Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun
| Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun |
| Autore | Abramowitz, Milton |
| Pubbl/distr/stampa | New York : Dover, 1965 |
| Descrizione fisica | XIV, 1046 p. : ill. ; 27 cm. |
| Disciplina | 515.0212 |
| Altri autori (Persone) | Stegun, Irene |
| ISBN | 04-86612-72-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0039034 |
Abramowitz, Milton
|
||
| New York : Dover, 1965 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun
| Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun |
| Autore | Abramowitz, Milton |
| Pubbl/distr/stampa | New York, : Dover, 1965 |
| Descrizione fisica | XIV, 1046 p. : ill. ; 27 cm |
| Disciplina | 515.0212 |
| Altri autori (Persone) | Stegun, Irene |
| ISBN | 04-86612-72-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0039034 |
Abramowitz, Milton
|
||
| New York, : Dover, 1965 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun
| Handbook of mathematical functions : with formulas, graphs, and mathematical tables / edited by Milton Abramowitz and Irene A. Stegun |
| Autore | Abramowitz, Milton |
| Pubbl/distr/stampa | New York, : Dover, 1965 |
| Descrizione fisica | XIV, 1046 p. : ill. ; 27 cm |
| Disciplina | 515.0212 |
| Altri autori (Persone) | Stegun, Irene |
| ISBN | 04-86612-72-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00039034 |
Abramowitz, Milton
|
||
| New York, : Dover, 1965 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Table of integrals, series, and products [[electronic resource] /] / I.S. Gradshteyn and I.M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica, Inc
| Table of integrals, series, and products [[electronic resource] /] / I.S. Gradshteyn and I.M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica, Inc |
| Autore | Gradshteĭn I. S (Izrailʹ Solomonovich) |
| Edizione | [6th ed.] |
| Pubbl/distr/stampa | San Diego, : Academic Press, c2000 |
| Descrizione fisica | 1 online resource (1213 p.) |
| Disciplina |
515.0212
515/.0212 21 |
| Altri autori (Persone) |
RyzhikI. M (Iosif Moiseevich)
JeffreyAlan |
| Soggetto topico |
Mathematics
Logarithms |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-79535-6
9786611795351 0-08-054222-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Table of Integrals, Series, and Products; Copyright Page; Contents; Preface to the Sixth Edition; Acknowledgments; The order of presentation of the formulas; Use of the tables; Special functions; Notation; Note on the bibliographic references; Chapter 0. Introduction; 0.1 Finite sums; 0.2 Numerical series and infinite products; 0.3 Functional series; 0.4 Certain formulas from differential calculus; Chapter 1. Elementary Functions; 1.1 Power of Binomials; 1.2 The Exponential Function; 1.3-1.4 Trigonometric and Hyperbolic Functions; 1.5 The Logarithm
1.6 The Inverse Trigonometric and Hyperbolic FunctionsChapter 2. Indefinite Integrals of Elementary Functions; 2.0 Introduction; 2.1 Rational functions; 2.2 Algebraic functions; 2.3 The Exponential Function; 2.4 Hyperbolic Functions; 2.5-2.6 Trigonometric Functions; 2.7 Logarithms and Inverse-Hyperbolic Functions; 2.8 Inverse Trigonometric Functions; Chapter 3-4. Definite Integrals of Elementary Functions; 3.0 Introduction; 3.1-3.2 Power and Algebraic Functions; 3.3-3.4 Exponential Functions; 3.5 Hyperbolic Functions; 3.6-4.1 Trigonometric Functions; 4.2-4.4 Logarithmic Functions 4.5 Inverse Trigonometric Functions4.6 Multiple Integrals; Chapter 5. Indefinite Integrals of Special Functions; 5.1 Elliptic Integrals and Functions; 5.2 The Exponential Integral Function; 