top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Autore Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (103 p.)
Disciplina 510 s
515/.723
Collana Memoirs of the American Mathematical Society
Soggetto topico Volterra operators
Entropy (Information theory)
Brownian motion processes
Soggetto genere / forma Electronic books.
ISBN 1-4704-0338-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Main Results""; ""Chapter 3. Scale Transformations""; ""3.1. Increasing Transformations ""; ""3.2. Decreasing Transformations ""; ""3.3. Examples ""; ""3.4. Transformations and Norms ""; ""Chapter 4. Upper Estimates for Entropy Numbers""; ""4.1. A General Bound Based on Partitions""; ""4.2. Proof of Theorem 2.2 (1)""; ""4.3. Proof of Parts (2) and (3) in Theorem 2.2""; ""4.4. Entropy Estimates for T[sub(p,Î?)]""; ""4.5. Proof of Theorem 2.3""; ""4.6. Upper Bounds for Forward Integration Operators""; ""4.7. Proof of Theorem 4.9""
""7.1. Gaussian Processes and Metric Entropy""""7.2. Weighted Wiener Processes""; ""7.3. Small Ball Estimates for Wiener Processes""; ""7.4. Exact Small Ball Estimates""; ""Appendix""; ""Bibliography""
Record Nr. UNINA-9910480221903321
Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Autore Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (103 p.)
Disciplina 510 s
515/.723
Collana Memoirs of the American Mathematical Society
Soggetto topico Volterra operators
Entropy (Information theory)
Brownian motion processes
ISBN 1-4704-0338-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Main Results""; ""Chapter 3. Scale Transformations""; ""3.1. Increasing Transformations ""; ""3.2. Decreasing Transformations ""; ""3.3. Examples ""; ""3.4. Transformations and Norms ""; ""Chapter 4. Upper Estimates for Entropy Numbers""; ""4.1. A General Bound Based on Partitions""; ""4.2. Proof of Theorem 2.2 (1)""; ""4.3. Proof of Parts (2) and (3) in Theorem 2.2""; ""4.4. Entropy Estimates for T[sub(p,Î?)]""; ""4.5. Proof of Theorem 2.3""; ""4.6. Upper Bounds for Forward Integration Operators""; ""4.7. Proof of Theorem 4.9""
""7.1. Gaussian Processes and Metric Entropy""""7.2. Weighted Wiener Processes""; ""7.3. Small Ball Estimates for Wiener Processes""; ""7.4. Exact Small Ball Estimates""; ""Appendix""; ""Bibliography""
Record Nr. UNINA-9910788846403321
Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Approximation and entropy numbers of Volterra operators with application to Brownian motion / / Mikhail A. Lifshits, Werner Linde
Autore Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (103 p.)
Disciplina 510 s
515/.723
Collana Memoirs of the American Mathematical Society
Soggetto topico Volterra operators
Entropy (Information theory)
Brownian motion processes
ISBN 1-4704-0338-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Main Results""; ""Chapter 3. Scale Transformations""; ""3.1. Increasing Transformations ""; ""3.2. Decreasing Transformations ""; ""3.3. Examples ""; ""3.4. Transformations and Norms ""; ""Chapter 4. Upper Estimates for Entropy Numbers""; ""4.1. A General Bound Based on Partitions""; ""4.2. Proof of Theorem 2.2 (1)""; ""4.3. Proof of Parts (2) and (3) in Theorem 2.2""; ""4.4. Entropy Estimates for T[sub(p,Î?)]""; ""4.5. Proof of Theorem 2.3""; ""4.6. Upper Bounds for Forward Integration Operators""; ""4.7. Proof of Theorem 4.9""
""7.1. Gaussian Processes and Metric Entropy""""7.2. Weighted Wiener Processes""; ""7.3. Small Ball Estimates for Wiener Processes""; ""7.4. Exact Small Ball Estimates""; ""Appendix""; ""Bibliography""
Record Nr. UNINA-9910818013603321
Lifshit͡s M. A (Mikhail Anatolʹevich), <1956->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotics and Mellin-Barnes integrals / / R.B. Paris, D. Kaminski [[electronic resource]]
Asymptotics and Mellin-Barnes integrals / / R.B. Paris, D. Kaminski [[electronic resource]]
Autore Paris R. B.
