top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Integrability of Nonlinear Systems [[electronic resource] /] / edited by Yvette Kosmann-Schwarzbach, Basil Grammaticos, Kilkothur M. Tamizhmani
Integrability of Nonlinear Systems [[electronic resource] /] / edited by Yvette Kosmann-Schwarzbach, Basil Grammaticos, Kilkothur M. Tamizhmani
Edizione [1st ed. 1997.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997
Descrizione fisica 1 online resource (VII, 380 p.)
Disciplina 515/.355
Collana Lecture Notes in Physics
Soggetto topico Mathematical physics
Fluids
Mechanics
Theoretical, Mathematical and Computational Physics
Fluid- and Aerodynamics
Classical Mechanics
ISBN 3-540-69521-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nonlinear waves, solitons and IST -- Integrability — and how to detect it -- to the Hirota bilinear method -- Lie bialgebras, poisson Lie groups and dressing transformations -- Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property -- Bifurcations, chaos, controlling and synchronization of certain nonlinear oscillators -- Eight lectures on integrable systems -- Bilinear formalism in solition theory -- Quantum and classical integrable systems.
Record Nr. UNISA-996466795703316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Integrability of Nonlinear Systems [[electronic resource] /] / edited by Yvette Kosmann-Schwarzbach, Basil Grammaticos, Kilkothur M. Tamizhmani
Integrability of Nonlinear Systems [[electronic resource] /] / edited by Yvette Kosmann-Schwarzbach, Basil Grammaticos, Kilkothur M. Tamizhmani
Edizione [1st ed. 1997.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997
Descrizione fisica 1 online resource (VII, 380 p.)
Disciplina 515/.355
Collana Lecture Notes in Physics
Soggetto topico Mathematical physics
Fluids
Mechanics
Theoretical, Mathematical and Computational Physics
Fluid- and Aerodynamics
Classical Mechanics
ISBN 3-540-69521-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nonlinear waves, solitons and IST -- Integrability — and how to detect it -- to the Hirota bilinear method -- Lie bialgebras, poisson Lie groups and dressing transformations -- Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property -- Bifurcations, chaos, controlling and synchronization of certain nonlinear oscillators -- Eight lectures on integrable systems -- Bilinear formalism in solition theory -- Quantum and classical integrable systems.
Record Nr. UNINA-9910257385303321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical aspects of nonlinear dispersive equations [[electronic resource] /] / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Mathematical aspects of nonlinear dispersive equations [[electronic resource] /] / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2007
Descrizione fisica 1 online resource (309 p.)
Disciplina 515/.355
Altri autori (Persone) BourgainJean <1954->
KenigCarlos E. <1953->
KlainermanSergiu <1950->
Collana Annals of mathematics studies
Soggetto topico Differential equations, Nonlinear
Nonlinear partial differential operators
Soggetto genere / forma Electronic books.
ISBN 1-282-12960-0
9786612129605
1-4008-2779-5
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Chapter 1. On Strichartz's Inequalities and the Nonlinear Schrödinger Equation on Irrational Tori / Bourgain, J. -- Chapter 2. Diffusion Bound for a Nonlinear Schrödinger Equation / Bourgain, J. / Wang, W.-M. -- Chapter 3. Instability of Finite Difference Schemes for Hyperbolic Conservation Laws / Bressan, A. / Baiti, P. / Jenssen, H. K. -- Chapter 4. Nonlinear Elliptic Equations with Measures Revisited / Brezis, H. / Marcus, M. / Ponce, A. C. -- Chapter 5. Global Solutions for the Nonlinear Schrödinger Equation on Three-Dimensional Compact Manifolds / Burq, N. / Gérard, P. / Tzvetkov, N. -- Chapter 6. Power Series Solution of a Nonlinear Schrödinger Equation / Christ, M. -- Chapter 7. Eulerian-Lagrangian Formalism and Vortex Reconnection / Constantin, P. -- Chapter 8. Long Time Existence for Small Data Semilinear Klein-Gordon Equations on Spheres / Delort, J.-M. / Szeftel, J. -- Chapter 9. Local and Global Wellposedness of Periodic KP-I Equations / Ionescu, A. D. / Kenig, C. E. -- Chapter 10. The Cauchy Problem for the Navier-Stokes Equations with Spatially Almost Periodic Initial Data / Giga, Y. / Mahalov, A. / Nicolaenko, B. -- Chapter 11. Longtime Decay Estimates for the Schrödinger Equation on Manifolds / Rodnianski, I. / Tao, T. -- Contributors -- Index
Record Nr. UNINA-9910454344603321
Princeton, : Princeton University Press, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical aspects of nonlinear dispersive equations [[electronic resource] /] / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Mathematical aspects of nonlinear dispersive equations [[electronic resource] /] / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2007
Descrizione fisica 1 online resource (309 p.)
