Adaptive control of parabolic PDEs / Andrey Smyshlyaev and Miroslav Krstic
| Adaptive control of parabolic PDEs / Andrey Smyshlyaev and Miroslav Krstic |
| Autore | Smyshlyaev, Andrey |
| Pubbl/distr/stampa | Princeton : Princeton University Press, c2010 |
| Descrizione fisica | xiii, 328 p. : ill. ; 25 cm |
| Disciplina | 515.3534 |
| Altri autori (Persone) | Krstic, Miroslavauthor |
| Soggetto topico |
Differential equations, Parabolic
Distributed parameter systems Adaptive control systems |
| ISBN | 9780691142869 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001644719707536 |
Smyshlyaev, Andrey
|
||
| Princeton : Princeton University Press, c2010 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle / / by Massimiliano Berti, Jean-Marc Delort
| Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle / / by Massimiliano Berti, Jean-Marc Delort |
| Autore | Berti Massimiliano |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (276 pages) |
| Disciplina | 515.3534 |
| Collana | Lecture Notes of the Unione Matematica Italiana |
| Soggetto topico |
Differential equations, Partial
Fourier analysis Dynamics Ergodic theory Functional analysis Partial Differential Equations Fourier Analysis Dynamical Systems and Ergodic Theory Functional Analysis |
| ISBN | 3-319-99486-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910300106603321 |
Berti Massimiliano
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations
| Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations |
| Autore | Berestycki Henri |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2022 |
| Descrizione fisica | 1 online resource (112 pages) |
| Disciplina |
515/.3534
515.3534 |
| Altri autori (Persone) | NadinGrégoire |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Reaction-diffusion equations
Differential equations, Parabolic - Asymptotic theory Partial differential equations -- Qualitative properties of solutions -- Asymptotic behavior of solutions Partial differential equations -- Qualitative properties of solutions -- Homogenization; equations in media with periodic structure Partial differential equations -- Parabolic equations and systems -- Reaction-diffusion equations Partial differential equations -- Qualitative properties of solutions -- Maximum principles Partial differential equations -- Parabolic equations and systems -- Second-order parabolic equations Partial differential equations -- Spectral theory and eigenvalue problems -- General topics in linear spectral theory Operator theory -- Special classes of linear operators -- Positive operators and order-bounded operators Calculus of variations and optimal control; optimization -- Hamilton-Jacobi theories, including dynamic programming -- Viscosity solutions |
| ISBN |
9781470472818
1470472813 |
| Classificazione | 35B4035B2735K5735B5035K1035P0547B6549L25 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | A general formula for the expansion sets -- Exact asymptotic spreading speed in different frameworks -- Properties of the generalized principal eigenvalues -- Proof of the spreading property -- The homogeneous, periodic and compactly supported cases -- The almost periodic case -- The uniquely ergodic case -- The radially periodic case -- The space-independent case -- The directionally homogeneous case -- Proof of the spreading property with the alternative definition of the expansion sets and applications -- Further examples and other open problems. |
| Record Nr. | UNINA-9910967107303321 |
Berestycki Henri
|
||
| Providence : , : American Mathematical Society, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Blow-up Theories for Semilinear Parabolic Equations [[electronic resource] /] / by Bei Hu
| Blow-up Theories for Semilinear Parabolic Equations [[electronic resource] /] / by Bei Hu |
| Autore | Hu Bei |
| Edizione | [1st ed. 2011.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 |
| Descrizione fisica | 1 online resource (X, 127 p. 2 illus.) |
| Disciplina | 515.3534 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Partial differential equations
Applied mathematics Engineering mathematics Mathematical analysis Analysis (Mathematics) Partial Differential Equations Applications of Mathematics Analysis |
| ISBN | 3-642-18460-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 2 A review of elliptic theories -- 3 A review of parabolic theories -- 4 A review of fixed point theorems.-5 Finite time Blow-up for evolution equations -- 6 Steady-State solutions -- 7 Blow-up rate -- 8 Asymptotically self-similar blow-up solutions -- 9 One space variable case. |
| Record Nr. | UNISA-996466503603316 |
Hu Bei
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Blow-up theories for semilinear parabolic equations / / Bei Hu
| Blow-up theories for semilinear parabolic equations / / Bei Hu |
| Autore | Hu Bei |
| Edizione | [1st ed. 2011.] |
| Pubbl/distr/stampa | Berlin, : Springer-Verlag, 2011 |
| Descrizione fisica | 1 online resource (X, 127 p. 2 illus.) |
| Disciplina | 515.3534 |
| Collana | Lecture notes in mathematics |
| Soggetto topico | Geometry, Algebraic |
| ISBN |
9783642184604
364218460X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 2 A review of elliptic theories -- 3 A review of parabolic theories -- 4 A review of fixed point theorems.-5 Finite time Blow-up for evolution equations -- 6 Steady-State solutions -- 7 Blow-up rate -- 8 Asymptotically self-similar blow-up solutions -- 9 One space variable case. |
| Record Nr. | UNINA-9910483704903321 |
Hu Bei
|
||
| Berlin, : Springer-Verlag, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Boundary stabilization of parabolic equations / / by Ionuţ Munteanu
| Boundary stabilization of parabolic equations / / by Ionuţ Munteanu |
| Autore | Munteanu Ionuţ |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019 |
| Descrizione fisica | 1 online resource (XII, 214 p. 8 illus., 3 illus. in color.) |
| Disciplina |
519
515.3534 |
| Collana | PNLDE Subseries in Control |
| Soggetto topico |
System theory
Differential equations, Partial Automatic control Systems Theory, Control Partial Differential Equations Control and Systems Theory |
| ISBN | 3-030-11099-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preliminaries -- Stabilization of Abstract Parabolic Equations -- Stabilization of Periodic Flows in a Channel -- Stabilization of the Magnetohydrodynamics Equations in a Channel -- Stabilization of the Cahn-Hilliard System -- Stabilization of Equations with Delays -- Stabilization of Stochastic Equations -- Stabilization of Nonsteady States -- Internal Stabilization of Abstract Parabolic Systems. |
| Record Nr. | UNINA-9910338252903321 |
Munteanu Ionuţ
|
||
| Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Degenerate nonlinear diffusion equations / / Angelo Favini, Gabriela Marinoschi
| Degenerate nonlinear diffusion equations / / Angelo Favini, Gabriela Marinoschi |
| Autore | Favini A (Angelo), <1946-> |
| Edizione | [1st ed. 2012.] |
| Pubbl/distr/stampa | Berlin ; ; Heidelberg, : Springer, c2012 |
| Descrizione fisica | 1 online resource (XXI, 143 p. 12 illus., 9 illus. in color.) |
| Disciplina | 515.3534 |
| Altri autori (Persone) | MarinoschiGabriela |
| Collana | Lecture notes in mathematics |
| Soggetto topico |
Burgers equation
Degenerate differential equations |
| ISBN | 3-642-28285-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem. |
| Record Nr. | UNINA-9910483845203321 |
Favini A (Angelo), <1946->
|
||
| Berlin ; ; Heidelberg, : Springer, c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
| The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina | 515.3534 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0540-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
| Record Nr. | UNINA-9910480757103321 |
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
| The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina | 515.3534 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
| ISBN | 1-4704-0540-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
| Record Nr. | UNINA-9910788854903321 |
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
| The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina | 515.3534 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
| ISBN | 1-4704-0540-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
| Record Nr. | UNINA-9910829176903321 |
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||