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2001
Descrizione fisica 1 online resource (xvi, 422 pages) : digital, PDF file(s)
Disciplina 515/.723
Collana Encyclopedia of mathematics and its applications
Soggetto topico Mellin transform
Asymptotic expansions
ISBN 1-107-12112-4
1-280-41805-2
9786610418053
1-139-14661-0
0-511-17409-8
0-511-06706-2
0-511-06075-0
0-511-32800-1
0-511-54666-1
0-511-06919-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Order Relations -- Asymptotic Expansions -- Other Expansions -- Biographies of Mellin and Barnes -- Fundamental Results -- The Gamma Function [Gamma] (z) -- The Asymptotic Expansion of [Gamma] (z) -- The Stirling Coefficients -- Bounds for [Gamma] (z) -- Expansion of Quotients of Gamma Functions -- Inverse Factorial Expansions -- A Recursion Formula when [alpha subscript r] = [beta subscript r] -- An Algebraic Method for the Determination of the A[subscript j] -- Special Cases -- The Asymptotic Expansion of Integral Functions -- Convergence of Mellin-Barnes Integrals -- Order Estimates for Remainder Integrals -- Lemmas -- Properties of Mellin Transforms -- Basic Properties -- Translational and Differential Properties -- The Parseval Formula -- Analytic Properties -- Inverse Mellin Transforms -- Integrals Connected with e[superscript -z] -- Some Standard Integrals -- Discontinuous Integrals -- Gamma-Function Integrals -- Ramanujan-Type Integrals -- Barnes' Lemmas -- Mellin-Barnes Integral Representations -- The Confluent Hypergeometric Functions -- The Gauss Hypergeometric Function -- Some Special Functions -- Applications of Mellin Transforms -- Transformation of Series -- The Mellin Transform Method -- The Poisson-Jacobi Formula -- An Infinite Series -- A Smoothed Dirichlet Series -- A Finite Sum -- Number-Theoretic Examples -- A Harmonic Sum -- Euler's Product -- Ramanujan's Function -- Some Other Number-Theoretic Sums -- Solution of Differential Equations -- Potential Problems in Wedge-Shaped Regions.
Altri titoli varianti Asymptotics & Mellin-Barnes Integrals
Record Nr. UNINA-9910450367603321
Paris R. B.  
Cambridge : , : Cambridge University Press, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotics and Mellin-Barnes integrals / / R.B. Paris, D. Kaminski [[electronic resource]]
Asymptotics and Mellin-Barnes integrals / / R.B. Paris, D. Kaminski [[electronic resource]]
Autore Paris R. B.
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2001
Descrizione fisica 1 online resource (xvi, 422 pages) : digital, PDF file(s)
Disciplina 515/.723
Collana Encyclopedia of mathematics and its applications
Soggetto topico Mellin transform
Asymptotic expansions
ISBN 1-107-12112-4
1-280-41805-2
9786610418053
1-139-14661-0
0-511-17409-8
0-511-06706-2
0-511-06075-0
0-511-32800-1
0-511-54666-1
0-511-06919-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Order Relations -- Asymptotic Expansions -- Other Expansions -- Biographies of Mellin and Barnes -- Fundamental Results -- The Gamma Function [Gamma] (z) -- The Asymptotic Expansion of [Gamma] (z) -- The Stirling Coefficients -- Bounds for [Gamma] (z) -- Expansion of Quotients of Gamma Functions -- Inverse Factorial Expansions -- A Recursion Formula when [alpha subscript r] = [beta subscript r] -- An Algebraic Method for the Determination of the A[subscript j] -- Special Cases -- The Asymptotic Expansion of Integral Functions -- Convergence of Mellin-Barnes Integrals -- Order Estimates for Remainder Integrals -- Lemmas -- Properties of Mellin Transforms -- Basic Properties -- Translational and Differential Properties -- The Parseval Formula -- Analytic Properties -- Inverse Mellin Transforms -- Integrals Connected with e[superscript -z] -- Some Standard Integrals -- Discontinuous Integrals -- Gamma-Function Integrals -- Ramanujan-Type Integrals -- Barnes' Lemmas -- Mellin-Barnes Integral Representations -- The Confluent Hypergeometric Functions -- The Gauss Hypergeometric Function -- Some Special Functions -- Applications of Mellin Transforms -- Transformation of Series -- The Mellin Transform Method -- The Poisson-Jacobi Formula -- An Infinite Series -- A Smoothed Dirichlet Series -- A Finite Sum -- Number-Theoretic Examples -- A Harmonic Sum -- Euler's Product -- Ramanujan's Function -- Some Other Number-Theoretic Sums -- Solution of Differential Equations -- Potential Problems in Wedge-Shaped Regions.
Altri titoli varianti Asymptotics & Mellin-Barnes Integrals
Record Nr. UNINA-9910783125203321
Paris R. B.  
Cambridge : , : Cambridge University Press, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convolution and equidistribution [[electronic resource] ] : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz
Convolution and equidistribution [[electronic resource] ] : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz
Autore Katz Nicholas M. <1943->
Edizione [Course Book]
Pubbl/distr/stampa Princeton ; ; Oxford, : Princeton University Press, c2012
Descrizione fisica 1 online resource (213 p.)
Disciplina 515/.723
Collana Annals of mathematics studies
Soggetto topico Mellin transform
Convolutions (Mathematics)
Sequences (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-283-37996-1
9786613379962
1-4008-4270-0
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Introduction -- CHAPTER 1. Overview -- CHAPTER 2. Convolution of Perverse Sheaves -- CHAPTER 3. Fibre Functors -- CHAPTER 4. The Situation over a Finite Field -- CHAPTER 5. Frobenius Conjugacy Classes -- CHAPTER 6. Group-Theoretic Facts about Ggeom and Garith -- CHAPTER 7. The Main Theorem -- CHAPTER 8. Isogenies, Connectedness, and Lie-Irreducibility -- CHAPTER 9. Autodualities and Signs -- CHAPTER 10. A First Construction of Autodual Objects -- CHAPTER 11. A Second Construction of Autodual Objects -- CHAPTER 12. The Previous Construction in the Nonsplit Case -- CHAPTER 13. Results of Goursat-Kolchin-Ribet Type -- CHAPTER 14. The Case of SL(2); the Examples of Evans and Rudnick -- CHAPTER 15. Further SL(2) Examples, Based on the Legendre Family -- CHAPTER 16. Frobenius Tori and Weights; Getting Elements of Garith -- CHAPTER 17. GL(n) Examples -- CHAPTER 18. Symplectic Examples -- CHAPTER 19. Orthogonal Examples, Especially SO(n) Examples -- CHAPTER 20. GL(n) x GL(n) x ... x GL(n) Examples -- CHAPTER 21. SL(n) Examples, for n an Odd Prime -- CHAPTER 22. SL(n) Examples with Slightly Composite n -- CHAPTER 23. Other SL(n) Examples -- CHAPTER 24. An O(2n) Example -- CHAPTER 25. G2 Examples: the Overall Strategy -- CHAPTER 26. G2 Examples: Construction in Characteristic Two -- CHAPTER 27. G2 Examples: Construction in Odd Characteristic -- CHAPTER 28. The Situation over ℤ: Results -- CHAPTER 29. The Situation over ℤ: Questions -- CHAPTER 30. Appendix: Deligne's Fibre Functor -- Bibliography -- Index
Record Nr. UNINA-9910461830703321
Katz Nicholas M. <1943->  
Princeton ; ; Oxford, : Princeton University Press, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convolution and equidistribution [[electronic resource] ] : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz
Convolution and equidistribution [[electronic resource] ] : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz
Autore Katz Nicholas M. <1943->
Edizione [Course Book]
Pubbl/distr/stampa Princeton ; ; Oxford, : Princeton University Press, c2012
Descrizione fisica 1 online resource (213 p.)
Disciplina 515/.723
Collana Annals of mathematics studies
Soggetto topico Mellin transform
Convolutions (Mathematics)
Sequences (Mathematics)
Soggetto non controllato ArtinГchreier reduced polynomial
Emanuel Kowalski
EulerАoincar formula
Frobenius conjugacy class
Frobenius conjugacy
Frobenius tori
GoursatЋolchinВibet theorem
Kloosterman sheaf
Laurent polynomial
Legendre
Mellin transform
Pierre Deligne
Ron Evans
Tannakian category
Tannakian groups
Zeeev Rudnick
algebro-geometric
autodual objects
autoduality
characteristic two
connectedness
dimensional objects
duality
equidistribution
exponential sums
fiber functor
finite field Mellin transform
finite field
finite fields
geometrical irreducibility
group scheme
hypergeometric sheaf
interger monic polynomials
isogenies
lie-irreducibility
lisse
middle convolution
middle extension sheaf
monic polynomial
monodromy groups
noetherian connected scheme
nonsplit form
nontrivial additive character
number theory
odd characteristic
odd prime
orthogonal case
perverse sheaves
polynomials
pure weight
semisimple object
semisimple
sheaves
signs
split form
supermorse
theorem
theorems
ISBN 1-283-37996-1
9786613379962
1-4008-4270-0
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Introduction -- CHAPTER 1. Overview -- CHAPTER 2. Convolution of Perverse Sheaves -- CHAPTER 3. Fibre Functors -- CHAPTER 4. The Situation over a Finite Field -- CHAPTER 5. Frobenius Conjugacy Classes -- CHAPTER 6. Group-Theoretic Facts about Ggeom and Garith -- CHAPTER 7. The Main Theorem -- CHAPTER 8. Isogenies, Connectedness, and Lie-Irreducibility -- CHAPTER 9. Autodualities and Signs -- CHAPTER 10. A First Construction of Autodual Objects -- CHAPTER 11. A Second Construction of Autodual Objects -- CHAPTER 12. The Previous Construction in the Nonsplit Case -- CHAPTER 13. Results of Goursat-Kolchin-Ribet Type -- CHAPTER 14. The Case of SL(2); the Examples of Evans and Rudnick -- CHAPTER 15. Further SL(2) Examples, Based on the Legendre Family -- CHAPTER 16. Frobenius Tori and Weights; Getting Elements of Garith -- CHAPTER 17. GL(n) Examples -- CHAPTER 18. Symplectic Examples -- CHAPTER 19. Orthogonal Examples, Especially SO(n) Examples -- CHAPTER 20. GL(n) x GL(n) x ... x GL(n) Examples -- CHAPTER 21. SL(n) Examples, for n an Odd Prime -- CHAPTER 22. SL(n) Examples with Slightly Composite n -- CHAPTER 23. Other SL(n) Examples -- CHAPTER 24. An O(2n) Example -- CHAPTER 25. G2 Examples: the Overall Strategy -- CHAPTER 26. G2 Examples: Construction in Characteristic Two -- CHAPTER 27. G2 Examples: Construction in Odd Characteristic -- CHAPTER 28. The Situation over ℤ: Results -- CHAPTER 29. The Situation over ℤ: Questions -- CHAPTER 30. Appendix: Deligne's Fibre Functor -- Bibliography -- Index
Record Nr. UNINA-9910789730903321
Katz Nicholas M. <1943->  
Princeton ; ; Oxford, : Princeton University Press, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete Taylor Transform and Inverse Transform
Discrete Taylor Transform and Inverse Transform
Autore Baghai-Wadji Alireza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (0 pages)
Disciplina 515/.723
Soggetto topico Integral transforms
ISBN 9781394240081
1394240082
9781394240098
1394240090
9781394240104
1394240104
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Introduction -- I.1 Notation and Elementary Notions -- I.2 Orthonormal Bases and Their Corresponding Dual Bases -- I.3 Fourier Transform and Inverse Transform and the AssociatedResolution of Identity -- Chapter 1 Toy Model I‐1: {−Δ,0,Δ} -- 1.1 Introduction -- 1.1.1 Symmetric Equidistant Sampling -- 1.1.2 Difference Operators -- 1.2 Frames and Dual Frames Induced by the Monomials 1, x, and x2 -- 1.2.1 Brief Summary of the Essentials -- 1.2.2 Frame Vectors -- 1.2.3 Frame Operator -- 1.2.4 Inverse Frame Operator -- 1.2.5 Dual‐Frame Vectors -- 1.2.6 Dual‐Frame Operator -- 1.2.7 The Resolution of the Identity -- 1.2.8 D‐TTIT in 3D -- Chapter 2 Toy Model I‐2:{0,Δ,2Δ} -- 2.1 Introduction -- 2.1.1 Difference Operators -- 2.2 Frames and Dual Frames Induced by Monomials 1, x, and x2 -- 2.2.1 Frame Vectors -- 2.2.2 Frame Operator -- 2.2.3 Inverse Frame Operator -- 2.2.4 Dual‐Frame Vectors -- 2.2.5 Dual‐Frame Operator -- 2.2.6 The Resolution of the Identity -- 2.2.7 D‐TTIT in 3‐D -- Chapter 3 Toy Model I‐3: {−2Δ,−Δ,0} -- 3.1 Introduction -- 3.1.1 Difference Operators -- 3.2 Frames and Dual Frames -- 3.2.1 Frame Vectors -- 3.2.2 Frame Operator -- 3.2.3 Inverse Frame Operator -- 3.2.4 Dual‐Frame Vectors -- 3.2.5 The Resolution of the Identity -- 3.2.6 D‐TTIT in 3‐D -- Chapter 4 Toy Model I‐4: {−Δ,0,Δ} -- 4.1 Overcompleteness -- 4.1.1 Difference Operators -- 4.2 Frames and Dual Frames -- 4.2.1 Frame Vectors -- 4.2.2 Frame Operator -- 4.2.3 Inverse Frame Operator -- 4.2.4 Dual Frame Vectors -- 4.2.5 The Resolution of the Identity -- 4.2.6 Establishing Relationships Between the Dual Frame Vectors |1˜> -- , |x˜> -- , |x˜2> -- , |x˜3> -- , and |x˜4> -- , and the Difference Operators |D(0)> -- , |D(1)> -- , and |D(2)>.