Disciplina 515/.355
Altri autori (Persone) BourgainJean <1954->
KenigCarlos E. <1953->
KlainermanSergiu <1950->
Collana Annals of mathematics studies
Soggetto topico Differential equations, Nonlinear
Nonlinear partial differential operators
Soggetto non controllato Absolute value
Addition
Analysis
Analytical technique
Average
Commutator
Conservation law
Continuous spectrum
Critical focus
Eigenfunction
Eigenvalues and eigenvectors
Equation
Exponential decay
Fourier transform
Lecture
Manifold
Medium frequency
Nature
Navier–Stokes equations
Nonlinear system
Scattering theory
Sloan Fellowship
Spectral method
Subset
Support (mathematics)
Theory
Three-dimensional space (mathematics)
Volume
Wave equation
ISBN 1-282-12960-0
9786612129605
1-4008-2779-5
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Chapter 1. On Strichartz's Inequalities and the Nonlinear Schrödinger Equation on Irrational Tori / Bourgain, J. -- Chapter 2. Diffusion Bound for a Nonlinear Schrödinger Equation / Bourgain, J. / Wang, W.-M. -- Chapter 3. Instability of Finite Difference Schemes for Hyperbolic Conservation Laws / Bressan, A. / Baiti, P. / Jenssen, H. K. -- Chapter 4. Nonlinear Elliptic Equations with Measures Revisited / Brezis, H. / Marcus, M. / Ponce, A. C. -- Chapter 5. Global Solutions for the Nonlinear Schrödinger Equation on Three-Dimensional Compact Manifolds / Burq, N. / Gérard, P. / Tzvetkov, N. -- Chapter 6. Power Series Solution of a Nonlinear Schrödinger Equation / Christ, M. -- Chapter 7. Eulerian-Lagrangian Formalism and Vortex Reconnection / Constantin, P. -- Chapter 8. Long Time Existence for Small Data Semilinear Klein-Gordon Equations on Spheres / Delort, J.-M. / Szeftel, J. -- Chapter 9. Local and Global Wellposedness of Periodic KP-I Equations / Ionescu, A. D. / Kenig, C. E. -- Chapter 10. The Cauchy Problem for the Navier-Stokes Equations with Spatially Almost Periodic Initial Data / Giga, Y. / Mahalov, A. / Nicolaenko, B. -- Chapter 11. Longtime Decay Estimates for the Schrödinger Equation on Manifolds / Rodnianski, I. / Tao, T. -- Contributors -- Index
Record Nr. UNINA-9910777728603321
Princeton, : Princeton University Press, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical aspects of nonlinear dispersive equations / / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Mathematical aspects of nonlinear dispersive equations / / Jean Bourgain, Carlos E. Kenig, and S. Klainerman, editors
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2007
Descrizione fisica 1 online resource (309 p.)
Disciplina 515/.355
Altri autori (Persone) BourgainJean <1954->
KenigCarlos E. <1953->
KlainermanSergiu <1950->
Collana Annals of mathematics studies
Soggetto topico Differential equations, Nonlinear
Nonlinear partial differential operators
ISBN 1-282-12960-0
9786612129605
1-4008-2779-5
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Chapter 1. On Strichartz's Inequalities and the Nonlinear Schrödinger Equation on Irrational Tori / Bourgain, J. -- Chapter 2. Diffusion Bound for a Nonlinear Schrödinger Equation / Bourgain, J. / Wang, W.-M. -- Chapter 3. Instability of Finite Difference Schemes for Hyperbolic Conservation Laws / Bressan, A. / Baiti, P. / Jenssen, H. K. -- Chapter 4. Nonlinear Elliptic Equations with Measures Revisited / Brezis, H. / Marcus, M. / Ponce, A. C. -- Chapter 5. Global Solutions for the Nonlinear Schrödinger Equation on Three-Dimensional Compact Manifolds / Burq, N. / Gérard, P. / Tzvetkov, N. -- Chapter 6. Power Series Solution of a Nonlinear Schrödinger Equation / Christ, M. -- Chapter 7. Eulerian-Lagrangian Formalism and Vortex Reconnection / Constantin, P. -- Chapter 8. Long Time Existence for Small Data Semilinear Klein-Gordon Equations on Spheres / Delort, J.-M. / Szeftel, J. -- Chapter 9. Local and Global Wellposedness of Periodic KP-I Equations / Ionescu, A. D. / Kenig, C. E. -- Chapter 10. The Cauchy Problem for the Navier-Stokes Equations with Spatially Almost Periodic Initial Data / Giga, Y. / Mahalov, A. / Nicolaenko, B. -- Chapter 11. Longtime Decay Estimates for the Schrödinger Equation on Manifolds / Rodnianski, I. / Tao, T. -- Contributors -- Index
Record Nr. UNINA-9910813829203321
Princeton, : Princeton University Press, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear behavior and stability of thin-walled shells / / Natalia I. Obodan, Olexandr G. Lebedeyev, Vasilii A. Gromov
Nonlinear behavior and stability of thin-walled shells / / Natalia I. Obodan, Olexandr G. Lebedeyev, Vasilii A. Gromov
Autore Obodan Natalia I
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht, : Springer, c2013
Descrizione fisica 1 online resource (182 p.)
Disciplina 515.355
515/.355
Altri autori (Persone) LebedeyevOlexandr G
GromovVasilii A.
Collana Solid Mechanics and Its Applications
Soggetto topico Thin-walled structures
Shells (Engineering)
ISBN 94-007-6365-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. In lieu of introduction -- 2. Boundary problem of thin shells theory -- 3. Branching of nonlinear boundary problem solutions -- 4. Numerical method -- 5. Nonaxisymmetrically loaded cylindrical shell -- 6. Structurally nonaxisymetric shell subjected to uniform loading -- 7. Postcritical branching patterns for cylindrical shell subjected to uniform external loading -- 8. Postbuckling behaviour and stability of anisotropic shells -- 9. Conclusion.
Record Nr. UNINA-9910438052503321
Obodan Natalia I  
Dordrecht, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear Differential Equations and Dynamical Systems [[electronic resource] /] / by Ferdinand Verhulst
Nonlinear Differential Equations and Dynamical Systems [[electronic resource] /] / by Ferdinand Verhulst
Autore Verhulst Ferdinand
Edizione [2nd ed. 1996.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Descrizione fisica 1 online resource (X, 306 p. 2 illus.)
Disciplina 515/.355
Collana Universitext
Soggetto topico Mathematical analysis
Analysis (Mathematics)
Dynamics
Ergodic theory
Physics
Statistical physics
Dynamical systems
Applied mathematics
Engineering mathematics
Analysis
Dynamical Systems and Ergodic Theory
Numerical and Computational Physics, Simulation
Complex Systems
Mathematical and Computational Engineering
Statistical Physics and Dynamical Systems
ISBN 3-642-61453-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwall’s inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouville’s theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1 Bendixson’s criterion -- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem -- 4.3 The Poincaré-Bendixson theorem -- 4.4 Applications of the Poincaré-Bendixson theorem -- 4.5 Periodic solutions in ?n -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear Equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naïve expansion -- 9.4 The Poincaré expansion theorem -- 9.5 Exercises -- 10 The Poincaré-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 The method of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation Oscillations -- 12.1 Introduction -- 12.2 Mechanical systems with large friction -- 12.3 The van der Pol-equation -- 12.4 The Volterra-Lotka equations -- 12.5 Exercises -- 13 Bifurcation Theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 Introduction and historical context -- 14.2 The Lorenz-equations -- 14.3 Maps associated with the Lorenz-equations -- 14.4 One-dimensional dynamics -- 14.5 One-dimensional chaos: the quadratic map -- 14.6 One-dimensional chaos: the tent map -- 14.7 Fractal sets -- 14.8 Dynamical characterisations of fractal sets -- 14.9 Lyapunov exponents -- 14.10 Ideas and references to the literature -- 15 Hamiltonian systems -- 15.1 Introduction -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 Birkhoff-normalisation -- 15.4 The phenomenon of recurrence -- 15.5 Periodic solutions -- 15.6 Invariant tori and chaos -- 15.7 The KAM theorem -- 15.8 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3 -- Appendix 5: Bifurcations of self-excited oscillations -- Appendix 6: Normal forms of Hamiltonian systems near equilibria -- Answers and hints to the exercises -- References.
Record Nr. UNINA-9910480045903321
Verhulst Ferdinand  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear Differential Equations and Dynamical Systems [[electronic resource] /] / by Ferdinand Verhulst
Nonlinear Differential Equations and Dynamical Systems [[electronic resource] /] / by Ferdinand Verhulst
Autore Verhulst Ferdinand
Edizione [2nd ed. 1996.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Descrizione fisica 1 online resource (X, 306 p. 2 illus.)
Disciplina 515/.355
Collana Universitext
Soggetto topico Mathematical analysis
Analysis (Mathematics)
Dynamics
Ergodic theory
Physics
Statistical physics
Dynamical systems
Applied mathematics
Engineering mathematics
Analysis
Dynamical Systems and Ergodic Theory
Numerical and Computational Physics, Simulation
Complex Systems
Mathematical and Computational Engineering
Statistical Physics and Dynamical Systems
ISBN 3-642-61453-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwall’s inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouville’s theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1 Bendixson’s criterion -- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem -- 4.3 The Poincaré-Bendixson theorem -- 4.4 Applications of the Poincaré-Bendixson theorem -- 4.5 Periodic solutions in ?n -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear Equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naïve expansion -- 9.4 The Poincaré expansion theorem -- 9.5 Exercises -- 10 The Poincaré-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 The method of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation Oscillations -- 12.1 Introduction -- 12.2 Mechanical systems with large friction -- 12.3 The van der Pol-equation -- 12.4 The Volterra-Lotka equations -- 12.5 Exercises -- 13 Bifurcation Theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 Introduction and historical context -- 14.2 The Lorenz-equations -- 14.3 Maps associated with the Lorenz-equations -- 14.4 One-dimensional dynamics -- 14.5 One-dimensional chaos: the quadratic map -- 14.6 One-dimensional chaos: the tent map -- 14.7 Fractal sets -- 14.8 Dynamical characterisations of fractal sets -- 14.9 Lyapunov exponents -- 14.10 Ideas and references to the literature -- 15 Hamiltonian systems -- 15.1 Introduction -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 Birkhoff-normalisation -- 15.4 The phenomenon of recurrence -- 15.5 Periodic solutions -- 15.6 Invariant tori and chaos -- 15.7 The KAM theorem -- 15.8 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3 -- Appendix 5: Bifurcations of self-excited oscillations -- Appendix 6: Normal forms of Hamiltonian systems near equilibria -- Answers and hints to the exercises -- References.
Record Nr. UNINA-9910789217203321
Verhulst Ferdinand  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear Differential Equations and Dynamical Systems / / by Ferdinand Verhulst
Nonlinear Differential Equations and Dynamical Systems / / by Ferdinand Verhulst
Autore Verhulst Ferdinand
Edizione [2nd ed. 1996.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Descrizione fisica 1 online resource (X, 306 p. 2 illus.)
Disciplina 515/.355
Collana Universitext
Soggetto topico Mathematical analysis
Analysis (Mathematics)
Dynamics
Ergodic theory
Physics
Statistical physics
Dynamical systems
Applied mathematics
Engineering mathematics
Analysis
Dynamical Systems and Ergodic Theory
Numerical and Computational Physics, Simulation
Complex Systems
Mathematical and Computational Engineering
Statistical Physics and Dynamical Systems
ISBN 3-642-61453-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwall’s inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouville’s theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1 Bendixson’s criterion -- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem -- 4.3 The Poincaré-Bendixson theorem -- 4.4 Applications of the Poincaré-Bendixson theorem -- 4.5 Periodic solutions in ?n -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear Equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naïve expansion -- 9.4 The Poincaré expansion theorem -- 9.5 Exercises -- 10 The Poincaré-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 The method of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation Oscillations -- 12.1 Introduction -- 12.2 Mechanical systems with large friction -- 12.3 The van der Pol-equation -- 12.4 The Volterra-Lotka equations -- 12.5 Exercises -- 13 Bifurcation Theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 Introduction and historical context -- 14.2 The Lorenz-equations -- 14.3 Maps associated with the Lorenz-equations -- 14.4 One-dimensional dynamics -- 14.5 One-dimensional chaos: the quadratic map -- 14.6 One-dimensional chaos: the tent map -- 14.7 Fractal sets -- 14.8 Dynamical characterisations of fractal sets -- 14.9 Lyapunov exponents -- 14.10 Ideas and references to the literature -- 15 Hamiltonian systems -- 15.1 Introduction -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 Birkhoff-normalisation -- 15.4 The phenomenon of recurrence -- 15.5 Periodic solutions -- 15.6 Invariant tori and chaos -- 15.7 The KAM theorem -- 15.8 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3 -- Appendix 5: Bifurcations of self-excited oscillations -- Appendix 6: Normal forms of Hamiltonian systems near equilibria -- Answers and hints to the exercises -- References.
Record Nr. UNINA-9910807088203321
Verhulst Ferdinand  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear partial differential equations : International Conference on Nonlinear Partial Differential Equations and Applications, March 21-24, 1998, Northwestern University / / Gui-Qiang Chen, Emmanuele DiBenedetto, editors
Nonlinear partial differential equations : International Conference on Nonlinear Partial Differential Equations and Applications, March 21-24, 1998, Northwestern University / / Gui-Qiang Chen, Emmanuele DiBenedetto, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1999]
Descrizione fisica 1 online resource (318 p.)
Disciplina 515/.355
Collana Contemporary mathematics
Soggetto topico Differential equations, Nonlinear
Soggetto genere / forma Electronic books.
ISBN 0-8218-2034-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480753403321
Providence, Rhode Island : , : American Mathematical Society, , [1999]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui