The Grothendieck inequality revisited / / Ron Blei
| The Grothendieck inequality revisited / / Ron Blei |
| Autore | Blei R. C (Ron C.) |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2014] |
| Descrizione fisica | 1 online resource (v, 90 pages) |
| Disciplina | 515/.733 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Geometry, Algebraic |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-1896-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910480563503321 |
Blei R. C (Ron C.)
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Grothendieck inequality revisited / / Ron Blei
| The Grothendieck inequality revisited / / Ron Blei |
| Autore | Blei R. C (Ron C.) |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2014] |
| Descrizione fisica | 1 online resource (v, 90 pages) |
| Disciplina | 515/.733 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Geometry, Algebraic |
| ISBN | 1-4704-1896-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910797046503321 |
Blei R. C (Ron C.)
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Grothendieck inequality revisited / / Ron Blei
| The Grothendieck inequality revisited / / Ron Blei |
| Autore | Blei R. C (Ron C.) |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2014] |
| Descrizione fisica | 1 online resource (v, 90 pages) |
| Disciplina | 515/.733 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Geometry, Algebraic |
| ISBN | 1-4704-1896-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910811756503321 |
Blei R. C (Ron C.)
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hilbert spaces with applications [[electronic resource] /] / Lokenath Debnath, Piotr Mikusiński
| Hilbert spaces with applications [[electronic resource] /] / Lokenath Debnath, Piotr Mikusiński |
| Autore | Debnath Lokenath |
| Edizione | [3rd. ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 |
| Descrizione fisica | 1 online resource (599 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | MikusińskiPiotr |
| Soggetto topico | Hilbert space |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-63062-0
9786610630622 0-08-045592-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Normed Vector Spaces; Introduction; Vector Spaces; Normed Spaces; Banach Spaces; Linear Mappings; Banach Fixed Point Theorem; Exercises; The Lebesgue Integral; Introduction; Step Functions; Lebesgue Integrable Functions; The Absolute Value of an Integrable Function; Series of Integrable Functions; Norm in L1(R); Convergence Almost Everywhere; Fundamental Convergence Theorems; Locally Integrable Functions; The Lebesgue Integral and the Riemann Integral; Lebesgue Measure on R
Complex-Valued Lebesgue Integrable FunctionsThe Spaces Lp(R); Lebesgue Integrable Functions on RN; Convolution; Exercises; Hilbert Spaces and Orthonormal Systems; Introduction; Inner Product Spaces; Hilbert Spaces; Orthogonal and Orthonormal Systems; Trigonometric Fourier Series; Orthogonal Complements and Projections; Riesz Representation Theorem; Exercises; Linear Operators on Hilbert Spaces; Introduction; Examples of Operators; Bilinear Functionals and Quadratic Forms; Adjoint and Self-Adjoint Operators; Normal, Isometric, and Unitary Operators; Positive Operators; Projection Operators Compact OperatorsEigenvalues and Eigenvectors; Spectral Decomposition; Unbounded Operators; Exercises; Applications to Integral and Differential Equations; Introduction; Basic Existence Theorems; Fredholm Integral Equations; Method of Successive Approximations; Volterra Integral Equations; Method of Solution for a Separable Kernel; Abel's Integral Equation; Ordinary Differential Equations; Sturm-Liouville Systems; Inverse Differential Operators; The Fourier Transform; Applications of the Fourier Transform; Exercises; Generalized Functions and Partial Differential Equations; Introduction DistributionsSobolev Spaces; Fundamental Solutions; Elliptic Boundary Value Problems; Applications of the Fourier Transform; Exercises; Mathematical Foundations of Quantum Mechanics; Introduction; Basic Concepts and Equations; Postulates of Quantum Mechanics; The Heisenberg Uncertainty Principle; The Schrödinger Equation of Motion; The Schrödinger Picture; The Heisenberg Picture; The Interaction Picture; The Linear Harmonic Oscillator; Angular Momentum Operators; The Dirac Relativistic Wave Equation; Exercises; Wavelets and Wavelet Transforms; Brief Historical Remarks Continuous Wavelet TransformsThe Discrete Wavelet Transform; Multiresolution Analysis; Examples of Orthonormal Wavelets; Exercises; Optimization Problems and Other Miscellaneous Applications; Introduction; The Gateaux and Fréchet Differentials; Optimization Problems; Minimization of Quadratic Functionals; Variational Inequalities; Optimal Control Problems; Approximation Theory; The Shannon Sampling Theorem; Linear and Nonlinear Stability; Bifurcation Theory; Exercises; Hints and Answers to Selected Exercises; 1.7 Exercises; 2.16 Exercises; 3.8 Exercises; 4.12 Exercises; 5.13 Exercises 6.7 Exercises |
| Record Nr. | UNINA-9910458707303321 |
Debnath Lokenath
|
||
| Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hilbert spaces with applications [[electronic resource] /] / Lokenath Debnath, Piotr Mikusiński
| Hilbert spaces with applications [[electronic resource] /] / Lokenath Debnath, Piotr Mikusiński |
| Autore | Debnath Lokenath |
| Edizione | [3rd. ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 |
| Descrizione fisica | 1 online resource (599 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | MikusińskiPiotr |
| Soggetto topico | Hilbert space |
| ISBN |
1-280-63062-0
9786610630622 0-08-045592-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Normed Vector Spaces; Introduction; Vector Spaces; Normed Spaces; Banach Spaces; Linear Mappings; Banach Fixed Point Theorem; Exercises; The Lebesgue Integral; Introduction; Step Functions; Lebesgue Integrable Functions; The Absolute Value of an Integrable Function; Series of Integrable Functions; Norm in L1(R); Convergence Almost Everywhere; Fundamental Convergence Theorems; Locally Integrable Functions; The Lebesgue Integral and the Riemann Integral; Lebesgue Measure on R
Complex-Valued Lebesgue Integrable FunctionsThe Spaces Lp(R); Lebesgue Integrable Functions on RN; Convolution; Exercises; Hilbert Spaces and Orthonormal Systems; Introduction; Inner Product Spaces; Hilbert Spaces; Orthogonal and Orthonormal Systems; Trigonometric Fourier Series; Orthogonal Complements and Projections; Riesz Representation Theorem; Exercises; Linear Operators on Hilbert Spaces; Introduction; Examples of Operators; Bilinear Functionals and Quadratic Forms; Adjoint and Self-Adjoint Operators; Normal, Isometric, and Unitary Operators; Positive Operators; Projection Operators Compact OperatorsEigenvalues and Eigenvectors; Spectral Decomposition; Unbounded Operators; Exercises; Applications to Integral and Differential Equations; Introduction; Basic Existence Theorems; Fredholm Integral Equations; Method of Successive Approximations; Volterra Integral Equations; Method of Solution for a Separable Kernel; Abel's Integral Equation; Ordinary Differential Equations; Sturm-Liouville Systems; Inverse Differential Operators; The Fourier Transform; Applications of the Fourier Transform; Exercises; Generalized Functions and Partial Differential Equations; Introduction DistributionsSobolev Spaces; Fundamental Solutions; Elliptic Boundary Value Problems; Applications of the Fourier Transform; Exercises; Mathematical Foundations of Quantum Mechanics; Introduction; Basic Concepts and Equations; Postulates of Quantum Mechanics; The Heisenberg Uncertainty Principle; The Schrödinger Equation of Motion; The Schrödinger Picture; The Heisenberg Picture; The Interaction Picture; The Linear Harmonic Oscillator; Angular Momentum Operators; The Dirac Relativistic Wave Equation; Exercises; Wavelets and Wavelet Transforms; Brief Historical Remarks Continuous Wavelet TransformsThe Discrete Wavelet Transform; Multiresolution Analysis; Examples of Orthonormal Wavelets; Exercises; Optimization Problems and Other Miscellaneous Applications; Introduction; The Gateaux and Fréchet Differentials; Optimization Problems; Minimization of Quadratic Functionals; Variational Inequalities; Optimal Control Problems; Approximation Theory; The Shannon Sampling Theorem; Linear and Nonlinear Stability; Bifurcation Theory; Exercises; Hints and Answers to Selected Exercises; 1.7 Exercises; 2.16 Exercises; 3.8 Exercises; 4.12 Exercises; 5.13 Exercises 6.7 Exercises |