4.2.7 Establishing Relationships Between the Dual Frame Vectors |1˜> -- , |x˜> -- , |x˜2> -- , |x˜3> -- , |x˜4> -- , |x˜5> -- , and |x˜6> -- , and the Difference Operators |D(0)> -- , |D(1)> -- , and |D(2)> -- -- Chapter 5 Toy Model I‐5: {−2Δ, −Δ, 0, Δ, 2Δ} -- 5.1 Introduction -- 5.2 Difference Operators -- 5.3 Frames and Dual Frames -- 5.3.1 Dual‐Frame Vectors -- 5.3.1.1 On the Construction of |1˜> -- -- 5.3.1.2 On the Construction of |x˜> -- -- 5.3.1.3 On the Construction of |x˜2> -- -- 5.3.1.4 On the Construction of |x˜3> -- -- 5.3.1.5 On the Construction of |x˜4> -- -- 5.3.2 Dual‐Frame Operator -- Chapter 6 Toy Model I‐7: {−3Δ,−2Δ,−Δ,0,Δ,2Δ,3Δ} -- 6.1 Introduction -- 6.2 Difference Operators -- 6.3 Frame Vectors -- 6.4 Frame Operator -- 6.5 Inverse Frame Operator -- 6.6 Constructing Skeleton Matrices for S7×7−1 -- 6.7 Practical Implementation -- 6.8 Dual Vectors -- 6.8.1 Summarizing the Results Obtained -- 6.9 Dual‐Frame Operator -- 6.10 Conclusions -- Chapter 7 Self‐consistent Expressions for |D(n)> -- -- 7.1 The Interval [−Δ,Δ] -- 7.2 The Interval [−2Δ,2Δ] -- 7.3 The Interval [−3Δ,3Δ] -- Chapter 8 Toy Model I‐3: {Δ−1,Δ0,Δ1} -- 8.1 A Guide Through the Chapter -- 8.2 Univariate Functions on Three Nonuniformly Distributed Lattice Points: Derivatives at an Inner Cluster Point -- 8.3 Setting Up the System of Equations for the Determination of Df(n) (n& -- equals -- 0,1,2) -- 8.4 Matrix Multiplication Expressed in Terms of Exterior Products -- 8.4.1 General Considerations -- 8.4.2 The Resolution of Identity -- 8.4.3 The Frame Operator -- 8.4.4 Preliminary Summary -- 8.5 Solving the System of Equations in (8.7) by Successive Elimination (Method 1) -- 8.5.1 Obtaining the Expressions of the Universal Derivative Kets |D(n)> -- Defined by Df(n)& -- equals -- < -- D(n)|F> -- (n& -- equals -- 0,1,2).
8.6 Exterior Products |xn> -- < -- D(n)| (n& -- equals -- 0,1,2) and the Resolution of Identity (Property 1) -- 8.7 Inner Products < -- xn|D(n)> -- & -- equals -- δmn (m,n& -- equals -- 0,1,2) (Property 2) -- 8.8 Calculation of the Derivative Operators Based on the Inverse of the Δ‐Matrix (Method 2) -- 8.9 Calculating the Derivative Operators Based on the Frame Operator (Method 3) -- 8.9.1 The Exterior Product of the Kets |xn> -- with Their Bra Counterpart < -- xn| -- 8.9.2 The Exterior Product of the Ket |1> -- with Its Bra Counterpart -- 8.9.3 The Exterior Product of the Ket |x> -- with Its Bra Counterpart -- 8.9.4 The Exterior Product of the Ket |x2> -- with Its Bra Counterpart -- 8.9.5 The S‐Matrix and Its Properties -- 8.9.6 Calculation of < -- D(0)| Utilizing S−1 and the Position Bra < -- x(0)| -- 8.9.7 Calculation of < -- D(1)| Utilizing S−1 and the Position Bra < -- x(1)| -- 8.9.8 Calculation of < -- D(2)| Utilizing S−1 and the Position Bra < -- x(2)| -- 8.10 Construction of the Derivative Operators in Terms of Rational Polynomials (Method 4) -- 8.11 Construction of the Derivative Operators Simply‐by‐Inspection of Indices (Method 5) -- 8.12 Uniform Lattices -- 8.12.1 Properties of the Derivative Operators on Uniform Lattices -- 8.12.2 Relating < -- D(n)| to f(n)(0) (n& -- equals -- 0,1,2) -- 8.13 Conclusions -- Chapter 9 Toy Model I‐5: {Δ−2,Δ−1,Δ0,Δ1,Δ2} -- 9.1 The Resolution of Identity -- 9.2 Setting Up the System of Equations -- 9.3 Solving the System of Equation in (9.18) by Successive Elimination -- 9.4 Obtaining the Expressions of the Universal Difference Operators |D(n)> -- Defined by Df(n)& -- equals -- < -- D(n)|F> -- -- 9.5 Simplifying the Expressions of the Difference Operators -- 9.6 Exterior Products of the Position Kets and their Dual Difference Kets -- 9.7 Uniform Lattices.
9.7.1 Derivative Operators -- 9.7.2 Properties of the Derivative Operators on Uniform Lattices -- 9.7.3 Position Kets on the Five Point Uniform Lattice -- 9.7.4 Biorthogonality -- 9.8 The Frame Operator S -- 9.8.1 The Exterior Product of the Ket |1> -- with its Dual Bra Counterpart -- 9.8.2 The Exterior Product of the Ket |x> -- with its Dual Bra Counterpart -- 9.8.3 The Exterior Product of the Ket |x2> -- with its Dual Bra Counterpart -- 9.8.4 The Exterior Product of the Ket |x3> -- with its Dual Bra Counterpart -- 9.8.5 The Exterior Product of the Ket |x4> -- with its Dual Bra Counterpart -- 9.8.6 Properties of the S‐Matrices -- 9.9 The Relationship Between the Resolution of Identity and Biorthogonality -- 9.9.1 Biorthogonality Implies the Resolution of Identity -- 9.9.2 The Resolution of Identity Implies Biorthogonality -- 9.10 The Construction of the Derivative Operators by Calculating Residues -- Chapter 10 Toy Model I‐6: {Δ−3,Δ−2,Δ−1,Δ0,Δ1,Δ2,Δ3} -- 10.1 Generating Formulas for the Difference Operators by Residue Method -- 10.2 Summary of the Relevant Formulas for the Calculation of Df(k) -- Chapter 11 Toy Model I‐7: {Δ−3,Δ−2,Δ−1,Δ0,Δ1,Δ2,Δ3} -- 11.1 A Guide Through the Chapter -- 11.2 Univariate Functions on 7 Nonuniformly Distributed Lattice Points -- 11.3 Setting Up the System of Equations -- 11.4 Generating Formulas for the Derivative Operators Simply‐by‐Inspection -- 11.5 Differential and Position Coordinate Bras -- 11.6 Differential Bras -- 11.7 Position Coordinate Bras -- 11.8 Differential and Position Kets: Uniformly Distributed Lattice Points -- 11.8.1 The Seven Common Denominators -- 11.8.2 The Expression of |D(6)> -- -- 11.8.3 The Expression of |D(5)> -- -- 11.8.4 The Expression of |D(4)> -- -- 11.8.5 The Expression of |D(3)> -- -- 11.8.6 The Expression of |D(2)> -- -- 11.8.7 The Expression of |D(1)>.
11.9 The Biorthogonality and the Resolution of Identity Conditions -- 11.10 Conclusions: A Brief Philosophical Detour -- Chapter 12 Toy Model II: {{−Δ1,0,Δ1},{−Δ2,0,Δ2}} -- 12.1 Introduction -- 12.2 Determination of the Expansion Coefficients F(m,n) (m,n& -- equals -- 0,1,2) -- 12.2.1 On the Construction of |1> -- -- 12.2.2 On the Construction of |x> -- -- 12.2.3 On the Construction of |y> -- -- 12.2.4 On the Construction of |x2> -- -- 12.2.5 On the Construction of |xy> -- -- 12.2.6 On the Construction of |y2> -- -- 12.2.7 On the Construction of |x2y> -- -- 12.2.8 On the Construction of |xy2> -- -- 12.2.9 On the Construction of |x2y2> -- -- 12.3 The Biorthonormality Property -- 12.4 The Resolution of Identity -- Chapter 13 Toy Model III: {−Δ1,Δ1} × {−Δ2,Δ2} × {−Δ3,Δ3} -- 13.1 Discrete Taylor Transform and Inverse Transform of Trivariate Functions -- 13.2 Determination of the Expansion Coefficients F(m,n,p) (m,n,p& -- equals -- 0,1,2) -- 13.2.1 Sample f(x,y,z) at the Node 1, Defined by the Coordinates (−Δ1,−Δ2,−Δ3) -- 13.2.2 Sample f(x,y,z) at the Node 2 Defined by the Coordinates (0,−Δ2,−Δ3) -- 13.2.3 Sample f(x,y,z) at the Node 3 Defined by the Coordinates (Δ1,−Δ2,−Δ3) -- 13.2.4 Sample f(x,y,z) at the Node 4 Defined by the Coordinates (−Δ1,0,−Δ3) -- 13.2.5 Sample f(x,y,z) at the Node 5 Defined by the Coordinates (0,0,−Δ3) -- 13.2.6 Sample f(x,y,z) at the Node 6 Defined by the Coordinates (Δ1,0,−Δ3) -- 13.2.7 Sample f(x,y,z) at the Node 7 Defined by the Coordinates (−Δ1,Δ2,−Δ3) -- 13.2.8 Sample f(x,y,z) at the Node 8 Defined by the Coordinates (0,Δ2,−Δ3) -- 13.2.9 Sample f(x,y,z) at the Node 9 Defined by the Coordinates (Δ1,Δ2,−Δ3) -- 13.2.10 Sample f(x,y,z) at the Node 10 Defined by the Coordinates (−Δ1,−Δ2,0) -- 13.2.11 Sample f(x,y,z) at the Node 11 Defined by the Coordinates (0,−Δ2,0).
13.2.12 Sample f(x,y,z) at the Node 12 Defined by the Coordinates (Δ1,−Δ2,0).
Record Nr. UNINA-9910913799003321
Baghai-Wadji Alireza  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flat extensions of positive moment matrices : recursively generated relations / / Raúl E. Curto, Lawrence A. Fialkow
Flat extensions of positive moment matrices : recursively generated relations / / Raúl E. Curto, Lawrence A. Fialkow
Autore Curto Raúl E. <1954->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1998]
Descrizione fisica 1 online resource (73 p.)
Disciplina 510 s
515/.723
Collana Memoirs of the American Mathematical Society
Soggetto topico Moment problems (Mathematics)
Functions of complex variables
Matrices
Soggetto genere / forma Electronic books.
ISBN 1-4704-0237-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Flat Extensions for Moment Matrices""; ""Chapter 3. The Singular Quartic Moment Problem""; ""Chapter 4. The Algebraic Variety of γ""; ""Chapter 5. J.E. McCarthy's Phenomenon and the Proof of Theorem 1.5""; ""Summary of Results""; ""Bibliography""; ""List of Symbols""
Record Nr. UNINA-9910478888703321
Curto Raúl E. <1954->  
Providence, Rhode Island : , : American Mathematical Society, , [1998]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flat extensions of positive moment matrices : recursively generated relations / / Raúl E. Curto, Lawrence A. Fialkow
Flat extensions of positive moment matrices : recursively generated relations / / Raúl E. Curto, Lawrence A. Fialkow
Autore Curto Raúl E. <1954->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1998]
Descrizione fisica 1 online resource (73 p.)
Disciplina 510 s
515/.723
Collana Memoirs of the American Mathematical Society
Soggetto topico Moment problems (Mathematics)
Functions of complex variables
Matrices
ISBN 1-4704-0237-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Flat Extensions for Moment Matrices""; ""Chapter 3. The Singular Quartic Moment Problem""; ""Chapter 4. The Algebraic Variety of γ""; ""Chapter 5. J.E. McCarthy's Phenomenon and the Proof of Theorem 1.5""; ""Summary of Results""; ""Bibliography""; ""List of Symbols""
Record Nr. UNINA-9910788736503321
Curto Raúl E. <1954->  
Providence, Rhode Island : , : American Mathematical Society, , [1998]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui