top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Archimedean Zeta Integrals for CL(3) x GL(2) / / Miki Hirano, Taku Ishii, Tadashi Miyazaki
Archimedean Zeta Integrals for CL(3) x GL(2) / / Miki Hirano, Taku Ishii, Tadashi Miyazaki
Autore Hirano Miki
Edizione [1st ed.]
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 2022
Descrizione fisica 1 online resource (136 pages)
Disciplina 515/.55
515.55
Altri autori (Persone) IshiiTaku
MiyazakiTadashi
Collana Memoirs of the American Mathematical Society
Soggetto topico Coulomb functions
Riemann integral
Functions, Zeta
Automorphic forms
Number theory -- Discontinuous groups and automorphic forms -- Representation-theoretic methods; automorphic representations over local and global fields
Number theory -- Discontinuous groups and automorphic forms -- Fourier coefficients of automorphic forms
Topological groups, Lie groups -- Lie groups -- Semisimple Lie groups and their representations
ISBN 9781470471668
1470471663
Classificazione 11F7011F3022E46
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title page -- Introduction -- Acknowledgments -- Part 1. Whittaker functions -- Chapter 1. Basic objects -- 1.1. Notation -- 1.2. Groups and algebras -- 1.3. Whittaker functions -- 1.4. Capelli elements -- 1.5. The gamma function and the Bessel functions -- 1.6. Special functions of two variables -- Chapter 2. Preliminaries for ( ,\bR) -- 2.1. Generalized principal series representations -- 2.2. The elements of \g_{\bC} and (\g_{\bC}) -- 2.3. The eigenvalues of generators of (\g_{\bC}) -- Chapter 3. Whittaker functions on (2,\bR) -- 3.1. Representations of (2) -- 3.2. Principal series representations -- 3.3. Principal series Whittaker functions -- 3.4. Essentially discrete series Whittaker functions -- Chapter 4. Whittaker functions on (3,\bR) -- 4.1. Representations of (3) -- 4.2. Principal series representations -- 4.3. Principal series Whittaker functions at scalar -types -- 4.4. Principal series Whittaker functions at 3 dimensional -types -- 4.5. Generalized principal series representations -- 4.6. Generalized principal series Whittaker functions -- Chapter 5. Preliminaries for ( ,\bC) -- 5.1. Principal series representations -- 5.2. The elements of \g_{\bC} and (\g_{\bC}) -- 5.3. The eigenvalues of generators of (\g_{\bC}) -- Chapter 6. Whittaker functions on (2,\bC) -- 6.1. Representations of (2) -- 6.2. Principal series representations -- 6.3. Principal series Whittaker functions -- Chapter 7. Whittaker functions on (3,\bC) -- 7.1. Representations of (3) -- 7.2. Principal series representations -- 7.3. Principal series Whittaker functions -- Part 2. Archimedean zeta integrals for (3)× (2) -- Chapter 8. Preliminaries -- 8.1. The aim of Part 2 -- 8.2. Some formulas for the calculation -- Chapter 9. The local zeta integrals for (3,\bR)× (2,\bR) -- 9.1. The local Langlands correspondence for ( ,\bR).
9.2. Preparations for (2)-modules -- 9.3. Whittaker functions on (2,\bR) -- 9.4. Whittaker functions on (3,\bR) -- 9.5. The local zeta integrals for (3,\bR)× (2,\bR) -- 9.6. The calculation for '= _{( ₁', ₂')}⊠ _{( ₂', ₂')} -- 9.7. The calculation for '= _{( ₁',1)}⊠ _{( ₂',0)} -- 9.8. The calculation for '= _{( ', ')} -- Chapter 10. The local zeta integrals for (3,\bC)× (2,\bC) -- 10.1. The local Langlands correspondence for ( ,\bC) -- 10.2. Preparations for (2)-modules -- 10.3. Whittaker functions on (2,\bC) -- 10.4. Whittaker functions on (3,\bC) -- 10.5. The local zeta integrals for (3,\bC)× (2,\bC) -- 10.6. The calculation in the case ₂> -- - ₂' -- 10.7. The calculation in the case - ₁'> -- ₂ -- 10.8. The calculation in the case - ₂'≥ ₂≥- ₁' -- Appendix A. Archimedean zeta integrals for (2)× ( ) ( =1,2) -- A.1. The local zeta integrals for (2,\bR)× (1,\bR) -- A.2. The local zeta integrals for (2,\bR)× (2,\bR) -- A.3. The local zeta integrals for (2,\bC)× (1,\bC) -- A.4. The local zeta integrals for (2,\bC)× (2,\bC) -- Bibliography -- Back Cover.