| Record Nr. | UNINA-9910784640503321 |
Debnath Lokenath
|
||
| Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hilbert spaces with applications / / Lokenath Debnath, Piotr Mikusinski
| Hilbert spaces with applications / / Lokenath Debnath, Piotr Mikusinski |
| Autore | Debnath Lokenath |
| Edizione | [3rd. ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 |
| Descrizione fisica | 1 online resource (599 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | MikusińskiPiotr |
| Soggetto topico | Hilbert space |
| ISBN |
9786610630622
9781280630620 1280630620 9780080455921 0080455921 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Normed Vector Spaces; Introduction; Vector Spaces; Normed Spaces; Banach Spaces; Linear Mappings; Banach Fixed Point Theorem; Exercises; The Lebesgue Integral; Introduction; Step Functions; Lebesgue Integrable Functions; The Absolute Value of an Integrable Function; Series of Integrable Functions; Norm in L1(R); Convergence Almost Everywhere; Fundamental Convergence Theorems; Locally Integrable Functions; The Lebesgue Integral and the Riemann Integral; Lebesgue Measure on R
Complex-Valued Lebesgue Integrable FunctionsThe Spaces Lp(R); Lebesgue Integrable Functions on RN; Convolution; Exercises; Hilbert Spaces and Orthonormal Systems; Introduction; Inner Product Spaces; Hilbert Spaces; Orthogonal and Orthonormal Systems; Trigonometric Fourier Series; Orthogonal Complements and Projections; Riesz Representation Theorem; Exercises; Linear Operators on Hilbert Spaces; Introduction; Examples of Operators; Bilinear Functionals and Quadratic Forms; Adjoint and Self-Adjoint Operators; Normal, Isometric, and Unitary Operators; Positive Operators; Projection Operators Compact OperatorsEigenvalues and Eigenvectors; Spectral Decomposition; Unbounded Operators; Exercises; Applications to Integral and Differential Equations; Introduction; Basic Existence Theorems; Fredholm Integral Equations; Method of Successive Approximations; Volterra Integral Equations; Method of Solution for a Separable Kernel; Abel's Integral Equation; Ordinary Differential Equations; Sturm-Liouville Systems; Inverse Differential Operators; The Fourier Transform; Applications of the Fourier Transform; Exercises; Generalized Functions and Partial Differential Equations; Introduction DistributionsSobolev Spaces; Fundamental Solutions; Elliptic Boundary Value Problems; Applications of the Fourier Transform; Exercises; Mathematical Foundations of Quantum Mechanics; Introduction; Basic Concepts and Equations; Postulates of Quantum Mechanics; The Heisenberg Uncertainty Principle; The Schrödinger Equation of Motion; The Schrödinger Picture; The Heisenberg Picture; The Interaction Picture; The Linear Harmonic Oscillator; Angular Momentum Operators; The Dirac Relativistic Wave Equation; Exercises; Wavelets and Wavelet Transforms; Brief Historical Remarks Continuous Wavelet TransformsThe Discrete Wavelet Transform; Multiresolution Analysis; Examples of Orthonormal Wavelets; Exercises; Optimization Problems and Other Miscellaneous Applications; Introduction; The Gateaux and Fréchet Differentials; Optimization Problems; Minimization of Quadratic Functionals; Variational Inequalities; Optimal Control Problems; Approximation Theory; The Shannon Sampling Theorem; Linear and Nonlinear Stability; Bifurcation Theory; Exercises; Hints and Answers to Selected Exercises; 1.7 Exercises; 2.16 Exercises; 3.8 Exercises; 4.12 Exercises; 5.13 Exercises 6.7 Exercises |
| Record Nr. | UNINA-9910958130303321 |
Debnath Lokenath
|
||
| Amsterdam ; ; Boston, : Elsevier Academic Press, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonlinear numerical analysis in the reproducing Kernel space [[electronic resource] /] / by Minggen Cui and Yingzhen Lin
| Nonlinear numerical analysis in the reproducing Kernel space [[electronic resource] /] / by Minggen Cui and Yingzhen Lin |
| Autore | Cui Minggen |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2008 |
| Descrizione fisica | 1 online resource (242 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | LinYingzhen |
| Soggetto topico |
Hilbert space
Nonlinear difference equations - Numerical solutions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-61470-436-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910453034303321 |
Cui Minggen
|
||
| New York, : Nova Science Publishers, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonlinear numerical analysis in the reproducing Kernel space [[electronic resource] /] / by Minggen Cui and Yingzhen Lin
| Nonlinear numerical analysis in the reproducing Kernel space [[electronic resource] /] / by Minggen Cui and Yingzhen Lin |
| Autore | Cui Minggen |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2008 |
| Descrizione fisica | 1 online resource (242 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | LinYingzhen |
| Soggetto topico |
Hilbert space
Nonlinear difference equations - Numerical solutions |
| ISBN | 1-61470-436-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910779637903321 |
Cui Minggen
|
||
| New York, : Nova Science Publishers, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonlinear numerical analysis in the reproducing Kernel space / / by Minggen Cui and Yingzhen Lin
| Nonlinear numerical analysis in the reproducing Kernel space / / by Minggen Cui and Yingzhen Lin |
| Autore | Cui Minggen |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2008 |
| Descrizione fisica | 1 online resource (242 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | LinYingzhen |
| Soggetto topico |
Hilbert space
Nonlinear difference equations - Numerical solutions |
| ISBN | 1-61470-436-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Nonlinear Numerical Analysisin the Reproducing KernelSpace -- Contents -- Foreword -- Part I -- Fundamental Concepts ofReproducing Kernel Space -- 1.1 Definition of Reproducing Kernel Space -- 1.2 Fundamental Properties of Reproducing Kernel -- 1.3 Reproducing Kernel Space Wm2 [a, b] and its ReproducingKernel Function -- 1.3.1 Absolutely Continuous Function and Some Properties -- 1.3.2 Function Space Wm2 [a, b] is a Hilbert Space -- 1.3.3 Function Space Wm2 [a, b] is a Reproducing Kernel Space -- 1.3.4 Closed Subspaces of the Reproducing Kernel Space Wm2 [a, b] -- 1.3.5 Two Notes About Reproducing Kernel Space Wm2 [a, b] -- 1.4 Several Expressions of the Reproducing Kernel ofWm2 [0, 1] or oWm2 [0, 1] -- 1.5 The Binary Reproducing Kernel Space W(m,n)2 (D) -- 1.5.1 The Binary Completely Continuous Functions and Some Properties -- 1.5.2 The Binary Function Space W(m,n)2 (D) is a Hilbert space -- 1.5.3 The Binary Function Space W(m,n)2 (D) is a Reproducing KernelSpace -- 1.6 The Reproducing Kernel Space W12 (R) -- Some Linear Problems -- 2.1 Solving Singular Boundary Value Problems -- 2.1.1 Introduction -- 2.1.2 The Reproducing Kernel Spaces -- 2.1.3 Primary Theorem and the Method of Solving Eq. (2.1.1) -- 2.1.4 The Structure of Solution to Operator Eq. (2.1.3) -- 2.1.5 Numerical experiments -- 2.2 Solving the third-order obstacle problems -- 2.2.1 Introduction -- 2.2.2 Reproducing Kernel Space oW32 [0, 1] -- 2.2.3 A bounded linear operator on oW32 [0, 1] -- 2.2.4 To Solve Eq. (2.2.5) -- 2.2.5 Numerical Experiments -- 2.3 Solving Third-Order Singularly Perturbed Problems -- 2.3.1 Introduction -- 2.3.2 Asymptotic Expansion Approximation -- 2.3.3 Several Reproducing Kernel Spaces and Lemmas -- 2.3.4 The Representation of Solution of TVP (2.3.6) -- 2.3.5 Numerical Experiments.
2.4 Solving a Class of Variable Delay Integro-DifferentialEquations -- 2.4.1 Introduction -- 2.4.2 The Reproducing Kernel Spaces -- 2.4.3 Linear Operator L on oW22 [0,1) -- 2.4.4 Two Function Sequences: rn(x), ˆn(x) -- 2.4.5 The Representation of Solution of Eq. (2.4.4) -- 2.4.6 Numerical Experiments -- Some Algebras Problems -- 3.1 Solving Infinite System of Linear Equations -- 3.1.1 Introduction -- 3.1.2 A Norm-Preserving Operator ˆ from `2 onto W12 [0, 1] -- 3.1.3 Transform Infinite System of Linear Equation Ay = b intoOperator Equation Ku = f on W12 [0, 1] -- 3.1.4 Representation of the Solution for Infinite System of LinearEquations Ay = b -- 3.1.5 Recursion Relation -- 3.1.6 Numerical Experiments -- 3.2 A Solution of Infinite System of Quadratic Equations -- 3.2.1 Introduction -- 3.2.2 Linear Operators in Reproducing Kernel Space -- 3.2.3 Separated Solution of (3.2.10) -- Part II -- Integral equations -- 4.1 Solving Fredholm Integral Equations of the FirstKind and A Stability Analysis -- 4.1.1 Introduction -- 4.1.2 Representation of Exact Solution for Fredholm Integral Equationof the First Kind -- 4.1.3 The Stability of the Solution on the Eq. (4.1.3) -- 4.1.4 Numerical Experiments -- 4.2 Solving Nonlinear Volterra-Fredholm IntegralEquations -- 4.2.1 Introduction -- 4.2.2 Theoretic Basis of the Method -- 4.2.3 Implementations of the Method -- 4.2.4 Numerical Experiment -- 4.3 Solving a Class of Nonlinear Volterra-FredholmIntegral Equations -- 4.3.1 Introduction -- 4.3.2 Solving Eq. (4.3.1) in the Reproducing Kernel Space -- 4.3.3 Numerical Experiments -- 4.4 New Algorithm for Nonlinear Integro-DifferentialEquations -- 4.4.1 Introduction -- 4.4.2 Solving the Nonlinear Operator Equation -- 4.4.3 The Algorithm of Finding the Separable Solution -- 4.4.4 Numerical Experiments -- Differential Equations. 5.1 Solving Variable-Coefficient Burgers Equation -- 5.1.1 Introduction -- 5.1.2 The Solution of Eq. (5.1.3) -- 5.1.3 The Implementation Method -- 5.1.4 Numerical Experiments -- 5.2 The Nonlinear Age-Structured Population Model -- 5.2.1 Numerical Experiments -- 5.2.2 Solving Population Model can be Turned into Solving OperatorEquation (IV) -- 5.2.3-1 Solving Eq. (II) can turned into solving Eq. (IV) -- 5.2.3-2 The Boundedness of Operators -- 5.2.3 The Exact Solution of Eq.(IV) -- 5.2.4-1 Solving Eq. (5.2.31) can be Turned into Finding the SeparableSolution of Eq. (5.2.34) -- 5.2.4-2 The Analytic Representation of all Solutions of Lu = f -- 5.2.4-3 The Representation of the Exact Solution of Eq. (5.2.31) -- 5.2.4-4 The Numerical Algorithm for Solving the " ApproximatelySolution of Eq. (5.2.31) -- 5.2.4 Numerical Experiments -- 5.3 Solving a Kind of Nonlinear Partial DifferentialEquations -- 5.3.1 Introduction -- 5.3.2 Transformation of the Nonlinear Partial Differential Equation -- 5.3.3 The Definition of Operator L -- 5.3.4 Decomposition into Direct Sum of oW(2,3)2 (D) -- 5.3.5 Solving the Nonlinear Partial Differential Equation -- 5.3.6 Numerical Experiments -- 5.4 Solving the Damped Nonlinear Klein-GordonEquation -- 5.4.1 Introduction -- 5.4.2 Linear Operator on Reproducing Kernel Spaces -- 5.4.3 The Solution of Eq. (5.4.3) -- 5.4.4 Numerical experiments -- 5.4.5 Conclusion -- 5.5 Solving a Nonlinear Second Order System -- 5.5.1 Introduction -- 5.5.2 Several Reproducing Kernel Spaces and Lemmas -- 5.5.3 The Analytical and Approximate Solutions of Eq. (5.5.2) -- 5.5.3-1 The Implementation Method -- 5.5.4 Numerical Experiments -- 5.6 To Solve a Class of Nonlinear Differential Equations -- 5.6.1 Introduction -- 5.6.2 Linear Operator on Reproducing Kernel Spaces -- 5.6.3 Direct Sum of oW(3,1)2 (D) -- 5.6.4 Solution of (Lw)(x) = f(x) -- 5.6.5 Example. The Exact Solution of NonlinearOperator Equation -- 6.1 Introduction -- 6.1.1 Preliminary Knowledge -- 6.1.2 Operator K -- 6.1.3 About Eq. (6.1.10) and Eq. (6.1.6) -- 6.1.4 Solving Eq. (6.1.10) -- 6.1.5 Numerical Experiments -- 6.2 All Solutions of System of Ill-Posed OperatorEquations of the First Kind -- 6.2.1 Introduction -- 6.2.2 Lemmas -- 6.2.3 Solving Au = f in Reproducing Kernel Sapce -- 6.2.4 Numerical Experiments -- Solving the Inverse Problems -- 7.1 Solving the Coefficient Inverse Problem -- 7.1.1 Introduction -- 7.1.2 The Reproducing Kernel Spaces -- 7.1.3 Transformation of Eq. (7.1.1) -- 7.1.4 Decomposition into Direct Sum of oW(3,3)2 (D) -- 7.1.5 The Method of Solving Eq. (7.1.6) -- 7.1.6 Numerical Experiments -- 7.2 A Determination of an Unknown Parameterin Parabolic Equations -- 7.2.1 Introduction -- 7.2.2 The Exact Solution of Eq. (7.2.4) -- 7.2.3 An Iteration Procedure -- 7.2.4 Numerical Experiments -- Bibliography -- INDEX. |
| Record Nr. | UNINA-9910972865203321 |
Cui Minggen
|
||
| New York, : Nova Science Publishers, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Partial differential equations [[electronic resource] ] : a unified Hilbert space approach / / Rainer Picard, Des McGhee
| Partial differential equations [[electronic resource] ] : a unified Hilbert space approach / / Rainer Picard, Des McGhee |
| Autore | Picard R. H (Rainer H.) |
| Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2011 |
| Descrizione fisica | 1 online resource (488 p.) |
| Disciplina | 515/.733 |
| Altri autori (Persone) | McGheeD. F |
| Collana | De Gruyter expositions in mathematics |
| Soggetto topico |
Hilbert space
Differential equations, Partial |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-39993-8
9786613399939 3-11-025027-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- Nomenclature -- Chapter 1 Elements of Hilbert Space Theory -- Chapter 2 Sobolev Lattices -- Chapter 3 Linear Partial Differential Equations with Constant Coefficients in Rn+1, n ∈ N -- Chapter 4 Linear Evolution Equations -- Chapter 5 Some Evolution Equations of Mathematical Physics -- Chapter 6 A "Royal Road" to Initial Boundary Value Problems of Mathematical Physics -- Conclusion -- Bibliography -- Index |
| Record Nr. | UNINA-9910456578403321 |
Picard R. H (Rainer H.)
|
||
| Berlin ; ; New York, : De Gruyter, c2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||