Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz
| Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz |
| Autore | Strelitz S (Shlomo), <1923-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1999] |
| Descrizione fisica | 1 online resource (105 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Differential equations, Linear - Asymptotic theory |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0267-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Chapter 1: The Construction of Asymptotics""; ""Â1 Introduction""; ""Â2 Formulation of the main result""; ""Â3 The main auxiliary lemma""; ""Â4 The equation Y[sup(n)] = λp[sub(0)]X[sup(αY)]""; ""Â5 Asymptotics in [0, x[sub(0)]""; ""Â6 Asymptotics in [x*, l]""; ""Â7 Proof of Theorem 1""; ""Â8 Completion of the proof of Theorem 1 and of Theorem 2""; ""Chapter 2: Application: Existence and Asymptotics of Eigenvalues""; ""Â1 Introduction""; ""Â2 Boundary problem for a second order equation""
""Â3 Boundary problem for a third order equation. Existence of eigenvalues""""Â4 Asymptotics for eigenvalues sequences""; ""References"" |
| Record Nr. | UNINA-9910479977503321 |
Strelitz S (Shlomo), <1923->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1999] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz
| Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz |
| Autore | Strelitz S (Shlomo), <1923-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1999] |
| Descrizione fisica | 1 online resource (105 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Differential equations, Linear - Asymptotic theory |
| ISBN | 1-4704-0267-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Chapter 1: The Construction of Asymptotics""; ""Â1 Introduction""; ""Â2 Formulation of the main result""; ""Â3 The main auxiliary lemma""; ""Â4 The equation Y[sup(n)] = λp[sub(0)]X[sup(αY)]""; ""Â5 Asymptotics in [0, x[sub(0)]""; ""Â6 Asymptotics in [x*, l]""; ""Â7 Proof of Theorem 1""; ""Â8 Completion of the proof of Theorem 1 and of Theorem 2""; ""Chapter 2: Application: Existence and Asymptotics of Eigenvalues""; ""Â1 Introduction""; ""Â2 Boundary problem for a second order equation""
""Â3 Boundary problem for a third order equation. Existence of eigenvalues""""Â4 Asymptotics for eigenvalues sequences""; ""References"" |
| Record Nr. | UNINA-9910788739303321 |
Strelitz S (Shlomo), <1923->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1999] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz
| Asymptotics for solutions of linear differential equations having turning points with applications / / S. Strelitz |
| Autore | Strelitz S (Shlomo), <1923-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1999] |
| Descrizione fisica | 1 online resource (105 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Differential equations, Linear - Asymptotic theory |
| ISBN | 1-4704-0267-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Table of Contents""; ""Chapter 1: The Construction of Asymptotics""; ""Â1 Introduction""; ""Â2 Formulation of the main result""; ""Â3 The main auxiliary lemma""; ""Â4 The equation Y[sup(n)] = λp[sub(0)]X[sup(αY)]""; ""Â5 Asymptotics in [0, x[sub(0)]""; ""Â6 Asymptotics in [x*, l]""; ""Â7 Proof of Theorem 1""; ""Â8 Completion of the proof of Theorem 1 and of Theorem 2""; ""Chapter 2: Application: Existence and Asymptotics of Eigenvalues""; ""Â1 Introduction""; ""Â2 Boundary problem for a second order equation""
""Â3 Boundary problem for a third order equation. Existence of eigenvalues""""Â4 Asymptotics for eigenvalues sequences""; ""References"" |
| Record Nr. | UNINA-9910813653503321 |
Strelitz S (Shlomo), <1923->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1999] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley
| Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley |
| Autore | Chalkley Roger <1931-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
| Descrizione fisica | 1 online resource (223 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Differential equations, Linear
Invariants |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0337-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Chapter 4. L[sub(n)] and I[sub(n,i)] as Semi-Invariants of the First Kind""""Chapter 5. V[sub(n)] and J[sub(n,i)] as Semi-Invariants of the Second Kind""; ""Chapter 6. The Coefficients of Transformed Equations""; ""6.1. Alternative formulas for c**[sub(i)](Ï?) in (1.5)""; ""6.2. The coefficients of a composite transformation""; ""6.3. Several examples""; ""6.4. Proof of an old observation""; ""6.5. Conditions for transformed equations""; ""6.6. Formulas for later reference""; ""Chapter 7. Formulas That Involve L[sub(n)](z) or I[sub(n,n)](z)""
""7.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""7.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""7.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""Chapter 8. Formulas That Involve V[sub(n)](z) or J[sub(n,n)](z)""; ""8.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""8.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0"" ""8.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""Chapter 9. Verification of I[sub(n,n)] â?¡ J[sub(n,n)]and Various Observations""; ""9.1. Proof for the first part of the Main Theorem in Chapter 1""; ""9.2. Global sets""; ""9.3. A fourth type of invariant: an absolute invariant""; ""9.4. Laguerre-Forsyth canonical forms""; ""Chapter 10. The Local Constructions of Earlier Research""; ""10.1. Standard techniques""; ""10.2. An improved computational procedure""; ""10.3. Hindrances to earlier research"" ""Chapter 11. Relations for G[sub(i)], H[sub(i)], and L[sub(i)] That Yield Equivalent Formulas for Basic Relative Invariants"" |
| Record Nr. | UNINA-9910481052703321 |
Chalkley Roger <1931->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley
| Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley |
| Autore | Chalkley Roger <1931-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
| Descrizione fisica | 1 online resource (223 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Differential equations, Linear
Invariants |
| ISBN | 1-4704-0337-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Chapter 4. L[sub(n)] and I[sub(n,i)] as Semi-Invariants of the First Kind""""Chapter 5. V[sub(n)] and J[sub(n,i)] as Semi-Invariants of the Second Kind""; ""Chapter 6. The Coefficients of Transformed Equations""; ""6.1. Alternative formulas for c**[sub(i)](Ï?) in (1.5)""; ""6.2. The coefficients of a composite transformation""; ""6.3. Several examples""; ""6.4. Proof of an old observation""; ""6.5. Conditions for transformed equations""; ""6.6. Formulas for later reference""; ""Chapter 7. Formulas That Involve L[sub(n)](z) or I[sub(n,n)](z)""
""7.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""7.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""7.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""Chapter 8. Formulas That Involve V[sub(n)](z) or J[sub(n,n)](z)""; ""8.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""8.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0"" ""8.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""Chapter 9. Verification of I[sub(n,n)] â?¡ J[sub(n,n)]and Various Observations""; ""9.1. Proof for the first part of the Main Theorem in Chapter 1""; ""9.2. Global sets""; ""9.3. A fourth type of invariant: an absolute invariant""; ""9.4. Laguerre-Forsyth canonical forms""; ""Chapter 10. The Local Constructions of Earlier Research""; ""10.1. Standard techniques""; ""10.2. An improved computational procedure""; ""10.3. Hindrances to earlier research"" ""Chapter 11. Relations for G[sub(i)], H[sub(i)], and L[sub(i)] That Yield Equivalent Formulas for Basic Relative Invariants"" |
| Record Nr. | UNINA-9910788846303321 |
Chalkley Roger <1931->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley
| Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley |
| Autore | Chalkley Roger <1931-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
| Descrizione fisica | 1 online resource (223 p.) |
| Disciplina |
510 s
515/.354 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Differential equations, Linear
Invariants |
| ISBN | 1-4704-0337-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Chapter 4. L[sub(n)] and I[sub(n,i)] as Semi-Invariants of the First Kind""""Chapter 5. V[sub(n)] and J[sub(n,i)] as Semi-Invariants of the Second Kind""; ""Chapter 6. The Coefficients of Transformed Equations""; ""6.1. Alternative formulas for c**[sub(i)](Ï?) in (1.5)""; ""6.2. The coefficients of a composite transformation""; ""6.3. Several examples""; ""6.4. Proof of an old observation""; ""6.5. Conditions for transformed equations""; ""6.6. Formulas for later reference""; ""Chapter 7. Formulas That Involve L[sub(n)](z) or I[sub(n,n)](z)""
""7.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""7.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""7.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""Chapter 8. Formulas That Involve V[sub(n)](z) or J[sub(n,n)](z)""; ""8.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""8.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0"" ""8.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""Chapter 9. Verification of I[sub(n,n)] â?¡ J[sub(n,n)]and Various Observations""; ""9.1. Proof for the first part of the Main Theorem in Chapter 1""; ""9.2. Global sets""; ""9.3. A fourth type of invariant: an absolute invariant""; ""9.4. Laguerre-Forsyth canonical forms""; ""Chapter 10. The Local Constructions of Earlier Research""; ""10.1. Standard techniques""; ""10.2. An improved computational procedure""; ""10.3. Hindrances to earlier research"" ""Chapter 11. Relations for G[sub(i)], H[sub(i)], and L[sub(i)] That Yield Equivalent Formulas for Basic Relative Invariants"" |
| Record Nr. | UNINA-9910818970703321 |
Chalkley Roger <1931->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Contact geometry and linear differential equations [[electronic resource] /] / by Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin
| Contact geometry and linear differential equations [[electronic resource] /] / by Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
| Autore | Nazaĭkinskiĭ V. E |
| Edizione | [Reprint 2011] |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, 1992 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 515/.354 |
| Altri autori (Persone) |
ShatalovV. E (Viktor Evgenʹevich)
SterninB. I͡U |
| Collana | De Gruyter expositions in mathematics |
| Soggetto topico |
Differential equations, Linear
WKB approximation |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-11-087310-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Chapter I. Homogeneous functions, Fourier transformation, and contact structures -- Chapter II. Fourier-Maslov operators -- Chapter III. Applications to differential equations -- References -- Index -- Backmatter |
| Record Nr. | UNINA-9910462005503321 |
Nazaĭkinskiĭ V. E
|
||
| Berlin ; ; New York, : W. de Gruyter, 1992 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Contact geometry and linear differential equations [[electronic resource] /] / by Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin
| Contact geometry and linear differential equations [[electronic resource] /] / by Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
| Autore | Nazaĭkinskiĭ V. E |
| Edizione | [Reprint 2011] |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, 1992 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 515/.354 |
| Altri autori (Persone) |
ShatalovV. E (Viktor Evgenʹevich)
SterninB. I͡U |
| Collana | De Gruyter expositions in mathematics |
| Soggetto topico |
Differential equations, Linear
WKB approximation |
| ISBN | 3-11-087310-9 |
| Classificazione | SK 540 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Chapter I. Homogeneous functions, Fourier transformation, and contact structures -- Chapter II. Fourier-Maslov operators -- Chapter III. Applications to differential equations -- References -- Index -- Backmatter |
| Record Nr. | UNINA-9910785820303321 |
Nazaĭkinskiĭ V. E
|
||
| Berlin ; ; New York, : W. de Gruyter, 1992 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Introduction to stokes structures / / Claude Sabbah
| Introduction to stokes structures / / Claude Sabbah |
| Autore | Sabbah Claude |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin, : Springer, c2013 |
| Descrizione fisica | 1 online resource (XIV, 249 p. 14 illus., 1 illus. in color.) |
| Disciplina | 515/.354 |
| Collana | Lecture notes in mathematics |
| Soggetto topico |
Differential equations, Linear
Stokes' theorem |
| ISBN | 3-642-31695-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ; 1. T-filtrations -- ; 2. Stokes-filtered local systems in dimension one -- ; 3. Abelianity and strictness -- ; 4. Stokes-perverse sheaves on Riemann surfaces -- ; 5. The Riemann-Hilbert correspondence for holonomic D-modules on curves -- ; 6. Applications of the Riemann-Hilbert correspondence to holonomic distributions -- ; 7. Riemann-Hilbert and Laplace on the affine line (the regular case) -- ; 8. Real blow-up spaces and moderate de Rham complexes -- ; 9. Stokes-filtered local systems along a divisor with normal crossings -- ; 10. The Riemann-Hilbert correspondence for good meromorphic connections (case of a smooth divisor) -- ; 11. Good meromorphic connections (formal theory) -- ; 12. Good meromorphic connections (analytic theory) and the Riemann-Hilbert correspondence -- ; 13. Push-forward of Stokes-filtered local systems -- ; 14. Irregular nearby cycles -- ; 15. Nearby cycles of Stokes-filtered local systems. |
| Record Nr. | UNINA-9910438153003321 |
Sabbah Claude
|
||
| Berlin, : Springer, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||