5.3 The Sine Integral and the Cosine Integral; 5.4 The Probability Integral and Fresnel Integrals; 5.5 Bessel Functions; Chapter 6-7. Definite Integrals of Special Functions; 6.1 Elliptic Integrals and Functions; 6.2-6.3 The Exponential Integral Function and Functions Generated by It; 6.4 The Gamma Function and Functions Generated by It; 6.5-6.7 Bessel Functions; 6.8 Functions Generated by Bessel Functions 6.9 Mathieu Functions7.1-7.2 Associated Legendre Functions; 7.3-7.4 Orthogonal Polynomials; 7.5 Hypergeometric Functions; 7.6 Confluent Hypergeometric Functions; 7.7 Parabolic Cylinder Functions; 7.8 Meijer's and MacRobert's Functions (G and E); Chapter 8-9. Special Functions; 8.1 Elliptic integrals and functions; 8.2 The Exponential Integral Function and Functions Generated by It; 8.3 Euler's Integrals of the First and Second Kinds; 8.4-8.5 Bessel Functions and Functions Associated with Them; 8.6 Mathieu Functions; 8.7-8.8 Associated Legendre Functions; 8.9 Orthogonal Polynomials 9.1 Hypergeometric Functions9.2 Confluent Hypergeometric Functions; 9.3 Meijer's G-Function; 9.4 MacRobert's E-Function; 9.5 Riemann's Zeta Functions (z, q), and (z), and the Functions F (z; s; v) and .(s); 9.6 Bernoulli numbers and polynomials, Euler numbers; 9.7 Constants; Chapter 10. Vector Field Theory; 10.1-10.8 Vectors, Vector Operators, and Integral Theorems; Chapter 11. Algebraic Inequalities; 11.1-11.3 General Algebraic Inequalities; Chapter 12. Integral Inequalities; 12.11 Mean value theorems; 12.21 Differentiation of definite integral containing a parameter 12.31 Integral inequalities |
| Record Nr. | UNINA-9910480952503321 |
Gradshteĭn I. S (Izrailʹ Solomonovich)
|
||
| San Diego, : Academic Press, c2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Table of integrals, series, and products [[electronic resource] /] / I.S. Gradshteyn and I.M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica, Inc
| Table of integrals, series, and products [[electronic resource] /] / I.S. Gradshteyn and I.M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica, Inc |
| Autore | Gradshteĭn I. S (Izrailʹ Solomonovich) |
| Edizione | [6th ed.] |
| Pubbl/distr/stampa | San Diego, : Academic Press, c2000 |
| Descrizione fisica | 1 online resource (1213 p.) |
| Disciplina |
515.0212
515/.0212 21 |
| Altri autori (Persone) |
RyzhikI. M (Iosif Moiseevich)
JeffreyAlan |
| Soggetto topico |
Mathematics
Logarithms |
| ISBN |
1-281-79535-6
9786611795351 0-08-054222-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Table of Integrals, Series, and Products; Copyright Page; Contents; Preface to the Sixth Edition; Acknowledgments; The order of presentation of the formulas; Use of the tables; Special functions; Notation; Note on the bibliographic references; Chapter 0. Introduction; 0.1 Finite sums; 0.2 Numerical series and infinite products; 0.3 Functional series; 0.4 Certain formulas from differential calculus; Chapter 1. Elementary Functions; 1.1 Power of Binomials; 1.2 The Exponential Function; 1.3-1.4 Trigonometric and Hyperbolic Functions; 1.5 The Logarithm
1.6 The Inverse Trigonometric and Hyperbolic FunctionsChapter 2. Indefinite Integrals of Elementary Functions; 2.0 Introduction; 2.1 Rational functions; 2.2 Algebraic functions; 2.3 The Exponential Function; 2.4 Hyperbolic Functions; 2.5-2.6 Trigonometric Functions; 2.7 Logarithms and Inverse-Hyperbolic Functions; 2.8 Inverse Trigonometric Functions; Chapter 3-4. Definite Integrals of Elementary Functions; 3.0 Introduction; 3.1-3.2 Power and Algebraic Functions; 3.3-3.4 Exponential Functions; 3.5 Hyperbolic Functions; 3.6-4.1 Trigonometric Functions; 4.2-4.4 Logarithmic Functions 4.5 Inverse Trigonometric Functions4.6 Multiple Integrals; Chapter 5. Indefinite Integrals of Special Functions; 5.1 Elliptic Integrals and Functions; 5.2 The Exponential Integral Function; 5.3 The Sine Integral and the Cosine Integral; 5.4 The Probability Integral and Fresnel Integrals; 5.5 Bessel Functions; Chapter 6-7. Definite Integrals of Special Functions; 6.1 Elliptic Integrals and Functions; 6.2-6.3 The Exponential Integral Function and Functions Generated by It; 6.4 The Gamma Function and Functions Generated by It; 6.5-6.7 Bessel Functions; 6.8 Functions Generated by Bessel Functions 6.9 Mathieu Functions7.1-7.2 Associated Legendre Functions; 7.3-7.4 Orthogonal Polynomials; 7.5 Hypergeometric Functions; 7.6 Confluent Hypergeometric Functions; 7.7 Parabolic Cylinder Functions; 7.8 Meijer's and MacRobert's Functions (G and E); Chapter 8-9. Special Functions; 8.1 Elliptic integrals and functions; 8.2 The Exponential Integral Function and Functions Generated by It; 8.3 Euler's Integrals of the First and Second Kinds; 8.4-8.5 Bessel Functions and Functions Associated with Them; 8.6 Mathieu Functions; 8.7-8.8 Associated Legendre Functions; 8.9 Orthogonal Polynomials 9.1 Hypergeometric Functions9.2 Confluent Hypergeometric Functions; 9.3 Meijer's G-Function; 9.4 MacRobert's E-Function; 9.5 Riemann's Zeta Functions (z, q), and (z), and the Functions F (z; s; v) and .(s); 9.6 Bernoulli numbers and polynomials, Euler numbers; 9.7 Constants; Chapter 10. Vector Field Theory; 10.1-10.8 Vectors, Vector Operators, and Integral Theorems; Chapter 11. Algebraic Inequalities; 11.1-11.3 General Algebraic Inequalities; Chapter 12. Integral Inequalities; 12.11 Mean value theorems; 12.21 Differentiation of definite integral containing a parameter 12.31 Integral inequalities |
| Record Nr. | UNINA-9910784639603321 |
Gradshteĭn I. S (Izrailʹ Solomonovich)
|
||
| San Diego, : Academic Press, c2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Table of integrals, series, and products / I. S. Gradshteyn and I. M. Ryzhik ; Alan Jeffrey editor ; translated from the Russian by Scripta Technica
| Table of integrals, series, and products / I. S. Gradshteyn and I. M. Ryzhik ; Alan Jeffrey editor ; translated from the Russian by Scripta Technica |
| Autore | GRADSHTEYN, Izrail Solomonovich |
| Pubbl/distr/stampa | New York (etc.) : Academic Press, copyr. 1980 |
| Descrizione fisica | XLV, 1160 p. : ill. ; 24 cm |
| Disciplina | 515.0212 |
| Soggetto topico | Matematica - Tavole |
| ISBN | 0-12-294760-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990003247310203316 |
GRADSHTEYN, Izrail Solomonovich
|
||
| New York (etc.) : Academic Press, copyr. 1980 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Table of integrals, series, and products [e-book] / I. S. Gradshteyn and I. M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica
| Table of integrals, series, and products [e-book] / I. S. Gradshteyn and I. M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica |
| Autore | Gradshteĭn, I. S. (Izrailʹ Solomonovich) |
| Pubbl/distr/stampa | San Diego : Academic Press, c2000 |
| Descrizione fisica | xlvii, 1163 p. ; 25 cm |
| Disciplina | 515.0212 |
| Altri autori (Persone) |
Ryzhik, I. M. (Iosif Moiseevich)author
Jeffrey, Alan |
| Soggetto topico | Mathematics - Tables |
| ISBN |
9780122947575
0122947576 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003280359707536 |
Gradshteĭn, I. S. (Izrailʹ Solomonovich)
|
||
| San Diego : Academic Press, c2000 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||