuel Kotz, Johan Rene van Dorp
| Beyond beta [[electronic resource] ] : other continuous families of distributions with bounded support and applications / / Samuel Kotz, Johan Rene van Dorp |
| Autore | Kotz Samuel |
| Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2004 |
| Descrizione fisica | 1 online resource (307 p.) |
| Disciplina |
515.782
519.5 |
| Altri autori (Persone) | Van DorpJohan René |
| Soggetto topico |
Theory of distributions (Functional analysis)
Multivariate analysis |
| ISBN |
1-281-89702-7
9786611897024 981-270-128-1 |
| Classificazione | 31.73 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Chapter 1 The Triangular Distribution; Chapter 2 Some Early Extensions of the Triangular Distribution; Chapter 3 The Standard Two-Sided Power Distribution; Chapter 4 The Two-Sided Power Distribution; Chapter 5 The Generalized Trapezoidal Distribution; Chapter 6 Uneven Two-Sided Power Distributions; Chapter 7 The Reflected Generalized Topp and Leone Distribution; Chapter 8 A Generalized Framework for Two-Sided Distributions; Epilogue; Appendix A Graphical Overview of Continuous Univariate Families of Distributions possessing a Bounded Domain
Appendix B The Johnson SB DistributionBibliography; Author Index; Subject Index |
| Record Nr. | UNINA-9910783919003321 |
Kotz Samuel
|
||
| Singapore ; ; London, : World Scientific, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||