Record Nr. UNINA-9910965481803321
Hirano Miki  
Providence : , : American Mathematical Society, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bounded Littlewood Identities
Bounded Littlewood Identities
Autore Rains Eric M
Edizione [1st ed.]
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 2021
Descrizione fisica 1 online resource (129 pages)
Disciplina 515/.55
Altri autori (Persone) WarnaarS. Ole
Collana Memoirs of the American Mathematical Society
Soggetto topico Orthogonal polynomials
Combinatorial identities
Combinatorics -- Algebraic combinatorics -- Symmetric functions and generalizations
Combinatorics -- Algebraic combinatorics -- Combinatorial aspects of representation theory
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Special functions -- Basic hypergeometric functions -- Basic hypergeometric functions associated with root systems
ISBN 9781470465223
1470465221
Classificazione 05E0505E1017B6733D67
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title page -- Acknowledgements -- Chapter 1. Introduction -- 1.1. Littlewood identities -- 1.2. Outline -- Chapter 2. Macdonald-Koornwinder theory -- 2.1. Partitions -- 2.2. Generalised -shifted factorials -- 2.3. Rogers-Szegő polynomials -- 2.4. Plethystic notation -- 2.5. Macdonald polynomials -- 2.6. Koornwinder polynomials -- 2.7. Macdonald-Koornwinder polynomials -- 2.8. Hall-Littlewood polynomials -- Chapter 3. Virtual Koornwinder integrals -- 3.1. Basic definitions -- 3.2. Closed-form evaluations-the Macdonald case -- 3.3. Closed-form evaluations-the Hall-Littlewood case -- Chapter 4. Bounded Littlewood identities -- 4.1. Statement of results -- 4.2. Proofs of Theorems 4.1-4.8 -- Chapter 5. Applications -- 5.1. Plane partitions -- 5.2. Character identities for affine Lie algebras -- 5.3. Rogers-Ramanujan identities -- 5.4. Quadratic transformations for Kaneko-Macdonald-type basic hypergeometric series -- Chapter 6. Open problems -- 6.1. Missing -analogues -- 6.2. Littlewood identities for near-rectangular partitions -- 6.3. Littlewood identities of Pfaffian type -- 6.4. Elliptic Littlewood identities -- 6.5. , -Littlewood-Richardson coefficients -- 6.6. Dyson-Macdonald-type identities -- Appendix A. The Weyl-Kac formula -- Appendix B. Limits of elliptic hypergeometric integrals -- Bibliography -- Back Cover.
Record Nr. UNINA-9910957044203321
Rains Eric M  
Providence : , : American Mathematical Society, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chevalley supergroups / / R. Fioresi, F. Gavarini
Chevalley supergroups / / R. Fioresi, F. Gavarini
Autore Fioresi Rita <1966->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (64 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Chevalley groups
Superalgebras
Soggetto genere / forma Electronic books.
ISBN 0-8218-8521-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Acknowledgements""; ""Chapter 2. Preliminaries""; ""2.1. Superalgebras, superspaces, supergroups""; ""2.2. Lie superalgebras""; ""2.3. Homogeneous one-parameter supersubgroups""; ""Chapter 3. Chevalley bases and Chevalley algebras""; ""3.1. Root systems""; ""3.2. Chevalley bases and algebras""; ""3.3. Existence of Chevalley bases""; ""Chapter 4. Kostant superalgebras""; ""4.1. Kostant's Z �form""; ""4.2. Commutation rules""; ""4.3. Kostant's PBW-like theorem""; ""Chapter 5. Chevalley supergroups""; ""5.1. Admissible lattices""
""5.2. Construction of Chevalley supergroups""""5.3. Chevalley supergroups as algebraic supergroups""; ""5.4. Independence of Chevalley and Kostant superalgebras""; ""5.5. Lie's Third Theorem for Chevalley supergroups""; ""Chapter 6. The cases A(1,1) , P(3) and Q(n) ""; ""6.1. Chevalley bases and Chevalley superalgebras""; ""6.2. Kostant superalgebras""; ""6.3. Chevalley supergroups and their properties""; ""Appendix A. Sheafification""; ""Bibliography""
Record Nr. UNINA-9910480588803321
Fioresi Rita <1966->  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chevalley supergroups / / R. Fioresi, F. Gavarini
Chevalley supergroups / / R. Fioresi, F. Gavarini
Autore Fioresi Rita <1966->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (64 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Chevalley groups
Superalgebras
ISBN 0-8218-8521-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Acknowledgements""; ""Chapter 2. Preliminaries""; ""2.1. Superalgebras, superspaces, supergroups""; ""2.2. Lie superalgebras""; ""2.3. Homogeneous one-parameter supersubgroups""; ""Chapter 3. Chevalley bases and Chevalley algebras""; ""3.1. Root systems""; ""3.2. Chevalley bases and algebras""; ""3.3. Existence of Chevalley bases""; ""Chapter 4. Kostant superalgebras""; ""4.1. Kostant's Z �form""; ""4.2. Commutation rules""; ""4.3. Kostant's PBW-like theorem""; ""Chapter 5. Chevalley supergroups""; ""5.1. Admissible lattices""
""5.2. Construction of Chevalley supergroups""""5.3. Chevalley supergroups as algebraic supergroups""; ""5.4. Independence of Chevalley and Kostant superalgebras""; ""5.5. Lie's Third Theorem for Chevalley supergroups""; ""Chapter 6. The cases A(1,1) , P(3) and Q(n) ""; ""6.1. Chevalley bases and Chevalley superalgebras""; ""6.2. Kostant superalgebras""; ""6.3. Chevalley supergroups and their properties""; ""Appendix A. Sheafification""; ""Bibliography""
Record Nr. UNINA-9910788617203321
Fioresi Rita <1966->  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chevalley supergroups / / R. Fioresi, F. Gavarini
Chevalley supergroups / / R. Fioresi, F. Gavarini
Autore Fioresi Rita <1966->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (64 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Chevalley groups
Superalgebras
ISBN 0-8218-8521-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""Acknowledgements""; ""Chapter 2. Preliminaries""; ""2.1. Superalgebras, superspaces, supergroups""; ""2.2. Lie superalgebras""; ""2.3. Homogeneous one-parameter supersubgroups""; ""Chapter 3. Chevalley bases and Chevalley algebras""; ""3.1. Root systems""; ""3.2. Chevalley bases and algebras""; ""3.3. Existence of Chevalley bases""; ""Chapter 4. Kostant superalgebras""; ""4.1. Kostant's Z �form""; ""4.2. Commutation rules""; ""4.3. Kostant's PBW-like theorem""; ""Chapter 5. Chevalley supergroups""; ""5.1. Admissible lattices""
""5.2. Construction of Chevalley supergroups""""5.3. Chevalley supergroups as algebraic supergroups""; ""5.4. Independence of Chevalley and Kostant superalgebras""; ""5.5. Lie's Third Theorem for Chevalley supergroups""; ""Chapter 6. The cases A(1,1) , P(3) and Q(n) ""; ""6.1. Chevalley bases and Chevalley superalgebras""; ""6.2. Kostant superalgebras""; ""6.3. Chevalley supergroups and their properties""; ""Appendix A. Sheafification""; ""Bibliography""
Record Nr. UNINA-9910818809603321
Fioresi Rita <1966->  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Autore Levin A. L. <1944->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (166 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Orthogonal polynomials
Christoffel-Darboux formula
Convergence
Soggetto genere / forma Electronic books.
ISBN 1-4704-0114-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1""
""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2""
""Lemma 11.5: An Estimate for I[sub(3)]""
Record Nr. UNINA-9910480612003321
Levin A. L. <1944->  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Autore Levin A. L. <1944->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (166 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Orthogonal polynomials
Christoffel-Darboux formula
Convergence
ISBN 1-4704-0114-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1""
""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2""
""Lemma 11.5: An Estimate for I[sub(3)]""
Record Nr. UNINA-9910788755403321
Levin A. L. <1944->  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Christoffel functions and orthogonal polynomials for exponential weights on [₋1, 1] / / A. L. Levin, D. S. Lubinsky
Autore Levin A. L. <1944->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1994
Descrizione fisica 1 online resource (166 p.)
Disciplina 515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Orthogonal polynomials
Christoffel-Darboux formula
Convergence
ISBN 1-4704-0114-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""Â1. Introduction and Results""; ""Definition 1.1: The class W""; ""Theorem 1.2: Christoffel Functions""; ""Corollary 1.3: Sup-Norms of Christoffel Functions""; ""Corollary 1.4: Zeros""; ""Corollary 1.5: Bounds on Orthonormal Polynomials""; ""Theorem 1.6: Sup-Norm Christoffel Functions""; ""Theorem 1.7: Restricted Range Inequalities""; ""Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials""; ""Â2. Some Ideas Behind the Proofs""; ""I. An Orthogonal Polynomial Angle""; ""II. The Potential Theory Side: Lower Bounds for λ[sub(n)]""
""Proof of Theorem 4.2""""Proof of Theorem 4.3 (b)""; ""Proof of Theorem 4.3 (a)""; ""Â5. Majorization Functions and Integral Equations""; ""Lemma 5.1: Old Potential Theory/Integral Equations""; ""Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)]""; ""Theorem 5.3: Estimates for U[sub(n,R)]""; ""Â6. The Proof of Theorem 1.7""; ""Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials""; ""Proof of Theorem 1.7""; ""Â7. Lower Bounds for λ[sub(n)]""; ""Theorem 7.1: Lower Bounds for Î?[sub(n)]""; ""Lemma 7.2: Preliminary Lower Bounds""; ""Proof of Theorem 7.1""
""Â8. Discretisation of a Potential: Theorem 1.6""""Theorem 8.1: One Point Polynomials""; ""Deduction of Theorem 1.6""; ""Theorem 8.2: The Bounds for Î?[sub(n)]""; ""Deduction of Theorem 8.1""; ""Lemma 8.3: Estimates for the discretisation points""; ""Lemma 8.4: Estimates for S[sub(1)]+[sub(4)]""; ""Lemma 8.5: Estimates for Î?[sub(j)]""; ""Lemma 8.6: Estimates for Ï?[sub(j)]""; ""Lemma 8.7: Estimates for S[sub(21)]""; ""Lemma 8.8: Lower Bounds for S[sub(2)]""; ""Lemma 8.9: Upper Bounds for S[sub(2)]""; ""Lemma 8.10: Bounds for S[sub(3)]""; ""Proof of Theorem 8.2""
""Lemma 11.5: An Estimate for I[sub(3)]""
Record Nr. UNINA-9910806186303321
Levin A. L. <1944->  
Providence, Rhode Island : , : American Mathematical Society, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A generating function approach to the enumeration of matrices in classical groups over finite fields / / Jason Fulman, Peter M. Neumann, Cheryl E. Praeger
A generating function approach to the enumeration of matrices in classical groups over finite fields / / Jason Fulman, Peter M. Neumann, Cheryl E. Praeger
Autore Fulman Jason <1971->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2005]
Descrizione fisica 1 online resource (104 p.)
Disciplina 500 s
515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Generating functions
Combinatorial analysis
Linear algebraic groups
Soggetto genere / forma Electronic books.
ISBN 1-4704-0431-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction, Tables, and Preliminaries""; ""1.1. Introduction""; ""1.2. Tables""; ""1.3. Preliminaries""; ""Chapter 2. Separable and cyclic matrices in classical groups""; ""2.1. The unitary groups""; ""2.2. The symplectic groups""; ""2.3. The orthogonal groups""; ""Chapter 3. Semisimple and regular matrices in classical groups""; ""3.1. Semisimple matrices""; ""3.2. Regular elements""; ""Bibliography""
Record Nr. UNINA-9910480883703321
Fulman Jason <1971->  
Providence, Rhode Island : , : American Mathematical Society, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A generating function approach to the enumeration of matrices in classical groups over finite fields / / Jason Fulman, Peter M. Neumann, Cheryl E. Praeger
A generating function approach to the enumeration of matrices in classical groups over finite fields / / Jason Fulman, Peter M. Neumann, Cheryl E. Praeger
Autore Fulman Jason <1971->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2005]
Descrizione fisica 1 online resource (104 p.)
Disciplina 500 s
515/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Generating functions
Combinatorial analysis
Linear algebraic groups
ISBN 1-4704-0431-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction, Tables, and Preliminaries""; ""1.1. Introduction""; ""1.2. Tables""; ""1.3. Preliminaries""; ""Chapter 2. Separable and cyclic matrices in classical groups""; ""2.1. The unitary groups""; ""2.2. The symplectic groups""; ""2.3. The orthogonal groups""; ""Chapter 3. Semisimple and regular matrices in classical groups""; ""3.1. Semisimple matrices""; ""3.2. Regular elements""; ""Bibliography""
Record Nr. UNINA-9910788749303321
Fulman Jason <1971->  
Providence, Rhode Island : , : American Mathematical Society, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui